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Harmful algal blooms (HABs) pose serious ecological, economic, and public health risks along the West Florida Shelf. Existing
prediction efforts often fail to perform adequately due to reliance on single data sources and lack of regional calibration in the
complex water system of Tampa Bay. This study combines machine learning with in-situ water-quality and meteorological
observational data with satellite measured chlorophyll-a levels to improve short-term HAB forecasting. Using multi-sourced
environmental data and engineered temporal features, this framework enhances predictive skills compared to standard models.
Among all models evaluated, gradient-boosted decision trees produced the most accurate chlorophyll-a forecasts and a Random
Forest accurately classified high-biomass (chlorophyll-a–defined) events vs non-events. The results demonstrate that frequent
chlorophyll-a measurements combined with readable, engineered thresholds improve region specific HAB predictions. This
work provides a region-specific, data-driven tool to support environmental monitoring and management in Tampa Bay and
provides a framework for others looking to create region-specific models in other areas facing similar HABs.
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Introduction

Harmful Algal Blooms (HABs) are a rapidly growing environ-
mental concern worldwide due to their detrimental impacts on
marine ecosystems, human health, and local economies. In
particularly severe years, HABs can cause billions of dollars
in losses. For example, in 2018 alone, damages of 2.7 bil-
lion dollars were reported in a single U.S. state—Florida1.
These blooms occur when a certain species of algae –Karenia
Brevis in this case – multiply rapidly, often producing toxins
that affect humans through contaminated seafood and respira-
tory irritation2,3. The frequency and severity of HABs has in-
creased in recent decades, such as a 44% spike from the 2000s
to 2010s, influenced by factors such as nutrient pollution as
well as rapid increase in climate change4–6.

In the Gulf of Mexico, particularly along the West Florida
Shelf and Tampa Bay, Karenia brevis blooms (commonly
known as red tides) have caused significant ecological dam-
age and economic losses. These red tides specifically harm
the tourism and fishing industries, as fish kills cause unsightly
beaches and poor fishing7,8. Despite global trends of increas-
ing HAB events, the frequency of regional events can differ
due to local irregularities.

Machine learning (ML) has emerged as a novel approach
to improve detection and prediction of HABs by utilizing
large environmental datasets, including satellite remote sens-

ing and hand sampling measurements. Studies have used
ML to predict and define HABs using variables such as
chlorophyll-a concentration and water temperature, includ-
ing recurrent time-series models for short-term chlorophyll-a
forecasting9,10. Comparative studies have shown that ensem-
ble tree-based methods often outperform linear and neural-
network models in short-term environmental forecasting tasks
under limited data conditions, though performance varies sub-
stantially by region and feature design, particularly in opera-
tional coastal forecasting settings11–13.

Prior ML-based HAB studies have applied a range of
approaches, including Random Forests, support vector ma-
chines, convolutional neural networks, and recurrent neural
networks, to both bloom detection and chlorophyll-a forecast-
ing tasks9,11,14,15. While these models demonstrate improved
performance over traditional statistical methods, their effec-
tiveness is often constrained by limited temporal coverage,
reliance on satellite-only inputs, or lack of systematic com-
parison across model classes within the same study. Despite
improvements, many existing ML models suffer from issues
such as moderate accuracy, reliance on limited datasets, and
lack of regional calibration, particularly for areas like Tampa
Bay10.

Recent advances in ML-based HAB prediction have high-
lighted several persistent gaps. Most existing approaches de-
pend on limited or low-frequency datasets, rely on single-
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Fig. 1 Figure S1 (Supplementary): Contextual image of HAB event
near Tampa Bay

source data such as satellites, and often lack regional cali-
bration necessary for complex coastal systems16. Satellite-
driven ML models contribute strong spatial coverage but are
frequently affected by cloud masking, optical complexity in
coastal waters, and irregular sampling intervals, which re-
duce reliability in estuarine environments16,17. In contrast,
in-situ and water-quality–based models offer higher temporal
resolution but often suffer from sparse spatial coverage and
short observational records, limiting their generalizability18.
Additionally, data quality, measurement frequency, and inter-
pretability continue to constrain operational use of ML models
in management applications18. Reviews emphasize the impor-
tance of developing integrated, high-quality, and explainable
models tailored for specific environments to improve decision-
making and predictive utility13.

While the use of environmental time-series data for HAB
prediction is well established in the literature, key questions
remain regarding optimal data integration strategies, feature
engineering choices, and monitoring frequency in region-
ally complex systems. This study directly addresses these
gaps by developing a multi-source, high-resolution HAB pre-
diction framework tailored to Tampa Bay. It integrates in-

situ, satellite, and field-sample data to overcome the limita-
tions of single-source models and explicitly evaluates how
chlorophyll-a measurement frequency affects predictive accu-
racy—providing quantitative guidance for monitoring design,
which has been largely overlooked in prior work. Through
the use of engineered temporal and threshold-based features
and explainable ML (XAI) interpretation, the model enhances
short-term forecasting skill and identifies interpretable envi-
ronmental drivers. By focusing on local calibration, model
transparency, and operational usability, this research bridges
the gap between generalized ML studies and practical HAB
management for regional coastal systems.

Methods

HAB Classification Framework

In this study, bloom conditions were identified using
chlorophyll-a (Chl-a) concentration as a proxy for elevated
phytoplankton biomass, rather than species-specific, cell-
count–based bloom definitions. Chlorophyll-a was selected
as the primary response variable because it is the most widely
available and consistently measured indicator of phytoplank-
ton biomass across both satellite remote sensing platforms
(e.g., SeaWiFS, MODIS, VIIRS, Sentinel-3) and in-situ opti-
cal monitoring networks2,8. Its global coverage, multi-decadal
continuity, and standardized retrieval algorithms enable scal-
able, automated analyses across large spatial domains and ex-
tended time periods. Consistent with this practice, a recent
meta-analysis of approximately 420 peer-reviewed studies on
HAB detection and monitoring identified chlorophyll-a as the
most commonly used variable in remote-sensing–based HAB
analyses19.

Regulatory and management agencies, including the
Florida Fish and Wildlife Conservation Commission (FWC)
and the Florida Department of Health (DOH), define harm-
ful algal blooms such as Karenia brevis “red tide” using
species-specific cell-count thresholds (e.g., 5× 103, 1× 104,
and 1 × 106 cells L−1). However, such cell-count observa-
tions are spatially sparse, temporally irregular, and unavail-
able for much of the spatial and temporal extent considered
in this study. As a result, the present analysis does not
seek to replicate regulatory bloom classifications or to di-
rectly identify K. brevis red tide events. Instead, classification
focuses on non-specific, high-biomass phytoplankton condi-
tions that are detectable using routinely available optical data.
Chlorophyll-a–based categories were therefore employed to
ensure consistent labeling across satellite-derived and in-situ
optical datasets. Model training and evaluation were con-
ducted with the explicit understanding that these categories
represent phytoplankton biomass anomalies rather than taxon-
specific or toxin-specific harmful algal bloom definitions.
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Data

Data processing involved several steps. First, data were ex-
tracted by downloading observations from the Tampa Bay Ob-
serving Network (TBON) and NOAA remote satellite sources,
then consolidated into spreadsheets.

Data Sources: TBON in-situ water quality and meteoro-
logical observations were accessed via the Tampa Bay Ob-
serving Network data portal (accessed June 2025). VIIRS
chlorophyll-a products (Suomi-NPP and NOAA-20) were ac-
cessed via NOAA’s ocean color data services (accessed June
2025).

A preprocessing step was subsequently applied to address
data quality issues: duplicated entries were removed, and
records with extended consecutive gaps were discarded, while
continuous segments with valid measurements were retained.
Missing values were not random but typically occurred during
sensor downtime or adverse field conditions, which could in-
troduce systematic bias if retained. For integration, the prepro-
cessed dataset was converted from spreadsheets to CSV files
and organized into folders by station identifier. The files were
then categorized by measurement type as either water quality
or meteorological data. Finally, a nearest neighbor interpo-
lation technique was applied to generate a continuous dataset
across sampling locations and times. This technique assigns
each unsampled point the value of the nearest valid observa-
tion in multi-dimensional space, based on geographic coor-
dinates and time, thereby producing a uniform and spatially
coherent dataset suitable for model development.

Satellite Data Processing and Quality Control
We used satellite chlorophyll-a data from the VIIRS sensor

on the Suomi NPP and NOAA-20 satellites. This data went
through the standard process of the OCx blue–green band-
ratio algorithm along with NOAA’s operational atmospheric
correction. The process masks pixels that fail basic quality
checks, including those affected by clouds, high glint, invalid
atmospheric correction, or low radiance. In this study, we re-
lied on these default NOAA filters and thus used their filtered
measurements. No other manual filters were applied. Because
Tampa Bay contains shallow, optically complex waters, some
pixels were still unavailable after NOAA’s automated mask-
ing. These masked regions naturally remained excluded from
analysis, and only the remaining valid pixels were used. This
step reduced data quantity drastically, but was essential for ob-
taining only clean data. After quality filtering via the NOAA
Level-2 product, each satellite pixel was matched to TBON in-
situ samples using nearest-neighbor interpolation. The closest
valid pixel based on location and time was paired with hand-
sampled data to create a table that combined engineered fea-
tures, in-situ data, and satellite measured data.

Figure 2 illustrates the end-to-end data pipeline used in this
study. Raw in-situ water quality, meteorological, and satel-

Fig. 2 A block diagram representing the data process

lite observations were first quality-controlled and temporally
aligned, followed by feature engineering to generate lagged,
rolling, and threshold-based predictors. The processed dataset
was then used to train and evaluate regression and classifica-
tion models for chlorophyll-a prediction and HAB detection.

As shown in the top of Figure 3, the temporal variability
of chlorophyll-a was examined for one of the five monitored
sites in the Tampa Bay Area, covering the period from April
2023 through July 2025. The time series reveals pronounced
peaks and troughs in algal biomass, reflecting episodic growth
events likely influenced by hydrological, meteorological, and
nutrient-loading conditions. Similar trends were observed
across the other four sites.

Complementing the temporal analysis, the two comparative
plots in the lower panels of the same figure present the re-
lationships between chlorophyll-a and key environmental pa-
rameters: water temperature and dissolved oxygen saturation.
The scatterplots indicate that chlorophyll-a dynamics exhibit
a nonlinear association with either variable. These patterns
highlight the complexity of algal dynamics in estuarine sys-
tems and suggest the necessity of employing more advanced
mathematical models to unravel the multivariate interactions
and improve predictive performance of chlorophyll-a concen-
tration.

Feature Engineering:

As part of the data preparation process aimed at identifying the
most influential factors in predicting chlorophyll-a concentra-
tions, extensive feature engineering procedures were imple-
mented to enhance the explanatory power of the dataset. This
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Fig. 3 Top panel: Chlorophyll-a concentrations at site TB01 (27.750700◦ N, 82.572100◦ W) from April 2023 to July 2025. Bottom-left:
Correlation between chlorophyll-a and water temperature. Bottom-right: Correlation between chlorophyll-a and oxygen saturation. Figure
was coded using TBON and NOAA data.

process substantially expanded the set of predictor variables
available to the machine learning (ML) algorithm. Specif-
ically, the initial nine variables were systematically trans-
formed into a feature space exceeding one hundred variables
through the application of temporal lags, as well as the com-
putation of rolling statistics such as moving averages, min-
ima, and maxima. These transformations allowed the model
to capture both short- and long-term dependencies in the data,
thereby improving its capacity to represent underlying dynam-
ics.

The use of lag-based variables was also motivated by sim-
ilarities to other fields where past system states are strong
predictors of future outcomes. In weather forecasting, for
example, current atmospheric conditions often inform short-
term predictions, with rainfall today increasing the likelihood
of rainfall tomorrow20. In medical diagnosis, previous car-
diac events are frequently used to estimate the risk of fu-
ture incident21. By drawing on these established principles,
temporal lag features were incorporated to capture compara-
ble autoregressive patterns in chlorophyll-a dynamics. Ad-
ditionally, threshold variables were introduced to identify in-
stances where water temperatures exceeded 60 degrees F and
chlorophyll-a values exceeded 40 mg/m3, indicative of bloom
conditions. A detailed inventory and description of the re-
sulting feature set, including original variables, derived lagged
metrics, and threshold indicators, is provided in Table 1.

Models were trained on varying degrees of the feature engi-
neering, including without threshold variables, with all thresh-
old variables, and with threshold variables measured every 24
hours. The time series data was split to ensure accurate train-
ing and testing. The training spanned from 2023 to February
of 2025, and the testing data spanned from February 2025 to

August 2025. Additionally, the testing set was partially com-
posed of a brand-new site: Tampa Bay Observing Network
Site 08. This site was not part of the training set and entirely
used for testing, showcasing how the model can be generalized
on new sites in the Tampa Bay area.

AI Models Implementation

The artificial intelligence (AI) approach was designed to ad-
dress two related predictive tasks: (i) forecasting continuous
chlorophyll-a concentrations and (ii) detecting the occurrence
of harmful algal blooms (HABs). To evaluate model perfor-
mance across both regression and classification contexts, a se-
ries of machine learning (ML) algorithms were implemented.

For the regression task, chlorophyll-a concentrations were
treated as a continuous response variable. The modeling
process began with a baseline linear regression model, fol-
lowed by a regularized regression approach (Lasso), a feed-
forward artificial neural network (ANN), and a gradient-
boosting model (XGBoost). This sequence allowed for sys-
tematic comparison across models of varying complexity and
capacity for capturing nonlinear interactions. Then, hyperpa-
rameter optimization was conducted for the XGBoost using
grid search and randomized search procedures were applied
to tune key parameters, such as the maximum depth, learning
rate, and number of estimators. Model selection was based
on minimizing error metrics for regression. Additionally, an
alternative implementation of the XGBoost model was tested
using a reduced predictor set. This subset removed features
engineered to capture recent HAB conditions, of. The goal of
this experiment was to assess whether emphasizing predictors
directly linked to lagged indicators of elevated chlorophyll-
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Table 1 Description of predictors used for model training
Feature Name Description Units Type Raw /

Feature
Engi-
neering

Source

water temperature* Temperature of the water at the
bottom

◦F float raw
data

Tampa Bay
observing
network

air temperature Measured air temperature ◦F float raw
data

Tampa Bay
observing
network

dissolved oxygen * Amount of oxygen in the water ppm float raw
data

Tampa Bay
observing
network

oxygen saturation * Ratio of dissolved oxygen to
the max oxygen the water can
hold

% float raw
data

Tampa Bay
observing
network

chlor f * Measured red light emitted by
chlorophyll molecules

ppb float raw
data

Tampa Bay
observing
network

wind direction* Degrees north that wind is
blowing

degrees float raw
data

Tampa Bay
observing
network

wind speed* Measured wind speed mph float raw
data

Tampa Bay
observing
network

salinity* Measured dissolved salt in the
water

PSU float raw
data

Tampa Bay
observing
network

humidity* Measured water vapor in the air % float raw
data

Tampa Bay
observing
network

Phycoerythrin* Measure of the emitted light
from Phycoerythrin molecules

ppb float raw
data

Tampa Bay
observing
network

Above threshold chlor a avg 12h
**

A 0 or 1 value depending on if
a chlorophyll-a value in the past
12 hours was above 40 mg/m3

N/A float feature-
engineered

Above threshold water temp 12h
**

A 0 or 1 value depending on if
the water temp in the past 12
hours was above 60 degrees F

N/A float feature-
engineered

water temperature avg12h Average temperature of the wa-
ter in the last 12 hours

◦F float feature-
engineered

water temperature avg24h Average temperature of the wa-
ter in the last 24 hours

◦F float feature-
engineered

water temperature avg48h Average temperature of the wa-
ter in the last 48 hours

◦F float feature-
engineered

water temperature min12h Minimum temperature of the
water in the last 12 hours

◦F float feature-
engineered

Water temperature max12h Maximum temperature of the
water in the last 12 hours

◦F float feature-
engineered

* Average values, minimum, and maximum were also estimated for the rest of the parameters. Values were spaced at 12, 24, and 48 hr intervals.
** This variable was also calculated for 24, 48, and 72hr
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a improved the prediction performance relative to models
trained on a more limited feature set.

For the classification task, chlorophyll-a concentrations
were evaluated using a threshold of 40 mg/m3, a value com-
monly associated with bloom conditions. A Random For-
est classifier was trained to predict bloom versus non-bloom
states, enabling assessment of model robustness in distin-
guishing ecologically critical events. A brief description of
the models used is below:

Regression Models:
Initial regression models were applied to predict continuous

chlorophyll-a concentrations:

1. Linear Regression: Multivariate ordinary least squares
(OLS) regression was used as a baseline model to esti-
mate linear relationships between chlorophyll-a concen-
tration and environmental predictors by minimizing the
residual sum of squares. This model assumes additive
effects and serves as a benchmark for evaluating the ben-
efits of nonlinear approaches.

2. XGboost: Extreme Gradient Boosting (XGBoost) was
applied as an ensemble of decision trees optimized via
gradient descent on a regularized objective function. This
approach efficiently captures nonlinear interactions and
temporal dependencies among environmental variables
while controlling model complexity through built-in reg-
ularization.

3. Lasso Regression (regularization): Lasso regression ex-
tends linear regression by incorporating an L1 regulariza-
tion penalty, which shrinks less informative coefficients
toward zero and performs implicit feature selection. This
approach reduces overfitting in high-dimensional feature
spaces generated through extensive temporal feature en-
gineering.

A feed-forward artificial neural network (ANN) was imple-
mented to capture nonlinear relationships between predictors
and chlorophyll-a concentration through multiple hidden lay-
ers and nonlinear activation functions. Model complexity was
constrained to mitigate overfitting given the limited temporal
extent of the dataset.

Classification Models
A Random Forest classifier was used to predict bloom ver-

sus non-bloom conditions by aggregating predictions from
an ensemble of decorrelated decision trees trained on boot-
strap samples. This ensemble approach reduces variance and
improves robustness in binary classification of harmful algal
bloom events.

Model performance was evaluated using chronological
train–test splitting to preserve temporal dependence, with

stratified sampling applied only within bootstrap resampling
for classification performance analysis.

Model Evaluation
The performance of regression models was evaluated using

the following error metrics:
Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

Root Mean Squared Error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (2)

Mean Absolute Percentage Error (MAPE):

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

·100% (3)

Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE =
1
n

n

∑
1

|ŷ− y|
(|y|+ |ŷ|)/2

(4)

The classification models were evaluated using accuracy,
F1-score, and confusion matrices to assess the model’s ability
to correctly categorize HAB severity. This structured method-
ology ensures that both continuous and categorical predictions
of HABs are rigorously evaluated, while leveraging multiple
data sources and advanced AI techniques to maximize predic-
tive accuracy.

Model Selection Rationale
The models chosen for this study—linear regression, Lasso,

ANN, XGBoost, and Random Forest—were selected to have a
broad spectrum from simple, linear models to more advanced
models commonly used in environmental settings. These
models were prioritized because they balance performance,
interpretability, and mesh well with the data we were working
with. More advanced deep learning approaches such as LSTM
networks or spatial graph neural networks were not employed
for two reasons. First, the data was restricted by its short time-
frame as the TBON hand-sampling stations only overlapped
with the NOAA chlorophyll-a data (2023-2025) which would
hinder the effectiveness of these models. Secondly, the study
sought to provide readable data for scientists and environmen-
talists rather than complex, uninterpretable data. This ratio-
nale led us to choose our models (XGBoost, Random Forest),
rather than more advanced deep learning approaches. The ex-
tensive use of lagged and rolling features introduces potential
multicollinearity and increases the risk of overfitting. How-
ever, this risk was mitigated through the use of regularized
models (Lasso), tree-based ensemble methods (XGBoost and
Random Forest), and strict temporal train–test separation, all
of which are known to be robust to correlated predictors.
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Lasso and XGBoost Hyperparameter Tuning
LASSO hyperparameters were optimized using Bayesian

optimization with the Optuna Python library, where the regu-
larization parameter α was sampled from a log-uniform distri-
bution. The optimal value of α was determined using 5-fold
cross-validation, selecting the parameter that minimized the
mean squared error on the validation set. Table 2 presents the
hyperparameter search space and the final value selected.

Table 2 LASSO hyperparameter search space and optimal value.
Hyperparameter Search

distribu-
tion

Max Iter-
ations

Trials /
Evaluations

Selected
value

α (LASSO) log [1e-6,
1e1]

5,000 50 0.74

To identify the optimal configuration of the XGBoost
model, we performed hyperparameter tuning using the Hy-
peropt Python library. The Tree-Structured Parzen Estimator
(TPE) algorithm was employed due to its efficiency compared
to grid or random search. The objective of the optimization
was to minimize the Root Mean Squared Error (RMSE) on
the validation set, using uniform probability distributions to
sample each hyperparameter. The search space covered key
XGBoost hyperparameters, including the learning rate, tree
depth, and regularization coefficients. Table 3 shows the full
search ranges and the final values selected by this process.

Table 3 XGBoost Hyperparameter Search Space and Optimal
Values
Hyperparameter Search Range /

Candidate Values
Selected Value

n estimators 50–500 300
learning rate 0.01 - 0.3 0.01
max depth 3–10 5
min child weight 1-10 9
subsample 0.5–1.0 0.79
colsample bytree 0.6–1.0 0.75
gamma 0–0.5 0.29
reg alpha {0.0, 0.01, 0.1-1} 0.60
reg lambda 0.1-2.0 0.48
eval metric - RMSE

Artificial Neural Network Architecture
The ANN architecture consisted of an input layer with 147
features, followed by two hidden layers. The hidden layers
used ReLU activation function and contained 32 and 16 neu-
rons, respectively. A dropout rate of 0.3 was applied after each
hidden layer to reduce overfitting. The output layer consisted
of a single neuron with a linear activation function. Training
was conducted using the Adam optimizer with a learning rate
of 0.001, a batch size of 32, and a maximum of 100 epochs.
The mean squared error (MSE) was used as the loss function.

Results

Model Performance

All of the models performed poorly with no chlorophyll
threshold variables. The majority produced a root mean
squared error (RMSE) of around 27. However, the linear re-
gression model produced a RMSE of 35.2, making it the worst
performing model with no chlor-threshold variables. When all
threshold variables were introduced with no tuning, the XG-
boost model performed the best (RMSE = 14.557), and the
ANN performed the worst (RMSE = 22.2). Then, hyperpa-
rameters were introduced for model tuning on the XGboost
model, which produced the lowest RMSE of all the models
(13.67).

Several baseline models produced negative R2 values when
chlorophyll-a threshold variables were excluded, indicating
performance worse than a naı̈ve mean predictor and highlight-
ing the limited explanatory power of physical and meteorolog-
ical variables alone. Table 6 shows the top 10 most important
variables in the initial feature engineering stage versus the fi-
nal stage alongside their respective importances.

Statistical Comparison of Machine Learning Models Using
Bootstrap Resampling

Bootstrap resampling was applied to the test data subset to
evaluate and compare the predictive performance of the ANN,
XGBoost, and Lasso models using all available predictor
variables, and a reduced predictor set excluding chlorophyll
threshold variables. For each bootstrap iteration, RMSE val-
ues were computed, generating empirical performance distri-
butions for each model (Figure 4). The analysis reports com-
prehensive descriptive statistics to summarize the central ten-
dency and variability of model performance. Table 5 presents
the descriptive statistics of the bootstrap RMSE distributions
for all models and predictor configurations.

Then, pairwise comparisons between models were con-
ducted using Wilcoxon signed-rank tests applied to the boot-
strap RMSE distributions. Conventional cross-validation ap-
proaches were not employed because the data are structured
as a time series, and random or k-fold splitting would violate
the temporal dependence among observations.

For the models excluding chlorophyll threshold variables,
the Wilcoxon signed-rank tests reveal clear but differentiated
performance differences among the three machine learning
models. The comparison between XGBoost and ANN yields
an extremely small p-value (3.33× 10−165) with a test statis-
tic of 0.0, indicating a perfectly consistent difference across
all paired samples and providing overwhelming evidence that
XGBoost outperforms ANN. The XGBoost–Lasso compari-
son is also highly significant (p = 5.24×10−95), demonstrat-
ing a robust performance advantage for XGBoost, although
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Table 4 Error metrics for machine learning models before and after hyperparameter tuning
ML
Model

Model
Version

Tuned/ No tuned MSE RMSE MAE MAPE SMAPE R2

Lasso All Vari-
ables

no tuned 214.482 14.645 12.119 0.771 44.689 0.674

No
Chloro-
phyll
threshold
variables

No tuned 734.027 27.093 21.941 1.571 66.469 -0.115

ANN All Vari-
ables

No tuned 494.718 22.242 17.919 1.435 57.072 0.249

No
Chloro-
phyll
threshold
variables

No tuned 746.498 27.322 22.185 1.618 70.215 -0.133

Linear
Regres-
sion

All Vari-
ables

No tuned 285.603 16.900 13.361 0.806 52.663 0.566

No
Chloro-
phyll
threshold
variables

No tuned 1238.574 35.193 23.981 1.387 74.225 -0.881

XGBoost All Vari-
ables In-
cluded

no tuned 211.896 14.557 12.160 0.731 47.437 0.678

tuned 186.882 13.670 11.263 0.670 44.423 0.716
Only
with 48h
and 72h
Clor-a
thresh-
old*

no tuned 318.595 17.849 14.020 0.893 50.258 0.516

tuned 266.255 16.317 12.492 0.813 45.720 0.596
No
Chloro-
phyll
threshold
variables

no tuned 751.839 27.420 22.154 1.466 68.568 -0.142

tuned 659.681 25.684 20.658 1.506 64.139 -0.002
* This degree of feature engineering can be applied to all models, but all models follow the same pattern, as more and more frequent chlor-a measurements are
made, less error is produced.
**MAPE values may be higher than expected due to the majority of chlorophyll-a data being close to 0, thus creating disproportionally high MAPE values.
Chlorophyll-a tends to range from 0-100 mg/m3. SMAPE is a better gauge.

with greater variability in the paired differences. In contrast,
the ANN–Lasso comparison does not reach statistical signif-
icance at the 5% level (p = 0.0555), suggesting comparable
predictive performance between these two models under this
predictor configuration. Overall, these results identify XG-
Boost as clearly superior, while ANN and Lasso exhibit simi-
lar performance when chlorophyll threshold variables are ex-

cluded.

When all chlorophyll variables are included, the Wilcoxon
test results provide very strong evidence of performance dif-
ferences among all three models. As before, XGBoost sig-
nificantly outperforms ANN (p = 3.33 × 10−165, statistic =
0.0), indicating complete consistency across resamples. Sig-
nificant differences are also observed between XGBoost and
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Fig. 4 Histograms of bootstrap RMSE distributions used to compare the performance of machine learning models

Table 5 Summary Statistics of Bootstrap RMSE Distributions
Across Machine Learning Models
Model Version No Chlorophyll Threshold Variables All Variables
Variable/Model XGB Lasso ANN XGB Lasso ANN
N 1000 1000 1000 1000 1000 1000
Minimum 16.64 22.36 18.89 11.06 2.92 17.08
Maximum 31.98 32.23 34.21 15.70 24.63 28.05
Mean 25.15 27.33 27.46 13.62 14.60 22.61
Median 25.26 27.29 27.53 13.59 14.59 22.60
Std. Dev. 2.38 1.49 2.38 0.69 3.44 1.89

Lasso (p = 8.82×10−16) and between ANN and Lasso (p =
6.27× 10−164), demonstrating clear separation in predictive
performance across all model pairs. In general, these findings
indicate a well-defined performance ranking when chlorophyll
variables are included, with XGBoost, ANN, and Lasso each
exhibiting statistically distinct predictive behavior.

Figure 5 depicts varying levels of threshold data in the XG-
boost models and the subsequent variable importance through
SHAP plots. On the far left, a SHAP plot is made assuming
no past chlorophyll-a data is measured and thus is purely pre-
dictive. The middle plot assumes a measurement of chlor-a
every 48 hours. The far-right plot is the SHAP figure for the
most informed model with chlor-a measurements coming in
every 12 hours. With no chlor threshold variables, the most
important predictors are the phycoerythrin levels, wind speed,
and air temp. When chlor variables are measured every 48
hours, the most important variables change to the 48 hour
chlor threshold, the 72 hour chlor threshold, and the phyco-

erythrin levels. Lastly, taking chlor measurements every 12
hours, the most predictive variables changed to the 12 hour
chlorophyll threshold, the 48 hour chlor threshold, and the 72
hour chlor threshold. These persistence features are included
intentionally to quantify how monitoring frequency improves
short-term forecast skill; models excluding chlorophyll his-
tory represent ‘driver-only’ prediction and perform substan-
tially worse.

Classification Results

Data from beforehand coupled with feature engineering im-
proved accuracy significantly. A random forest classifier
was implemented to evaluate the contribution of chlorophyll-a
threshold variables to model performance, with a random clas-
sifier baseline using a chlorophyll-a threshold of 40 mg/m3.
By incorporating chlorophyll-a thresholds at different tempo-
ral lags (72 h, 48 h, and 24 h), the random forest framework
allows a systematic assessment of how additional chlorophyll
information improves event detection and overall classifica-
tion quality. Figure 6 summarizes the performance of the dif-
ferent model configurations and includes both the evaluation
metrics and the corresponding confusion matrices.

As shown in the figure, the model without any chlorophyll
thresholds performs poorly, particularly in recall (0.0196) and
F1-score (0.037), indicating that it almost completely fails
to detect positive cases. Adding the 72-hour chlorophyll-a
threshold substantially improves all metrics, with accuracy
rising to 0.7483 and a large gain in precision (0.7826), al-
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Table 6 Variable Importance in Different Stages of the Model
Variable (initial feature engineering stage) Importance Variable (final feature engineering stage) Importance
avg water temp 12h 0.023419 above threshold chlor a avg 12h 0.314171
max phycoerythrin f 12h 0.019442 above threshold chlor a avg 24h 0.265406
site name TB04 0.018413 above threshold chlor a avg 48h 0.074527
avg water temp 48h 0.01671 above threshold chlor a avg 72h 0.009485
min oxygen saturation 72h 0.016203 max salinity 24h 0.007957
max oxygen saturation 72h 0.015163 max salinity 72h 0.007422
avg water temp 72h 0.014273 avg salinity 72h 0.006438
wind direction 0.013902 max salinity 48h 0.006384
avg air temp 48h 0.01377 min water temp 24h 0.005874
avg phycoerythrin f 72h 0.013262 salinity 0.005522

Fig. 5 SHAP importance plots with different amounts of data

though recall remains relatively limited (0.3529), suggesting
many missed events. The performance improves dramatically
when both 48-hour and 72-hour thresholds are included: accu-
racy exceeds 0.92, recall increases to 0.9804, and the F1-score
reaches 0.9009, indicating a strong balance between precision
and recall. The best overall performance is achieved when
24-hour, 48-hour, and 72-hour chlorophyll-a thresholds are all
included, yielding the highest accuracy (0.947), perfect recall
(1), and the highest F1-score (0.9273).

Finally, to verify that the classification model performance
was not driven by data leakage, a comprehensive data leak-
age analysis was conducted to ensure that target-related or
future information was not incorporated during model train-
ing, which could lead to artificially inflated accuracy and
poor generalization. This assessment evaluated the same con-
figurations presented in Figure 5. The model without Chl-
a threshold variables exhibited lower predictive performance
and no indicators of leakage, suggesting that its predictions
were derived solely from the explanatory variables used in
training. In contrast, the inclusion of the 48-hour lagged
chlorophyll-a threshold resulted in a marked increase in pre-
dictive performance but was accompanied by pronounced fea-
ture dominance by this variable and high single-feature pre-
dictive power, indicating that this variable may capture infor-

mation temporally proximal to the target outcome. The model
incorporating a 72-hour lagged threshold achieved improved
performance relative to the baseline while avoiding the ex-
treme feature dominance observed at shorter lags.

The leakage analysis was implemented using a time-series-
aware validation framework that enforced strict temporal sep-
aration between training and testing datasets and was com-
plemented by label-shuffling tests, duplicate-sample detec-
tion across splits, single-feature predictive assessments, and
permutation-based importance evaluation on held-out data.
Collectively, these results indicate that shorter lagged thresh-
old variables are more susceptible to implicit temporal leak-
age, whereas longer lag definitions provide a more method-
ologically robust balance between predictive performance and
generalizability, thereby enhancing confidence in the model’s
applicability to real-world prediction tasks.

Discussion

Our models demonstrated that combining multiple environ-
mental datasets—Tampa Bay Observing Network (TBON)
water quality, NOAA satellite observations, and Florida Fish
and Wildlife Conservation hand-collected samples—improves
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Fig. 6 Confusion matrix and Performance Results of Random Forest Classifier with Increasing Chlorophyll-a Threshold Variables

short-term prediction of high-biomass phytoplankton events in
Tampa Bay. Among all algorithms evaluated, XGBoost con-
sistently outperformed Linear Regression, Lasso, and ANN.
This was expected as we knew that the prediction would likely
not be a linear problem and that the relatively short dataset
limits neural-network performance. Since gradient-boosted
trees can capture data interactions and shifts that linear mod-
els cannot as well as being able to work in the relatively short
timeframe, it was expected that this approach would provide
better results. The Random Forest classifier also achieved
strong accuracy in distinguishing bloom vs. non-bloom states.
This led us to believe that a categorical based approach aligns
well with decision tree results. Model performance increased
with the introduction of threshold values. Thresholds in-
cluded water temperature (if temperatures exceeded 60 de-
grees fahrenheit in a given time period) as well as chlorophyll-
a thresholds (when it exceeded 40 mg/m3).

The models performed better with more frequent measure-
ments of chlorophyll-a. The strong dependence on 12–48-
hour chlorophyll thresholds indicates that bloom behavior in
Tampa Bay is highly path-dependent, where recent biomass
levels carry more predictive information than physical drivers
alone. This explains why models relying only on water-quality
and meteorological variables produced higher errors (RMSE
≈ 25), while models with frequent chlorophyll-a measure-
ments performed substantially better. The occurrence of neg-
ative R2 values in baseline regression models further under-
scores that short-term chlorophyll-a dynamics in Tampa Bay
cannot be adequately captured without recent biological con-
text, reinforcing the necessity of threshold-based and lagged

chlorophyll predictors.
These results highlight the utility of integrating diverse

datasets with advanced machine learning approaches for HAB
prediction. Accurate forecasting can support environmental
management decisions, such as issuing public health warn-
ings and guiding resource allocation for fisheries and tourism.
The framework developed here can serve as a region-specific
tool for Tampa Bay, addressing limitations in prior models
that lacked local calibration and sufficient temporal coverage.
The continuous and categorical predictions generated by this
framework provide interpretable information about the occur-
rence as well as the severity of blooms for interested envi-
ronmental parties. Rather than generalizing beyond Tampa
Bay, these results show the importance of region-specific cal-
ibration and demonstrate which variables are most influential
for short-term HAB forecasting. These are recent biological
conditions, followed by optical and water-quality indicators.
Future research should explore longer-term datasets and ad-
ditional environmental factors, including nutrient runoff and
hydrodynamic variables, to further enhance predictive perfor-
mance. Deploying real-time data feeds could enable dynamic
forecasting, benefiting both local authorities and the public.

This study has several limitations that should be acknowl-
edged. The relatively short temporal coverage (2023–2025)
increases the potential for model overfitting, particularly for
high-capacity models such as XGBoost, despite the use of reg-
ularization, chronological train–test splitting, and evaluation
on an unseen monitoring site. Additionally, while temporal or-
dering was preserved, the analysis lacks multi-year temporal
validation, limiting confidence in model performance under
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interannual climate variability or extreme bloom conditions
not represented in the dataset. Finally, the models provide
point predictions and binary classifications but do not include
formal uncertainty quantification (e.g., prediction intervals or
probabilistic forecasts), which would be valuable for opera-
tional decision-making. Satellite data limitations related to
cloud cover and optical complexity in shallow estuarine wa-
ters may further contribute to uncertainty.

Additionally, a limitation of this study is the use of
chlorophyll-a as a proxy for HAB detection and classifica-
tion. Chlorophyll-a represents total phytoplankton biomass
and does not distinguish taxa or toxicity, such that high con-
centrations may reflect non-harmful blooms, while some HAB
events can occur at high cell densities but low chlorophyll-
a levels. Consequently, regulatory agencies define HAB
severity using species-specific cell-count thresholds rather
than chlorophyll-based metrics. The classifications presented
here should therefore be interpreted as indicators of elevated
phytoplankton biomass rather than definitive HAB occur-
rence. This reflects a deliberate trade-off to enable scalable,
automated analysis, as cell-count observations are spatially
sparse and temporally irregular compared to routinely avail-
able chlorophyll-a products. Future work should integrate cell
counts and complementary optical proxies where available to
strengthen species-specific attribution.

By combining AI methods with multi-source environmental
datasets, this study clarifies the mechanisms most essential to
near-term HAB prediction in Tampa Bay and provides a foun-
dation for improving monitoring strategies. While additional
variables are needed for broader generalization, the insights
presented here contribute to a more evidence-based approach
to managing harmful algal blooms in this region.
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