Beta-lactam Antibiotics: The Past, Present, and Future

0
2274
  1. Fleming, Alexander. (1980). On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. Influenzae. Reviews of Infectious Disease 2, 1, 129-139. doi:10.1093/clinids/2.1.129.
  2. Chain E., Florey H., Gardner A., Heatley N., Jennings M. Orr-Ewing, J.; Sanders, A. (1940). Penicillin As A Chemotherapeutic Agent. The Lancet, 6104, 236, 226-228. doi: 10.5555/uri:pii:S0140673601087281.
  3. Gaynes, Robert. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Diseases, 23, 5, 849-853. doi: 10.3201/eid2305.161556.
  4. Abraham, E. P. (November 1987). Cephalosporins 1945–1986. SpringerLink, 34, 1-14. doi:10.2165/00003495-198700342-00003.
  5. Skyes, R.B.; Bonner, D.P. (November 1, 1985). Discovery and Development of Monobactams. Oxford Academia, 7, 4, 579-593. doi:10.1093/clinids/7.Supplement_4.S579. 
  6. Papp-Wallace, Kristina M.; Endimiani, Andrea; Taracila, Magdalena, A.; Bonomo, Robert A. (October 2011). Carbapenems: Past, Present, and Future. Antimicrobial Agents and Chemotherapy, 55, 11, 4943-4960. doi:10.1128/AAC.00296-11.
  7. Abraham, E. P. (1983). History of beta-Lactam Antibiotics. Springer, 67, 1, 1–14. doi:10.1007/978-3-642-81966-7_1.
  8. Spratt, Brian. (1977). Properties of the penicillin-binding proteins of Escherichia coli K12. European Journal of Biochemistry, 72, 2, 341-352. doi: 10.1111/j.1432-1033.1977.tb11 258.x.
  9. Waxman, D. Strominger, J. (1983). Penicillin-Binding Proteins and the Mechanism of Action of Beta-Lactam Antibiotics. Annual Review of Biochemistry, 52, 825-869. doi: 10.1146/annurev.bi.52.070183.004141.
  10. Bush, Karen. (2018). Past and Present Perspectives on beta-Lactamases. Antimicrobial Agents and Chemotherapy, 62, 10. doi:10.1128/aac.01076-18.
  11. Rice, Louis B. (February 2012).  Mechanisms of Resistance and Clinical Relevance of Resistance to beta-Lactams, Glycopeptides, and Fluoroquinolones. Mayo Clinic Proceedings, 87, 2, 198–208. doi:10.1016/j.mayocp.2011.12.003.
  12. Hall, B.; Barlow M. (2004). Evolution of the Serine Beta-Lactamases: Past, Present and Future. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 7, 2, 111-23. doi:10.1016/j.drup.2004.02.003. 
  13. Ambler, R; Coulson, A; Frere, J; Ghuysen, J; Joris, B; Forsman, M; Levesque, R; Tiraby G; Waley S. (1991). A Standard Numbering Scheme for the Class A Beta-Lactamases. The Biochemical Journal, 276, 1, 269–270. doi:10.1042/bj2760269. 
  14. Bush, K; Jacoby, A. (March 2010). Updated Functional Classification of Beta-Lactamases. American Society for Microbiology. Antimicrobial Agents and Chemotherapy, 54, 3, 969–976. doi:10.1128/AAC.01009-09.
  15. Then, R.; Angehrn, P. (May 1982). Trapping of Nonhydrolyzable Cephalosporins by Cephalosporinases in Enterobacter Cloacae and Pseudomonas Aeruginosa as a Possible Resistance Mechanism. Antimicrobial Agents and Chemotherapy, 21, 5, 711-7. doi: 10.1128/aac.21.5.711. 
  16. Bulychev, A; Mobashery, S. (1999). Class C Beta-Lactamases Operate at the Diffusion Limit for Turnover of Their Preferred Cephalosporin Substrates. American Society for Microbiology. Antimicrobial Agents and Chemotherapy, 43, 7, 1743–1746. doi: 10.1128/AAC.43.7.1743
  17. Feller, G; et al. (1997). Enzymes From Cold-Adapted Microorganisms. The Class C Beta-Lactamase From the Antarctic Psychrophile Psychrobacter Immobilis A5. European Journal of Biochemistry, 244, 1, 186-91. doi: 10.1111/j.1432-1033.1997.00186.x 
  18. Jaurin, B; Grundström, T. (August 1981). AmpC Cephalosporinase of Escherichia Coli K-12 Has a Different Evolutionary Origin From That of Beta-Lactamases of the Penicillinase Type. Proceedings of the National Academy of Sciences of the United States of America, 78, 8, 4897-901. doi:10.1073/pnas.78.8.4897.
  19. Knott-Hunziker, V; Petursson, S; Jayatilake, S; Waley G; Jaurin B; Grundström T. (1982). Active Sites of Beta-Lactamases. The Chromosomal Beta-Lactamases of Pseudomonas Aeruginosa and Escherichia Coli. National Library of Medicine. The Biochemical Journal, 201, 3, 621-7. doi:10.1042/bj2010621.
  20. Jacoby, A. (2009). AmpC Beta-Lactamases. American Society for Microbiology. Clinical microbiology reviews, 22, 1, 161–182. doi:10.1128/CMR.00036-08 
  21. Vandavasi, G; Langan, P; Weiss, K; Parks, J; Cooper, J; Ginell, C. (2016). Active-Site Protonation States in an Acyl-Enzyme Intermediate of a Class A beta-Lactamase with a Monobactam Substrate. American Society for Microbiology Journals, 61, 1. doi:10.1128/AAC.01636-16.
  22. Tsurusaki, Y; Fukushima, K; Nishizaki, K; Takata, T; Ogawa, T; Nakashima, T; Sugata, K; Yorizane, S; Ogawara, T; Masuda, Y. (1999). The Alteration of Penicillin-Binding Proteins (PBPs) in Drug-Resistant Streptococcus Pneumoniae Isolated From Acute Otitis Media. Acta oto-laryngologica Supplementum, 540, 67-71. doi: 10.1080/00016489950181233
  23. Park, M; Rafii, F. (2017). Exposure to beta-Lactams Results in the Alteration of Penicillin-Binding Proteins in Clostridium Perfringens. Anaerobe, 45, 78-85. doi:10.1016/j.anaerobe.2017.02.004.
  24. Katayama, Y.; Zhang, H.-Z.; Chambers, H. F. (2004). PBP 2a Mutations Producing Very-High-Level Resistance to Beta-Lactams. Antimicrobial Agents and Chemotherapy, 48, 2, 453-459. doi:10.1128/AAC.48.2.453-459.2004.
  25. Hosseyni, Seyedmorteza; Jarrahpour, Aliasghar. (2018). Recent Advances in beta-Lactam Synthesis. Organic and Biomolecular Chemistry, 16, 6840-6852. doi:https://doi.org/10.1039/C8OB01833B.
  26. Staudinger, Hermann. (1907). “Zur Kenntniss der Ketene, Diphenylketene.” European Journal of Organic Chemistry 356, no. 1-2. 51-123. doi:https://doi.org/10.1002/jlac.19073560106. 
  27. Tidwell, Thomas T. (2008). Hugo (Ugo) Schiff, Schiff Bases, and a Century of beta?Lactam Synthesis. Angewandte Chemie, 47, 6, 1016-1020. doi:https://doi.org/10.1002/anie.200702965.
  28. Taggi, Andrew T.; Hafez, Ahmed M.; Wack, Harald; Young, Brandon; Ferraris, Dana; Lectka, Tomas. (2002). The Development of the First Catalyzed Reaction of Ketenes and Imines:? Catalytic, Asymmetric Synthesis of beta-Lactams. Journal of the American Chemical Society, 124, 23, 6626-6635. doi:https://doi.org/10.1021/ja0258226. 
  29. France, Stefan; Weatherwax, Anthony; Andrew E. Taggi; Lectka, Thomas. (2004). “Advances in the Catalytic, Asymmetric Synthesis of beta-Lactams.” ACS Publications, 37, 8, 592-600. doi:https://doi.org/10.1021/ar030055g.
  30. Cossio, Fernando, Ana Arrieta, and Miguel Sierra. (2008). The Mechanism of the Ketene?Imine (Staudinger) Reaction in Its Centennial: Still an Unsolved Problem? Accounts of Chemical Research, 41, 8, 925-936. doi:https://doi.org/10.1021/ar800033j.
  31. Salzner, Ulrike; Bachrach, Steven. “Cycloaddition Reactions between Cyclopentadine and Ketene. Ab Initio Examination of [2+2] and [4+2] Pathways.” Journal of Organic Chemistry 61, no. 1. (1996). 237-242. doi:https://doi.org/10.1021/jo951331a. 
  32. Campomanes, Pablo; Menendez, Isabel M.; Sordo, Tomas L. (2005). Mechanism of Cycloaddition reactions between Ketene and N-Silyl-, N-Germyl-, and N-Stannylimines: A Theoretical Investigation. The Journal of Physical Chemistry A, 109, 48, 11022-11026. doi:https://doi.org/10.1021/jp054103l.
  33. Burke, Luke A. (1985). Theoretical study of (2+2) Cycloadditions. The Journal of Organic Chemistry, 50, 17, 3149-3155 doi:10.1021/jo00217a026.
  34. Wang, Xuebao; Houk, K. N. (1990). Carbenoid Character in Transition Structures for Reactions of Ketenes with Alkenes. Journal of the American Chemical Society, 112, 5, 1754-1756. doi:https://doi.org/10.1021/ja00161a016.
  35. Bernardi, Fernando; Bottoni, Andrea; Robb, Michael A.; Venturini, Alessandro. (1990). MCSCF Study of the Cycloaddition Reaction Between Ketene and Ethylene. Journal of the American Chemical Society, 112, 6, 2106-2114. doi:https://doi.org/10.1021/ja00162a010.
  36. Hodous, Brian L. Fu, Gregory C. (2002). Enantioselective Staudinger Synthesis of beta-Lactams Catalyzed by a Planar-Chiral Nucleophile. Journal of the American Chemical Society, 124, 8, 1578-1579 doi:10.1021/ja012427r.
  37. Weatherwax, A.; Abraham, C. J.; Lectka, T. (2005). An Anionic Nucleophilic Catalyst System for the Diastereoselective Synthesis of trans-beta-Lactams. Journal of the American Chemical Society, 112, 6, 2106-2114. doi:10.1021/ja00162a010.
  38. Huang, J.; Zhang, J.; Dong, Y.; Gong, W. (2009). An Effective Method To Prepare Imines from Aldehyde, Bromide/Epoxide, and Aqueous Ammonia. The Journal of Organic Chemistry, 76, 3511-3514 doi:10.1021/jo102455q.
  39. Morales, S.; Guijarro, F. G.; Ruano, J. L. G.; Cid, M. B. (2013). A General Aminocatalytic Method for the Synthesis of Aldimines. Journal of the American Chemical Society, 136, 3, 1082-1089. doi:10.1021/ja4111418.
  40. Fontaine, P.; Chiaroni, A.; Masson, G.; Zhu, J. (2008). One-Pot Three-Component Synthesis of ?-Iminonitriles by IBX/TBAB-Mediated Oxidative Strecker Reaction. Organic Letters, 10, 8, 1509-1512. doi:10.1021/ol800199b.
  41. Reeves, J. T.; Visco, M. D.; Marsini, M. A.; Grinberg, N.; Busacca, C. A.; Mattson, A. E.; Senanayake, C. H. (2015). A General Method for Imine Formation Using B(OCH2CF3)3. Organic Letters, 17, 10, 2442-2445. doi:10.1021/acs.orglett.5b00949. 
  42. Dong, K.; Qiu L.; Xu X. (2016). Selective Synthesis of beta-Lactams via Catalytic Metal Carbene C-H Insertion Reactions. Current Organic Chemistry, 29-40. doi:10.2174/1385272819666150626183713.
  43. Hosseyni, S.; Jarrahpour, A. (2018). Recent Advances in beta-lactam Synthesis. Organic and Biomolecular Chemistry. doi:10.1039/c8ob01833B.
  44. Tuba, R. (2013). Synthesis of beta-Lactams by Transition Metal Promoted Staudinger Reactions: Alternative Synthetic Approaches from Transition Metal Enhanced Organocatalysis to in situ, Highly Reactive Intermediate Synthesis and Catalytic Tandem Reactions. Organic & Biomolecular Chemistry, 11. doi:10.1039/c3ob41048j.  
  45. Sharma, R.; Park, T. E.; Moy, S. (2016). Ceftazidime-Avibactam: A Novel Cephalosporin/beta-Lactamase Inhibitor Combination for the Treatment of Resistant Gram-Negative Organisms. Clinical Therapeutics, 38, 431-444. doi:10.1016/j.clinthera.2016.01.018.
  46. Zhanel, G. G.; Lawson, C. D.; Adam, H. (2013). Ceftazidime-Avibactam: a Novel Cephalosporin/beta-Lactamase Inhibitor Combination Drugs, 159-177. doi:10.1007/s40265-013-0013-7
  47. Bush, K. (1988). Recent Developments in beta-Lactamase Research and their Implications for the Future. Clinical Infectious Diseases, 10, 681-690. doi:10.1093/clinids/10.4.681.