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Multidrug-resistant Klebsiella pneumoniae is a major driver of hospital mortality and healthcare costs, with a growing association
with antibiotic treatment failures. Recent studies indicate that certain synthetic antimicrobial peptides can combat K. pneumoniae
and represent a promising avenue for new therapeutics. Together, these findings underscore the urgent need for new antimicrobial
development. This study aimed to computationally design novel antimicrobial peptides (AMPs) through two strategies using AI:
(1) shortening amino acid length and (2) substituting polar uncharged or non-polar neutral residues and the structurally flexible
glycine with positively charged or hydrophobic amino acids, while maintaining balanced hydrophobicity to improve predicted
antimicrobial activity and reduce predicted toxicity. We chose a low-performing candidate with weak predicted AMP probability
(predicted AMP probability=0.531) and high predicted toxicity (predicted toxicity hybrid score=0.5) in the GRAMPA database,
and used AI-driven tools (CAMPR3/4, AlphaFold, APD3, DBAASP, HeliQuest) to generate 243 variants via single-site
substitutions and assess their properties. Top candidates were further optimized using ToxinPred3.0, generating 381 variants by
introducing additional single amino acid substitutions in the highest-scoring sequence to reduce predicted toxicity while main-
taining antimicrobial activity. The final peptide achieved a high predicted AMP probability score (predicted AMP probability=1)
and zero predicted toxicity (predicted toxicity hybrid score=0) but its predicted reduced membrane-insertion potential indicates
areas for future improvement. These findings demonstrate the potential and effectiveness of computational design in acceler-
ating the development of peptide-based therapeutics. By enabling time- and cost-efficient AMP discovery, this approach may
accelerate the development of viable antibiotic alternatives and help reduce the health burden posed by K. pneumoniae infections.
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Introduction

Klebsiella pneumoniae is a Gram-negative, opportunistic
pathogen that normally resides in the human gut but can cause
severe infections when it spreads systemically. It poses a
major threat in healthcare settings, particularly among vul-
nerable patients, and is one of the six highly drug-resistant
ESKAPE pathogens—Enterococcus faecium, Staphylococ-
cus aureus, Klebsiella pneumoniae, Acinetobacter bauman-
nii, Pseudomonas aeruginosa, and Enterobacter species—
that are increasingly associated with antibiotic treatment fail-
ure1. K. pneumoniae is responsible for a range of infections—
including pneumonia, urinary tract infections, bacteremia, and
liver abscesses—and was estimated to have caused 176,000
deaths globally from lower respiratory infections in 20212 3.
A meta-analysis of nearly 38,000 patients reported 30-day
and 90-day mortality rates of 29% and 34%, respectively,
with higher risks in ICU and hospital-acquired cases4. An-
other meta-analysis across 14 countries found that 29% of K.
pneumoniae infections involve carbapenem-resistant strains
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(CRKP), with prevalence reaching 66% in low-income regions
such as South Asia, compared to 14% in high-income areas
like North America5. Misuse of antibiotics accelerates bac-
terial resistance, which spreads as bacteria evolve and share
resistance genes via plasmids6.

Antimicrobial peptides (AMPs) offer a promising alterna-
tive due to their broad efficacy, reduced resistance risk, and
immune-enhancing properties7. AMPs disrupt bacterial mem-
branes and/or interfere with intracellular processes, causing
cell rupture or increased permeability that enhances antibiotic
effectiveness and making resistance development less likely8.

Recent research shows that certain synthetic antimicro-
bial peptides have potential for treating K. pneumoniae by
reducing the abundance of proteins involved in DNA and
protein metabolism, cytoskeleton and cell wall organiza-
tion, redox metabolism, regulatory factors, ribosomal pro-
teins, and antibiotic resistance—suggesting that AMPs may
act through multiple mechanisms, help mitigate resistance de-
velopment, and offer a potent strategy for new drug devel-
opment against K. pneumoniae infections9. For example,
antimicrobial peptide A20L has shown potential against K.
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pneumoniae by demonstrating in vitro and in vivo antibac-
terial and antibiofilm activity, membrane-disruptive mecha-
nisms, low toxicity, and good stability under certain condi-
tions10. Another example, FK5P—an ultra-short palmitoy-
lated 5-mer phenylalanine:lysine random peptide mixture—
effectively killed carbapenem-resistant K. pneumoniae, dis-
rupted biofilms, reduced bacterial burden in mice, and exhib-
ited strong safety and pharmacokinetic profiles, highlighting
its promise as a therapeutic agent11.

This study computationally investigates the design of novel
antimicrobial peptides targeting K. pneumoniae using AI tools
to optimize peptide structure. We hypothesize that amino
acid length shortening and substitutions can increase pre-
dicted AMP probability and reduce predicted toxicity. Specif-
ically, through two strategies — (1) shortening amino acid
length, and (2) substituting polar uncharged or non-polar neu-
tral residues and the structurally flexible glycine with posi-
tively charged or hydrophobic amino acids while maintain-
ing a balanced hydrophobic/hydrophilic profile — we aim
to computationally enhance antimicrobial efficacy by reduc-
ing hemolytic activity, improving selectivity, maintaining hy-
drophobic/hydrophilic balance, and increasing stability. Im-
portantly, the results are based on computational predictions,
and changes in biological efficacy or toxicity should not be
implied without experimental validation.

This paper is structured as follows: Section II outlines the
methods used to apply AI tools for amino acid length shorten-
ing and substitution in peptide design computationally; Sec-
tion III presents the results showing improved predicted AMP
probability and reduced predicted toxicity; Section IV dis-
cusses the significant implications and broader applicability of
the research; and Section V concludes. While the findings are
based on computational simulations, they may help inform fu-
ture efforts to develop safer and more effective AMPs against
K. pneumoniae, and guide the design of experimental valida-
tion studies.

Literature Review

Rising drug discovery costs and the need for new antibiotics
have increased interest in antimicrobial peptides, with compu-
tational methods complementing experimental screening and
enabling exploration of novel chemical spaces12. Existing
research shows that AI is accelerating antimicrobial peptide
discovery by enabling novel designs and supporting preclin-
ical validation13. Meanwhile, computer-aided drug design
(CADD) is limited by model assumptions, incomplete data,
high computational costs, and inability to fully predict phar-
macokinetics or toxicity, requiring experimental validation14.
Future efforts aimed at improving predictive model accuracy,
mitigating biases in AI algorithms, and integrating diverse bio-
logical data could enhance CADD’s effectiveness and its con-

tribution to antimicrobial peptide development15.
AI-designed antimicrobial peptides show potential as effec-

tive and safe alternatives to traditional antibiotics, with pep-
tide modifications enhancing antimicrobial activity and yield-
ing promising candidates for future therapeutic development.
Large language model–based screening has been used to eval-
uate millions of peptides, identify promising candidates, and
engineer more selective variants by increasing amphipathic-
ity through targeted modifications, resulting in peptides with
stronger antimicrobial activity but slightly reduced selectiv-
ity and demonstrating how AI can accelerate the discovery of
new peptide antibiotics16. Similarly, AI-generated and opti-
mized peptides have been shown to exhibit strong antimicro-
bial activity, with many displaying MICs below 10 µM and
some demonstrating anticancer activity, indicating that pep-
tide modifications can enhance biological effectiveness while
remaining safe17.

Among the many strategies for optimizing antimicrobial
peptides, two approaches are shortening amino acid length
and substituting specific amino acids to modify their prop-
erties. These approaches can improve peptide activity and
safety. Shorter antimicrobial peptides often exhibit lower
hemolytic activity and toxicity, and truncated versions have
been developed that retain antimicrobial effectiveness. Some
of these peptides show broad-spectrum antibacterial effects,
while others are more selective against Gram-positive bacte-
ria, and they generally remain safer and more cost-efficient
than the original parent peptide18. Balancing hydrophobic-
ity and charge distribution in cationic antimicrobial peptides
can enhance their membrane-disrupting activity, providing a
framework for designing effective therapeutic agents19. Using
a model α-helical antimicrobial peptide as a framework, sin-
gle amino acid substitutions were introduced to examine their
effects on charge, hydrophobicity, and helicity, revealing that
changes in hydrophobicity influenced biological activity with-
out altering secondary structure and demonstrating a rational
design strategy for enhancing antimicrobial peptide activity20.

Computational approaches are increasingly being used to
aid the discovery and design of antimicrobial peptides (AMPs)
against drug-resistant bacteria such as K. pneumoniae. Ma-
chine learning screening, molecular docking, and molecu-
lar dynamics simulations were combined to identify potential
antibiofilm AMPs, with several candidates showing stronger
binding to the biofilm regulator MrkH than its native ligand,
demonstrating the power of ML and simulation in discover-
ing novel peptides21. Deep learning–based peptide language
models were also used to design and test broad-spectrum
AMPs, identifying peptides such as T2-9 that are highly ef-
fective against drug-resistant K. pneumoniae, S. aureus, and
P. aeruginosa, with some also reducing resistance and treating
infections in a mouse wound model22. Similarly, the Con-
trolled Latent Attribute Space Sampling (CLaSS) computa-
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Fig. 1 Flowchart for computationally designing a high predicted-AMP-probability, low predicted-toxicity peptide.

tional framework was used to design non-toxic AMPs, leading
to the identification of novel peptides with broad-spectrum po-
tency, activity against drug-resistant K. pneumoniae, low tox-
icity, and resistance-mitigating properties23.

Methods

AMPs are small proteins composed of amino acid chains—the
fundamental building blocks of all proteins—and are consid-
ered promising alternatives to antibiotics due to their ability
to disrupt bacterial membranes in ways that reduce the like-
lihood of resistance. Their activity is shaped by the chemi-
cal properties of the 20 standard amino acids, which vary in
charge, polarity, and hydrophobicity. Among them, arginine
(R), lysine (K), and histidine (H) are positively charged; as-
partic acid (D) and glutamic acid (E) are negatively charged.
The polar but uncharged amino acids include serine (S), threo-
nine (T), asparagine (N), glutamine (Q), tyrosine (Y), and cys-
teine (C). The remaining nonpolar, hydrophobic residues—
important for membrane interaction—are glycine (G), ala-
nine (A), valine (V), leucine (L), isoleucine (I), methionine
(M), phenylalanine (F), proline (P), and tryptophan (W). The
composition and distribution of these residues determine an
AMP’s antimicrobial activity, selectivity, and toxicity. Key
features such as net charge, hydrophobicity, and the ability to
form amphipathic structures are crucial for enabling AMPs to
target bacterial membranes while sparing host cells8.

In this study, AMPs active against K. pneumoniae were
retrieved from the Giant Repository of AMP Activities
(GRAMPA) database and analyzed using various AI tools to
evaluate their sequence, structure, activity, and toxicity, guid-
ing the computational design of a new peptide with improved
efficacy (Figure 1). GRAMPA is a database of antimicrobial

peptides that provides their amino acid sequences and corre-
sponding minimum inhibitory concentrations (MICs) against
various bacterial strains, including target species and strain-
level details. From GRAMPA database, peptides tested
against the bacterium K. pneumoniae were examined to iden-
tify patterns in activity and to guide the computational de-
sign of new and improved AMPs. The Antimicrobial Peptide
Database (APD3), a searchable database of innate immune
peptides, was used to gather detailed information—including
sequence, structure, activity, source, and physicochemical
properties like total net charge and molecular weight com-
putationally. AlphaFold, an AI system developed by Deep-
Mind, was used to predict the three-dimensional (3D) struc-
ture of proteins based on input amino acid sequences. The
Database of Antimicrobial Activity and Structure of Peptides
(DBAASP), a manually curated resource developed to support
the computational design of antimicrobial compounds with a
high therapeutic index, was used to obtain the isoelectric point
of peptides. HeliQuest, a bioinformatics tool for analyzing the
amphipathic and structural properties of α-helical peptides,
was used to calculate the predicted hydrophobic moment and
generate helix wheels24. Collection of Anti-Microbial Pep-
tides Release 3 (CAMPR3), a database of sequences, struc-
tures, and signatures of antimicrobial peptides, was used to
computationally shorten the peptide sequence length applying
the Random Forest algorithm; and CAMPR4, a subsequent
release which expands and accelerates AMP based studies by
providing curated information on natural and synthetic AMPs,
was used to predict the novel peptide’s activity also apply-
ing the Random Forest algorithm. ToxinPred3.0, a web server
that predicts peptide toxicity based on primary sequence using
machine learning models, was used to obtain predicted toxi-
city scores and improve selectivity by replacing one amino
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Fig. 2 The 3D structure and helix wheel of the initial peptide
Note: For the 3D structure, dark blue stands for very high (pLDDT>90); light blue stands for confident (90 >pLDDT> 70); yellow stands for
low (70 >pLDDT> 50); and orange stands for very low (pLDDT<50).

Table 1 Predicted characteristics of the initial peptide “GVFDIIKDAGRQLVAHAMGKIAEKV”

Strain MIC
(µg/mL)

Net
Charge

Molecular
Weight (Da)

Isoelectric
point

Type of
Structure

Hydrophobic
moment

AMP
Probability

Toxicity
Hybrid
Score

ATCC
700603

300 1 2667.166 9.81 α-helical 0.268 0.531 0.5

Table 2 Prediction Results for Antimicrobial Regions in the Shortened Peptide Sequence

Position Sequence Class AMP Probability

1–20 GVFDIIKDAGRQLVAHAMGK AMP 0.676

2–21 VFDIIKDAGRQLVAHAMGKI AMP 0.689

3–22 FDIIKDAGRQLVAHAMGKIA AMP 0.691

4–23 DIIKDAGRQLVAHAMGKIAE AMP 0.547

5–24 IIKDAGRQLVAHAMGKIAEK AMP 0.859

6–25 IKDAGRQLVAHAMGKIAEKV AMP 0.811

acid through targeted substitution computationally. In Toxin-
Pred3.0, toxicity scores range from 0 to 1, with higher values
indicating greater toxicity; this study used a 0.38 cutoff, and
scores are probabilistic and require experimental validation.
AlphaFold is a web service powered by AlphaFold 3 that gen-
erates highly accurate 3D structure predictions for proteins,
DNA, RNA, ligands, ions, and chemical modifications in a
single platform (https://alphafoldserver.com/).

A dataset of peptide reported against the bacterium K. pneu-
moniae and meeting the CAMPR3 sequence length require-
ment was used for this study. A peptide active against K.
pneumoniae but with a relatively weak predicted antimicro-
bial performances, characterized by a high predicted MIC and

a relatively low predicted AMP score, was selected for im-
provement. Its existing activity against K. pneumoniae, com-
bined with suboptimal predicted efficacy, made it a suitable
candidate for optimization. Three steps were taken to increase
its predicted antimicrobial potential and reduce predicted tox-
icity. First, the peptide sequence was shortened from 25 to 20
amino acids computationally. Second, polar uncharged and
negatively charged amino acids were computationally substi-
tuted with positively charged or hydrophobic residues to en-
hance predicted antimicrobial activity and AMP scores. Third,
predicted peptide toxicity was further minimized through tar-
geted substitutions computationally.
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Table 3 The top 10 mutant peptide variants ranked by predicted toxicity

Mutant ID Sequence Class Predicted
AMP

Probability

Predicted
MERCI

(+ve) score

Predicted
MERCI

(-ve) score

Toxicity
prediction

Mutant K6D IIKKADRHLVAHAMKKIAKK AMP 0.91 0 -0.5 0

Mutant I17E IIKKAKRHLVAHAMKKEAKK AMP 0.91 0 -0.5 0

Mutant H12D IIKKAKRHLVADAMKKIAKK AMP 0.92 0 -0.5 0

Mutant I2D IDKKAKRHLVAHAMKKIAKK AMP 0.93 0 -0.5 0

Mutant M14D IIKKAKRHLVAHADKKIAKK AMP 0.97 0 -0.5 0

Mutant I2Y IYKKAKRHLVAHAMKKIAKK AMP 0.99 0 -0.5 0

Mutant K3Y IIYKAKRHLVAHAMKKIAKK AMP 0.99 0 -0.5 0

Mutant H12Y IIKKAKRHLVAYAMKKIAKK AMP 0.99 0 -0.5 0

Mutant K19Y IIKKAKRHLVAHAMKKIAYK AMP 0.99 0 -0.5 0

Mutant M14Y IIKKAKRHLVAHAYKKIAKK AMP 1 0 -0.5 0

A 20-residue peptide was chosen because many AMPs are
around this length and shorter peptides are generally easier
and cheaper to synthesize. Other lengths were not explored in
this project which is a limitation and could be examine in fu-
ture work. Amino acid substitutions were conducted because
of three reasons: first, introducing positively charged residues
(K, R, H) can enhance binding to negatively charged bacte-
rial membranes; second, increasing hydrophobic residues can
help the peptide insert into and disrupt membranes; and third,
replacing very flexible residues like glycine with residues that
favor helices can help stabilize an alpha-helical structure.

Results

From the GRAMPA database, 200 AMPs targeting K. pneu-
moniae were obtained. The AMP probability of each pep-
tide was predicted computationally using CAMPR3 with the
Random Forest classifier. Four peptides were excluded from
the dataset due to sequence lengths shorter than four amino
acids as indicated by CAMPR3, leaving 196 peptides for fur-
ther analysis.

K. pneumoniae K6 (ATCC 700603, “GVFDIIKDA-
GRQLVAHAMGKIAEKV’) is a clinical isolate resistant to
oxyimino-beta-lactams, used as a quality control strain for
detecting extended-spectrum beta-lactamases (ESBLs) due to
clavulanic acid–mediated MIC reduction25. The sequence ex-
hibited one of the highest predicted MIC values (300 µg/mL)
and one of the lowest predicted AMP probability scores
(0.531), and was selected for mutational optimization. Table 1
summarizes its key characteristics, including a low predicted
antimicrobial probability, high predicted MIC, low predicted
net positive charge (+1), and high predicted toxicity (0.5).

Figure 2 shows the predicted 3D structure and helix wheel of
the initial peptide, as generated by AlphaFold and HeliQuest,
respectively (default settings applied).

The initial peptide sequence (“GVFDIIKDAGRQLVA-
HAMGKIAEKV’), consisting of 25 residues, was computa-
tionally shortened to 20 residues using CAMPR3 2 with the
Random Forest algorithm. Table 2 shows the results from
the ‘Predict Antimicrobial Region within Peptides’ tool. The
shortened sequence ‘IIKDAGRQLVAHAMGKIAEK’ (posi-
tions 5–24) showed the highest AMP probability and was se-
lected for further mutation and optimization.

In the shortened sequence “IIKDAGRQLVAHAMGKI-
AEK’, amino acids with polar uncharged side chains (Q) and
the negatively charged amino acids (D and E) and the struc-
turally flexible glycine (G) were computationally substituted
with amino acids bearing positively charged side chains (R;
H; and K) to enhance the predicted AMP probability. An ex-
haustive set of 243 combinations (35, corresponding to substi-
tutions at five positions 4-D, 6-G, 8-Q, 15-G, and 19-E) was
generated. The sequence ‘IIKKAKRHLVAHAMKKIAKK’,
achieved the highest predicted AMP probability score (0.968)
according to CAMPR3.

Although the newly created sequence ‘IIKKAKRHLVA-
HAMKKIAKK’ was predicted to be non-toxic (toxicity score:
0.155) by ToxinPred3.0, the tool was further utilized to guide
single amino acid substitutions aimed at reducing predicted
toxicity and optimizing the peptide’s predicted antimicrobial
profile—potent against the target pathogen while remaining
safe for host cells. A total of 381 mutants were generated
computationally, among which ten were predicted to have zero
toxicity and AMP probability above 0.90. Here, a toxicity
score of 0 indicates a non-toxic prediction by the ToxinPred3.0
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Table 4 Predicted characteristics of the final optimized peptide “IIKKAKRHLVAHAYKKIAKK”

Net Charge Molecular
Weight (Da)

Type of Structure Hydrophobic
moment

AMP
Probability

Toxicity Hybrid
Score

+8.5 2344.94 α-helical 0.201 1 0

Table 5 Predicted characteristics of the LL-37 “LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES”

Strain Net Charge Molecular
Weight (Da)

Type of
Structure

Hydrophobic
moment

AMP
Probability

Toxicity
Hybrid Score

LL-37 +6.0 4493.312 α-helical 0.521 0.749 0.0

Fig. 3 The 3D structure and helix wheel of the optimized peptide
Note: For the 3D structure, dark blue stands for very high (pLDDT> 90); light blue stands for confident (90>pLDDT>70); yellow stands for
low (70 >pLDDT> 50); and orange stands for very low (pLDDT<50).

Fig. 4 The 3D structure and helix wheel of LL-37
Note: For the 3D structure, dark blue stands for very high (pLDDT> 90); light blue stands for confident (90 >pLDDT> 70); yellow stands for
low (70 >pLDDT> 50); and orange stands for very low (pLDDT< 50).
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model rather than experimentally confirmed absence of tox-
icity. The ten sequences with the lowest predicted toxicity
scores (from ToxinPred3.0) and their corresponding predicted
AMP probabilities (from CAMPR4) are presented in Table 3.
The remaining 371 sequences were excluded due to high pre-
dicted toxicity or low AMP probability, and therefore not pre-
sented for brevity.

The sequence ‘IIKKAKRHLVAHAYKKIAKK’ (last se-
quence in Table 3) combines high predicted AMP probabil-
ity and minimal predicted toxicity. MERCI (+ve) and (−ve)
scores are motif-based predictors of antimicrobial potential,
with (+ve) indicating AMP-like motifs (0 to +1) and (−ve)
indicating non-AMP motifs (−1 to +1); the peptide showed
a (−ve) score of −0.5 and a (+ve) score of 0, suggesting
minimal non-AMP motifs and moderate AMP-associated mo-
tifs, consistent with its predicted antimicrobial activity. Com-
pared with the peptide before single amino acid substitu-
tions (‘IIKKAKRHLVAHAMKKIAKK’), Methionine (M) is
replaced by Tyrosine (Y) at position 14. Table 4 summarizes
the key characteristics of this optimized peptide, including its
AMP probability score (1), predicted toxicity score (0), net
positive charge (+8.5), and predicted α-helical structure. Fig-
ure 3 presents the predicted 3D structure and Helix wheel of
this final candidate.

For reference, the optimized peptide was compared with
the widely studied human cathelicidin antimicrobial pep-
tide LL-37 (“LLGDFFRKSKEKIGKEFKRIVQRIKDFLRN-
LVPRTES”). Table 5 summarizes the key characteristics of
this optimized peptide, including its AMP probability score
(0.749), predicted toxicity score (0), net positive charge
(+6.0), and predicted α-helical structure. Figure 4 presents
the predicted 3D structure and Helix wheel of this final candi-
date.

Discussion

AMP probability describes how similar the sequence is to
known AMPs according to the model, while potency / ef-
fectiveness refers to how strongly a peptide kills bacteria in
experiments (exp. MIC values). The higher predicted AMP
probability suggests a greater likelihood of antimicrobial ac-
tivity, but the true potency remains unknown without exper-
imental MIC measurements. Because short peptides can be
flexible in aqueous solution, the AlphaFold structure should
be viewed as a possible model of how the peptide might look
when interacting with a membrane, rather than a confirmed
conformation in solution.

Predicted Local Distance Difference Test (pLDDT)
estimates how well a predicted structure agrees with an
experimental structure based on backbone carbon coordi-
nates26. It provides a per-atom confidence score from 0–100,
where higher values indicate greater confidence: scores

above 90 are highly reliable, while scores below 50 suggest
likely inaccuracies (AlphaFold Server, 2025, (https:
//alphafoldserver.com/guides#section-3:
-interpreting-results-from-alphafold-server).
Predicted Aligned Error (PAE) measures AlphaFold 3’s con-
fidence in the relative positions of two items within the
predicted structure27. Higher PAE values indicate lower
confidence in the predicted spatial relationship between
residues.

AlphaFold3 predicts the initial peptide (Figure 2) to adopt
a stable α-helical conformation with high pLDDT scores (>
90; dark blue) and low predicted aligned error (mostly dark
green), indicating a well-defined structure with modest ter-
minal flexibility typical of α-helical antimicrobial peptides.
The final optimized peptide (Figure 3) shows a similar α-
helical fold with high pLDDT (mostly dark blue) and pre-
dominantly dark green PAE, reflecting very high local con-
fidence and modest terminal flexibility. Comparison with the
AlphaFold3-predicted LL-37 structure (Figure 4) reveals high
pLDDT across the α-helical core (dark blue) with slightly re-
duced confidence at both termini (light blue), and predomi-
nantly low PAE with modest terminal flexibility (mostly dark
green, with lighter green regions in the lower and right parts).

Our findings suggest that computational amino acid length
shortening and substitutions can enhance predicted AMP
scores and reduce predicted toxicity. Shorter AMPs often
retain strong antibacterial activity while reducing hemolysis
and improving selectivity, stability, and resistance profiles28.
Mechanistically, their activity—driven by binding to nega-
tively charged membranes and peptide aggregation—tends
to plateau with increasing length, showing diminishing per-
residue effectiveness in longer sequences29. Substituting po-
lar uncharged residues and glycine—a structurally flexible,
non-polar special case—with positively charged or hydropho-
bic amino acids increases the predicted likelihood that a pep-
tide will disrupt bacterial membranes or cross into the cyto-
plasm to interfere with intracellular processes, while limiting
toxicity to host cells30.

As an ESKAPE pathogen, K. pneumoniae poses a serious
threat to hospitalized patients, especially those in intensive
care units. Its multi-drug resistance contributes to high mor-
tality and substantial healthcare costs. Developing safe and ef-
fective antimicrobial peptides represents a promising strategy
to reduce deaths and protect vulnerable populations. A meta-
analysis of 157 studies including 37,915 patients showed K.
pneumoniae is associated with high, progressively increasing
mortality: 17% at 7 days, 24% at 14 days, 29% at 30 days,
and 34% at 90 days, with significantly higher rates in ICU
patients4. As a leading cause of carbapenem-resistant Enter-
obacteriaceae (CRE) infections, K. pneumoniae contributes to
major healthcare expenditures, with direct hospital costs per
CRE case ranging from $22,000 to $66,000 and total annual
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U.S. hospital costs estimated between $275 million and $1.4
billion, alongside significant societal costs and loss of quality-
adjusted life years31. Given the rapid rise in drug resistance,
there is an urgent need to invest in the development of novel
antimicrobials and alternative therapeutic strategies to effec-
tively manage and contain K. pneumoniae infections.

This work contributes to the broader effort to combat the
growing threat of antibiotic resistance by applying a system-
atic and exhaustive computational approach to optimizing an-
timicrobial peptides. We computationally shortened the se-
quence and exhaustively tested 243 substitutions replacing po-
lar uncharged, negatively charged residues, and glycine with
positively charged amino acids (arginine, histidine, lysine),
followed by targeted single-residue hydrophobic substitutions
to reduce predicted toxicity. We first discarded variants with
high predicted toxicity. Among the remaining sequences, we
prioritized those with high predicted AMP probability, zero
predicted toxicity, and suitable net charge and hydrophobic
moment, and from these we selected one peptide as the final
design.

This strategy computationally identified a novel peptide
with greatly enhanced antimicrobial potential and reduced
toxicity, achieving a predicted AMP probability of 1.0 and
predicted toxicity of 0—improving from the original peptide’s
predicted 0.531 and 0.5 scores, respectively. The predicted
hydrophobic moment —a measure of the dipole moment cre-
ated by the separation of charged and uncharged residues—
decreased from 0.268 to 0.201, indicating membrane-inserting
potential remaining within a relatively low to moderate range
and the reduction suggesting a trade-off in peptide efficacy.

To place the novel design in a broader AMP context, the
designed peptide was compared with LL-37, the only human
cathelicidin. LL-37 is a 37-residue antimicrobial peptide pro-
duced by immune and epithelial cells that exerts broad antimi-
crobial activity, modulates immune responses, promotes tissue
repair, and shows therapeutic potential in infection models32.
The final optimized peptide showed a higher predicted AMP
probability (1.0 vs. 0.749), equally low predicted toxicity (0),
but a lower hydrophobic moment (0.201 vs. 0.521). The op-
timized peptide also had a higher predicted net charge (+8.5
vs. +6.0), suggesting stronger electrostatic interactions with
negatively charged bacterial membranes. Both peptides had
an α-helical structure.

The reduced hydrophobic moment may help decrease
disruptive interactions with mammalian membranes, poten-
tially lowering toxicity, but it could also weaken membrane-
disrupting activity against bacteria. Future work could explore
different hydrophobic moments to better balance predicted
toxicity and antimicrobial effectiveness. The computationally
generated helix wheels of the initial and final peptides exhibit
some predicted amphipathic character that may support mem-
brane activity, but their relatively weak predicted hydrophobic

moment compared with LL-37 may limit membrane selectiv-
ity and potency. In this context, selectivity means being more
harmful to bacteria than to human cells. Experimentally, this
is often quantified using a selectivity index, such as the ratio
between a toxicity value (e.g., hemolysis or cell viability) and
MIC. In this project, we did not measure this index, so selec-
tivity is only predicted, not experimentally confirmed. Reposi-
tioning residues to enhance the hydrophobic–hydrophilic sep-
aration could improve amphipathicity promoting binding to
the bilayer. These simulations were made possible by leverag-
ing computational tools, enabling efficient and cost-effective
design of novel antimicrobial peptides.

This study demonstrates that AI and computational ap-
proaches can effectively help design novel AMPs targeting
K. pneumoniae by optimizing amino acid length and sub-
stitutions to enhance predicted antimicrobial activity while
reducing predicted toxicity. Such computational sequence-
optimization strategies are broadly applicable for developing
potent AMPs against diverse bacterial pathogens beyond K.
pneumoniae. AMP-based drug development is a long and
costly process, typically taking 13–14 years and costing tens
of millions of euros per candidate, with delays and attrition po-
tentially adding C50–100 million to early-stage expenses33.
AI and computational methods hold great promises to sub-
stantially reduce both time and costs during the early discov-
ery and lead optimization stages, offering a promising, cost-
effective, and time-efficient alternative to traditional antibiotic
development pathways.

This study, however, has several limitations:

• First, while CAMPR3/4 and ToxinPred are powerful
tools, they are machine-learning models that use patterns
in existing data to provide probabilistic predictions, not
guarantees. Scores such as “AMP probability=1.0” or
“toxicity=0” should be interpreted as “very likely” or
“very unlikely” according to the model. The true behav-
ior of the peptide must ultimately be confirmed by exper-
iments.

• Second, this study did not specifically predict red blood
cell hemolysis, which is a key concern for AMPs in-
tended for systemic use. Future work should include
in vitro hemolysis assays to access whether the peptide
damages human red blood cells.

• Third, highly cationic peptides often increase hemoly-
sis, reduced hydrophobic moment may reduce activity,
strain-to-strain MIC variability.

• Fourth, while this study shows that computationally tar-
geted single-site substitutions can improve predicted an-
timicrobial activity and reduce predicted toxicity, it is
limited by focusing solely on shortening the peptide from
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25 to 20 residues with an arbitrary cutoff, without ex-
ploring other lengths or sequence arrangements. Poten-
tially valuable strategies such as multi-site substitutions
and structural modifications to improve physicochemi-
cal properties and enhance the hydrophobic–hydrophilic
separation were also not examined.

As all results are based solely on computational predictions,
future research should build upon these findings by investigat-
ing a wider range of sequence alterations and performing wet
lab experimental validation to confirm and further optimize
the peptide design.

Molecular dynamics simulations incorporating an atomistic
bilayer and surrounding solvent offer detailed insight into
peptide–bilayer interactions34. The energetics of AMP addi-
tion to a transmembrane pore, quantified through molecular
dynamics simulations, are essential for evaluating pore for-
mation and growth, providing critical insight into the pore-
forming ability of peptides in cell membranes35. However,
conducting membrane simulations and energetics studies is
computationally intensive and represents an important direc-
tion for future research.
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