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In recent years, there has been a growth in the use of algorithms and machine learning models in stock price prediction. This
research paper studied the change of the S&P 500 index from December 6, 2023, to December 2, 2024. A forecasting model
was developed based on the idea of kinetic energy to predict the value of stock closing price of the S&P 500 companies. The
proposed model treats price changes and trading volume as analogues to velocity and mass, respectively, allowing stock dynamics
to be represented through a kinetic energy formulation. The model’s performance is evaluated against that of the other benchmark
models - ARIMA(p,d,q), Double Exponential Smoothing, and Artificial Neural Network - in terms of mean absolute error (MAE)
and mean absolute percentage error (MAPE). The models were then backtested for evaluation on mean returns, and Sharpe Ratio.
In predicting the future prices after the last date of the training set of the S&P 500 stocks, the Kinetic Energy-based model
generated more accurate price predictions for short-term forecasting than other benchmark models. Furthermore, the results of
the mean returns and Sharpe Ratio showed that while the Kinetic Energy-based model is better suited for generating returns, its
Sharpe Ratio indicates that these returns exhibit higher volatility than those of some benchmark models. Overall, the Kinetic
Energy-based model demonstrates a strong potential for short-term prediction, though its return stability remains a limitation.

Introduction

Background

The stock markets are defined as locations for economic trans-
actions of buying and selling stocks, which are the financial
ownership claims of businesses!. Throughout history, the
stock market has played a crucial role in the advancement of
the economy and emerging markets'. One way businesses
influence the change in stock prices is through the process of
buying and selling stock, which causes the stock prices to fluc-
tuate over time in a dynamic, unpredictable, and non-linear na-
ture. Other ways are through external factors such as political
conditions, financial articles, and social media. For these rea-
sons, predicting a stock price in advance to maximize a trading
strategy is a challenging process.

There are two main methods for predicting the future value
of a stock price: quantitative and qualitative techniques. For
the quantitative method, researchers employ statistical models
that predict the stock price using historical data of the stock
price, such as the opening and closing prices, the traded vol-
ume, and the daily low and high prices. For the qualitative
method, researchers develop models that take into account the
external factors discussed above. This paper focuses more on
the quantitative side of stock price forecasting.
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Research gap and problem statement

In Physics, there is a concept known as Kinetic Energy (KE)
that describes the energy of a system of particles or objects
with movement. KE relates the mass of an object with its
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velocity. The formula for KE is described below, where “m

is the mass of a body under some velocity ”v”. Usually, "m” is
measured in kilograms (kg) and ”v” is measured in meter per
second (m/s)®. Given the mass m and velocity v of a particle

or object, its Kinetic Energy (KE) is defined as 3l
1
KE = 5mv2 (1)

In a research paper by Kiyoshi Kanazawa et al.* on the rela-
tionship between kinetic theory and finance Brownian motion,
the authors argue that the financial markets resemble the hier-
archical structure of the conventional Brownian motion. The
authors claim that one can imagine those hierarchies directly
correspond to those in the kinetic theory: traders, order books,
and price correspond to molecules, velocity distribution, and
Brownian particles, respectively. From these similar charac-
teristics between components in kinetic theory and financial
markets, some researchers aim to study the stock market with
the assistance of the concepts in kinetic theory, particularly,
the kinetic energy.

In another research paper by Morteza Zahedi and Mahdieh
Ghotbi”, the authors exploited the idea of kinetic energy to
examine features of financial market, aiming to provide more

© The National High School Journal of Science 2026

NHSJS Reports | 1



accurate predictions of stock prices. The authors proposed the
three approaches: RSIK, DRLK, and TDQNK. More specif-
ically, the RSIK combined kinetic energy with the traditional
RSI to predict the signal of the market; if the signal is -1 and
kinetic energy is greater than the predetermined threshold, the
authors claim the predicted signal to be sold. The DRLK in-
corporates kinetic energy to the traditional DRL model, op-
erating anti-signal action on the trading environment. The
TDQNK integrates the TDQNK, a deep reinforcement learn-
ing model, and kinetic energy, and uses the Huber loss for the
training process. In analyzing GBPUSD, the RSIK outper-
formed the RSI and other traditional strategies at 0.95 average
measures. Likewise, in analyzing XAUUSD, the RSIK out-
performed the RSI and other traditional strategies at 0.48 av-
erage measures. In analyzing APPL and XAUUSD, the DRLK
outperformed DL at 22.16 and 7.35, respectively. Finally, the
TDQNK outperformed the TDQN as a trading strategy, gain-
ing a profit of 116216 and an annualized return of 35.75 %.

The argument from Kiyoshi Kanazawa et al.# and the re-
sults from Morteza Zahedi and Mahdieh Ghotbi® show that
kinetic energy can be applied in stock price prediction and
trading strategy to gain advantage over other traditional mod-
els and techniques. Such a relationship led us to study the
ability to predict stock prices based on kinetic energy.

Objectives

The objectives of this paper are to analyze the change in the
S&P 500 index, develop a model that predicts the individual
stock closing prices using the idea of kinetic energy, and eval-
uate the model against other widely known forecasting mod-
els. This study focuses on answering the following guiding
questions:

* How did the S&P 500 index change from December 4,
2023 to December 2, 2024?

* What is the relationship between the individual stock
closing prices and kinetic energy in our model?

* How does our model compare to other existing models in
the literature?

We hypothesized that it is possible to predict stock closing
prices with the concept of kinetic energy, and that the Kinetic
Energy-based model would have some advantages over other
traditional forecasting models.

Literature review

Autoregressive Integrated Moving Average Models

One of the most common traditional model for time-series
forecasting, such as stock price prediction, is the Autore-
gressive Integrated Moving Average, also known for short as

ARIMA(p.d,q). A research study by Sidharth Tiwary and
Pramod K. Mishra® used ARIMA (p,d,q) as a basis for their
prediction of stock prices. The study utilized the data on
TESLA and NIO stock details from December 10, 2018 to
June 3, 2022 and fit the ARIMA(p,d,q) according to the Box
and Jenkins Methodology.

Definition 2.1°¢ According to the ARIMA(p,d,q) model, the
stock closing price is the linear combination of its lagged val-
ues and lagged errors. That is

Vi=ct+®y—1+ @yt +Oy—pt+&
—01e,_1—6re;_2—---— 0y, ()

where,
* y;: Stock closing price at time ¢
* ¢: Constant term (intercept)
* 01,02,...,0,: Autoregressive (AR) coefficients
* Yi—1,Yt-2,..-,Yi—p: Lagged closing price values
¢ &: White noise at time ¢
* 01,60,,...,0,: Moving Average (MA) coefficients
* e 1,6 2,...,6_4 Lagged error terms

Using Auto-ARIMA, an algorithm to find the optimal pa-
rameters “p,d,q”, the study obtained ARIMA(0,1,0) as the
best ARIMA model for the closing price of TESLA and
ARIMA (1,1,1) as the best ARIMA (p,d,q) model for that of
NIO. Forecasting with a confidence level 95% for the next 15
days after the training set, the models for the TESLA and NIO
stock price prediction resulted in mean absolute percentage
errors (MAPESs) of 0.03% and 0.18%, respectively. Although
the errors were considerably low, the ARIMA (p,d,q) model
has some drawbacks. Firstly, it only relies on the linear rela-
tionship between the lagged variables and between the mov-
ing averages. Such linear assumptions lead to the model dis-
advantage when dealing with non-linear relationships. Sec-
ondly, as explained in the research paper by Sidharth Tiwary
and Pramod K. Mishra®, the ARIMA (p,d,q) model requires
the data to be stationary, meaning its statistical properties —
such as mean and variance — stay constant over time, which
might not be the case in the real stock market, where there are
trends to the prices.

These disadvantages led us to research and develop an al-
ternative forecasting model that does not rely on the linear
and stationary assumptions. The models that utilize concepts
in kinetic theory, according to Kiyoshi Kanazawa et al.* and
Morteza Zahedi and Mahdieh Ghotbi=, do not assume linear
relationships between time series lagged values and stationar-
ity of the time series itself, thus mitigating the discussed draw-
backs that the ARIMA (p,d,q) model has.
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Double Exponential Smoothing Model

Other traditional models that are widely exploited in time se-
ries forecasting of stock price are Exponential Smoothing (ES)
techniques. An ES model that we employed in this study is
the Double Exponential Smoothing model, which has an ad-
vantage over other types of ES models — such as the Simple
Exponential Smoothing model - in predicting time series that
have trends. A research study by Aminur Rahmanon' the pre-
dictability of ES models in stock price prediction discussed
the use of the Double Exponential Smoothing model.
Definition 2.27 According to the Double Exponential
Smoothing model, the stock price at time ¢ is the summation
of the weighted average level and trend at time # — 1. That is

L =aVsrg, +(1—0o)(Li—1 +Ti—1) ©)
L=0(L—L_1)+(1-6)T;_, 4
Vork, = Li—1 +T—1 (5)

where,
e [,: the level at time ¢
* o: the weight for the level
e T;: the trend at time ¢
* 0: the weight for the trend
* Vsrk,: the stock price at time ¢
o Vsr K, the predicted price at time ¢

The data of weekly stock prices of Pearson PLC (PSON.L),
Burberry Group PLC (BRBY.L), JD plc (JD.L), Access In-
telligence plc (ACC.L), and Aptitude Software Group plc
(APTD.L) from May 31, 2009 to February 11, 2024 is fit to
the model. The forecast period is not explicitly discussed in
this study. The results show that the MAPEs for the Double
Exponential Smoothing when forecasted for those companies
are 1.33%, 4.3%, 31.07%, 3.18%, 18.22%, respectively.

One reason that we decided not to study the Triple Ex-
ponential Smoothing model (also known as the Holt-Winters
model) was because the study above shows that it has an in-
ferior performance to the Double Exponential Smoothing in
terms of MAPEs'Z. Although the Double Exponential Smooth-
ing model performs considerably well in the context of the
above study, displaying some low MAPEs, the model has a
disadvantage. The model assumes that the trend of the time
series in the past will persist in the future, which is problem-
atic if the trend in the stock prices changes. This problem led
us to research and develop an alternative forecasting model
that does not rely heavily on the time series’ trend.

Artificial Neural Network

Besides traditional models, there are other widely known
methods for time-series forecasting, such as stock price pre-
diction, that incorporate machine learning techniques. A re-
search study by Mehar Vijh et al.% used artifical neural net-
work (ANN), fitted from April 6 2009 to April 3 2017, to pre-
dict closing stock price of Nike, Goldman Sachs, Johnson and
Johnson, Pfizer and JP Morgan Chase and Co from April 4,
2017 to April 5, 2019. The study claims that the input nodes
for the ANN model were the difference of High and Low price,
the difference of Close and Open price, stock price’s seven
days’, fourteen days’, and twenty one days’ moving average,
and stock price’s standard deviation for the past seven days.
The weights of each input node are multiplied and sent to the
neurons in the hidden layer, and the output layer consists of
only one neuron, which gives the predicted closing price. The
results show that the ANN’s MAPE:s for the closing price of
Nike, Goldman Sachs, Johnson and Johnson, Pfizer and JP
Morgan Chase, and Co were 1.07%, 1.09%, 0.89%, 0.70%,
0.77%, respectively.

Despite having pronounced results, the ANN model pos-
sesses one main challenge. Since the ANN model has hy-
perparameters such as the number of hidden layers, learning
rate, and activation function, the model should be hyperparam-
eter tuned before training to enhance the performance, which
can be computationally costly. Therefore, it led us to research
and develop an alternative forecasting model that minimizes
the drawbacks of hyperparameter tuning. Neural networks
contain several hyperparameters, such as the number of hid-
den layers, activation functions, learning rate, and batch size,
which affect how well the model learns. Without tuning these
hyperparameters, the network can easily overfit the training
data and perform poorly on unseen prices. More advanced
architectures, such as Long Short-Term Memory (LSTM) net-
works, can model long-term price behavior, but they require
larger datasets, a greater number of parameters, and longer
training time. Since our goal was to compare our kinetic-
energy-based approach to commonly used baseline models
while keeping computation accessible, we chose to implement
the ANN model instead of the LSTM in this study.

Methodology

Data collection and preprocessing for models comparison

To implement the forecasting models, we collected the data
about the stock closing prices of the S&P 500 companies. The
datasets were gathered using the finance library®™, a website
that provides real-time financial information and stock mar-
ket data. The datasets were from December 4, 2023 to De-
cember 2, 2024, a period of about one year. We decided to
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test our model against the ARIMA(p,d,q), Double Exponen-
tial Smoothing, and the ANN models, which were the ones
discussed in section 2. For each of these models, we split the
dataset into training and test sets, where training sets were the
first 80% of the data and test sets were the remaining 20%.
Therefore, the training sets were from December 6, 2023 to
September 19, 2024, and the test sets were from September
20, 2024 to December 2, 2024. To avoid any null values, we
drop any data points with NaN values.

To implement the ARIMA((p,d,q) model, we first tested for
the stationarity of the datasets for those companies because
stationarity is an assumption of any ARIMA(p,d,q) model®.
To do so, we employed the Augmented Dickey-Fuller (ADF)
test’? on the training sets. The null hypothesis (Hy) of the
ADF test is that the series is nonstationary, and the alternative
hypothesis (Hj) is that the series is stationary. An ADF test
which results in a p-value < o rejects the Hp, suggesting that
the series is stationary. For this study, we chose 0.05 as the
value for o (significant level) because it is one of the most
common values for a significance levellY. Table 1 shows the
results for the ADF test on the original training sets of the S&P
500 stocks.

Table 1 ADF test results for the original training datasets 2

Original Series | ADF test p-value
A 0.041
AAPL 0911
ABBV 0.541
7ZBH 0.713
ZBRA 0.697
ZTS 0.545

The results from Table 1 show that some of the training sets
for the original series of the companies are not stationary with
p-values greater than @ = 0.05. While some are stationary
with p-values less than a = 0.05. Therefore, we decided to
differentiate the original series and run the ADF test again.
The definitions were formed to assist in this process.

Definition 3.1 Since the closing stock price is recorded
daily in our datasets, its timesteps are recorded discretely and
evenly spaced. A time series of a stock closing price P is
defined as an ordered sequence of stock closing prices at the
allowed discrete time-step r € T = {0,1,2,3,...,n}, where n
is the last date in the series. That is

P =(P(0),P(1),P(2),P(3),....P(n)) = {P(t) iy~ (6)

Definition 3.2 From Definition 3.1, the first order differ-

enced series is defined as
o <P<1>—P<0> P@-P()
1 —1 h—1 Iy — I
_ <P(1)—P(0)7P(2)—P(1),M7P(n)—P(n—1))
1 1 1
={P(t)—P(r—1)}, )

P(n) — P(n— 1))

From Definition 3.2, we ran the ADF test on the first or-
dered differenced training datasets. The results from Table
2 show that the first order differenced training series for all
companies but SW are stationary because all p-values are less
than o0 = 0.05 except for SW with a p-value of 0.07 > 0.05.
After the second order differentiation, the p-value for SW is
3.708 x 107% < 0.05, indicating stationarity.

Table 2 ADF test results for the first order differenced training
datasets‘?

First Order Differenced Series | ADF test p-value
A 6.591 x 10714
AAPL 1.974 x 10723
ABBV 5.162 x 10726
ZBH 1.021 x 10°%
ZBRA 2.147x107%
ZTS 1.537 x 10719

To find the optimal values for the parameters p,d, and g in
the ARIMA(p,d,q) models, we employed the Auto-ARIMA14,
an algorithm that calculates such optimal parameters, to the
training series of the three companies. Table 3 shows the opti-
mal parameters for the ARIMA(p,d,q) models of the series.

Table 3 The optimal parameters for the ARIMA(p,d,q) for the
training datasets'>

Series | Optimal parameters for ARIMA (p,d,q)
A ARIMA(3,0,0)
AAPL ARIMA(0,1,0)
ABBV ARIMA(0,1,0)
ZBH ARIMA(0,1,0)
ZBRA ARIMA(0,1,0)
ZTS ARIMA(0,1,0)

The Double Exponential Smoothing models do not require
as many preprocessing steps. We utilized the framework intro-
duced in Definition 2.2. We then performed an optimization
process to find the optimal weights for the level (o) and the
trend (0) of the S&P 500 training series that minimize the er-
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ror of the loss function. That is,

n

a=min Y (Lt + T~ F)® ®)
t=0
n

0 =min} (L1 + T —P)’ ©9)
t=0

where,
» [,_i: the forecasted level one time step before time ¢
* T,_: the forecasted trend one time step before time ¢
* B the stock closing price at time ¢

Table 4 shows the optimal value of & and 6 for the training
series.

Table 4 The optimal parameters for the Double Exponential
Smoothing for the training datasets-®

Series | Optimal o [ Optimal 6
A 0.100 0.031
AAPL 0.100 0.099
ABBV 0.100 6.33 x 107!
7ZBH 0.942 0.051
ZBRA 0.100 0.054
ZTS 0.100 0.056

To implement the ANN model, we followed the architec-
ture introduced in section 2.3 to let the model have six input
neurons:

 Stock High minus Low price (H-L).
* Stock Close minus Open price (O-C).
* Stock price’s seven days’ moving average (7 DAYS MA).

* Stock price’s fourteen days’ moving average (14 DAYS
MA).

» Stock price’s twenty one days’ moving average (21
DAYS MA).

* Stock price’s standard deviation for the past seven days
(7 DAYS STD DEV).

In the study” in the literature, the authors utilized the ANN
architecture with three hidden neurons and one single output
neuron for the value of the closing price. Refer to Figure 1
for the detailed architecture. However, we acknowledged that
the optimal architecture of that study might not be the optimal
architecture when applied in our study. We decided to im-
plement a method of hyperparameter tuning called Random

Search, which computes the optimal hidden layer size, acti-
vation, learning rate, and batch size from a search space for
the ANN model. However, tuning such hyperparameters for
every individual S&P 500 stocks is computationally costly so
we decided to combine all tickers into one dataset and pass
it through the Keras Tuner’s Random Search function'”. To
speed up the search, we used a random subset of up to 5000
samples from the training data. Table 5 shows the optimal hy-
perparameters for the ANN model after tuning. Note that we
kept the input layer to have six input neurons as in the study
in section 2.32.

70AYS MA
—>{ output

14 DAYS MA
—

21 DAYS MA

7 DAYS STD DEV.

Fig. 1 The detailed architecture of the ANN models used in the
literature 2

For backpropagation, we used the algorithm Adam, an
adaptive gradient descent algorithm and a widely used
stochastic optimizer'®. To implement the three models as
well as our proposed one, we first normalize the data for the
closing prices of the S&P 500 stocks to avoid any outliers
and redundancies, leading to better model performance. The
normalization technique we used in this study was the log-
transformation, following Definition 3.3.

Definition 3.3 Given a data point Xj, its log-transform value

is computed as Y; where
Y; = log(X; + (1 —min(X))) (10)

We then applied the log-transform to the input data to train
and test the performance of the ARIMA(p,d,q), Double Ex-
ponential Smoothing, ANN, and our proposed model (Kinetic
Energy-based model). Since the outputs of the models, which
are the closing prices, are continuous, we also normalize the
outputs for training and testing.

Forecasting model with Kinetic Energy formulation

In this section, we will discuss the formulation of our fore-
casting model for the stock closing using the idea of Kinetic
Energy and stochastic processes. The model is inspired by
the formula for KE introduced in section 1.2. Note that the
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Table 5 Optimal hyperparameters for the ANN model.

Hidden units (layer 1) | Activation (layer 1)

Hidden units (layer 2)

Activation (layer 2) | Learning rate | Batch size

4 tanh 8

ReLU 0.00218 32

data points are normalized with the log-transform method in-
troduced in Definition 3.3.
Definition 3.4 The formula for the KE of a stock closing
price at time ¢ is computed as
KE(t) = —m(t)v(t) (11)
where m(t) is the trading volume at time # and v(¢) is the rate
of change of the stock closing price or the differenced value of
the closing price (introduced in Definition 3.2) at time 7. That

° v(t)=P@E)—P(t—1) (12)

The reason we chose the “mass” term of the KE formula
as the trading volume is due to its relationship with the price.
According to a study about the effect of the trading volume on
stock price!®, an increase in the trading volume is associated
with an increase in the average stock price. Notice that KE(7)
and m(t) are proportional, meaning that an increase in m(r)
will lead to an increase in KE(¢). Consequently, an increase
in KE(¢) will likely lead to an increase in its value on the next
time step KE(f + 1), leading to an increase in stock closing
price P(t + 1) as the result of an increase in v(z + 1).

Definition 3.5 From Definition 3.4, the future stock closing
price N time step after can be computed as

P(t4+N)=v(t+N)+P(1) (13)
. 2KE(t+N
Plt+N) =+ m(t(f;\,)) +P(1) (14)
2KE(t4N)

Let the term =/ S5 be V(¢ +N). Its sign is chosen based
on the empirical probability in the training set. That is, given
a random variable X taking on {—1,+1} with the probability
of the rate of change of v being positive and negative P(X =
+1)=pand P(X =—1)=1—p, then

B(t+N) =X *|v(t +N)| (15)

To implement this model, the future KE and trading volume
m need to be known beforehand, which is impossible. To es-
timate KE (¢t + N) and m(¢ + N), we proposed an approach to
find such values based on their distribution of change.

Definition 3.6 Given the kinetic energy at time t KE(¢), the
kinetic energy at time 7 + N is computed as

KE(t+N) = (1 +exg) *KE(t) (16)

where, exp is a random percent change of KE that follows
some distribution of all past percent change of KE in the train-
ing series.

Definition 3.7 Given the trading volume at time # m(¢), the
trading volume at time 7 + N is computed as

M(t+N) = (14+cpm)*m(t) (17)

where, exg is a random percent change of m that follows some
distribution of all past percent change of m in the training se-
ries.

To find egxg and e, an approximation technique can be uti-
lized based on the distribution of exr and e,,. The first ap-
proach was to assume normal distribution for exr and e, of
each series and simulate their values from the normal distribu-
tion. However, financial returns exhibit heavy tails and volatil-
ity clustering, even when they are log-transformed, so normal
distribution can not be assumed. To express this property ev-
idently from the data, we employed the Shapiro-Wilk test for
normal distribution, which has the null hypothesis that the dis-
tribution is normal and the alternative hypothesis that such a
distribution is not normal. Table 6 shows the result for the
Shapiro-Wilk test2Y for normal distribution of exg and e,,. As
noticed, some series have p-value less than 0.05 for the distri-
bution of exr and e,,, supporting the alternative that the series
are not normally distributed. Therefore, the first approach was
not applicable.

Table 6 Results for the Shapiro-Wilk test on exr and e, of all series

Series | p-value (exr) | p-value (e,,)
A 1.152x 107 [ 1.969 x 10~°
AAPL 1.00 7.723 x 107°
ABBV | 7.816 x 10718 [ 9.189 x 10~
ZBH 2.14x 10718 | 5.699 x 10~*
ZBRA | 1.97x10720 [ 9.611x 1077
ZTS 1.00 1.574 x 1076

The second approach was to approximate exr and e, by as-
suming any kind of distribution that they exhibit and simulate
their values from that empirical distribution. Definition 3.8
and Definition 3.9 model exg and ey, respectively, using this
second approach.

Definition 3.8 According to Definition 3.6 and Theorem
3.1, the KE at time # + N is computed as

KE(t+N) = (1 +cxe) *KE(t) (18)
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where, exr follows a some distribution from its past values.
That is,
exe ~ Distribution(Uey; , Oexy ) (19)

where, U, is the mean and o, is the standard deviation of
all €KE.

Definition 3.9 According to Definition 3.7 and Theorem
3.2, the trading volume m at time ¢ + N is computed as

w4+ N) = (1+cp)xm(t) (20)
where, exg some distribution from its past values. That is,
cm ~ Distribution(l,,,, G, ) (21)

where, UL, is the mean and o,,, is the standard deviation of all
em.

With those formulas and theorems above, we can compute
the future stock closing price. However, to avoid misleading
results from the random variables exr and e,,, we decided to
employ the Monte Carlo Simulation®!. We ran 100 simula-
tions for each new time step. Vector of simulations for the
next time steps were obtained. That is, for some new time
step k,

PO+ k) e =[PVt +1),PD(142),...,PD (1 +k)]
POt +k)ye =[PP +1),PP(142),..., PP (1 +k)]

PUOO (¢ 4 )y = [P0 (1 4 1), PUOO) (1 4-2) . PUOOO) (1 4 )]
22)

where PU)(r + k) is the i-th vector of from the Monte Carlo
simulations. We then average out the simulated vectors to get
the estimate of the stock closing price at the future time steps
from the Monte Carlo simulations. That is,

_ 100

P(t+k)ye = 1(1)();;P(l) (t+k)mc (23)

To avoid overfitting from assuming the distribution of exg

and e,,, we employed a regularization technique that weighs

the average of the prediction from the Monte Carlo simu-

lations and the mean of the five most recent closing prices

(Uprecent)- This weighted average prevents the model from

overfitting the past’s distribution of e and e,,, while preserv-

ing the trend from the recent closing prices. The estimation of

the stock closing price at the future time steps k is calculated
as

P(t+k) = BP(t + k) yc + (1= B) Aprecen 24)
To find the optimal weight 3 for each series, we minimized
the loss function between the predicted and true closing price
for each series. That is

—

B = argrrgn |P(t +k) — P(t + k) true (25)

Refer to the Appendix for the detailed pseudocode for the
Kinetic Energy-based model in predicting future prices at time
t + N. For reference, to run the simulations, we utilized
Google Colab’s T4 GPU which has the GPU memory of 16
GB and 320 GB per second bandwidth?%. There are a total
of 250 time steps for our dataset and 4 variables per step.
For each step, there are 2 operations - read and write - with
float size of 8 bytes for float64 data type. Then the memory
moved per step per path is 6 X 2 x 8 = 96 bytes. Since there
are 100 simulations for each series, the memory per series is
100 x 250 x 96 = 2,400,000 bytes, which is 2.4MB. There are
a total of 500 series, so the total memory for all 500 series is
2.4 x 500 = 1200 MB, which is 1.2 GB. As mentioned, the T4
GPU can move 320 GB per second, so the memory time re-
quired to run 100 simulations for 500 series to predict 1 time
step in the future is about 1.2/320 = 0.00375 second. Note
that the regularization process introduces minimal computa-
tional overhead because it only requires the mean of the five
most recent closing prices, and it performs a simple weighted
sum. Therefore, the memory and runtime of the overall model
are not significantly affected by this regularization process.

Result

In this section, we analyze the change in the S&P 500 closing
price (S&P 500 index) from December 4, 2023 to December
2, 2024, and compare our forecasting model’s performance
with that of the ARIMA(p,d,q), Double Exponential Smooth-
ing, and ANN model.

Brief analysis of the change in the S&P 500 index

From Figure 2, overall, the index can be seen to follow a
broadly upward trajectory despite several short-lived correc-
tions, finishing the period substantially higher than it began.
The most notable movements include a mid-year surge and a
sharp dip in late August, both of which temporarily interrupted
the general rise. At the start of the period, the S&P 500 traded
at roughly 4,550 points. It climbed steadily over the first quar-
ter, reaching around 5,200 by late March. Although prices
briefly faltered in April, the index regained momentum and
accelerated through early summer, peaking at approximately
5,650 in July. This was followed by the steepest decline on
the chart: a sudden fall to just above 5,200 in late August,
representing a drop of more than 400 points. However, the
market recovered quickly. From September onward, the index
resumed its ascent, surpassing 5,800 in October and breaking
the 6,000-point threshold in November. It ended the year at a
record high of slightly above 6,050. In summary, despite in-
termittent volatility, the S&P 500 experienced robust and sus-
tained growth across 2024, closing the year at a level around
1,500 points higher than its value in December 2023.
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Fig. 2 The change in the S&P 500 index

Models Evaluation and Comparison

This section provides comparison between our forecasting
model’s prediction and that of the ARIMA(p,d,q), Double Ex-
ponential Smoothing, and ANN models in making prediction
for stock closing price at 1+ 1, t +3 and  + 5 (one day, three
days, and five days after the last date in the training sets,
respectively) of the S&P 500 individual stocks. We evalu-
ated the models’ performance using the mean absolute error
(MAE) and the mean absolute percentage error (MAPE).

Definition 4.1 The mean absolute error for predictions for
t+N (MAEy) is calculated as

= Z;l:l lPtrue(t +N) _Ppredicted(t +N)|
n

MAEy

(26)

where n is the number of predictions, P, (t + N) is the true
price at time 7 + N, and Py egiciea(t) is the predicted price at
time 7 + N.

Definition 4.2 The mean absolute error for predictions for
t+N (MAPEY) is calculated as

MAPEN — 100% * 1 i Brue(t+N) _Ppredicted(t+N)
n.= Pirye (t +N)

27
where 7 is the number of predictions, P (t + N) is the true
price at time 7 + N, and Py egicreq(t) is the predicted price at
time ¢ +N.

Since the Kinetic Energy-based model is stochastic, its pre-
dictions are slightly different each time it is run. To compare
with other models, which are deterministic, we estimate the
population MAEs, and MAPEs for the Kinetic Energy-based
model using the 95% confidence interval from 30 runs. Since
the MAEs and MAPEs are averaged from the errors of the pre-
diction for 500 stocks, by the Central Limit Theorem2? this
sample size (500) is large enough for the distribution of the
MAESs and MAPEs from 30 runs to be approximately normal,
regardless of their individual underlying errors’ distribution.
Therefore, the computation for the 95% confidence intervals
applies.

Definition 4.3 The 95% confidence intervals for a variable
X is calculated respectively as Clygsg, such that

Clx9s59, = ,L/l.)\( :tl*SE)? (28)

Where [y is the mean of some n number of X, ¢* is the t-
multiplier for 95% confidence, and SEg is the standard error
of the n number of X.

Table 7 shows the performance comparison of forecasting
models for S&P 500 stocks’ closing price at time one day,
three days, and five days after the last date of the training
sets, namely the MAE|, MAE3, MAEs, MAPE|, MAPE3, and
MAPE5. Note that the metrics (MAE and MAPE) for the Ki-
netic Energy-based model is the 95% confidence interval of its
metrics from 30 runs, namely the Clyagosq, and Clyapeosg
from Definition 4.3.

According to the results shown in Table 7, for the pre-
diction for 1-day ahead, the Kinetic Energy-based model re-
sulted in a better performance than all of the other three mod-
els, with the 95% confidence interval for MAEs and MAPEs
less than the MAEs and MAPEs from the other three mod-
els. In other words, it is with 95% confidence that the pop-
ulation MAE and MAPE resulting from the Kinetic Energy-
based model are less than the MAEs and MAPEs from the
other three models. However, for the prediction for 3-day
ahead, the ARIMA(p,d,q) and Double Exponential Smoothing
model did better than the Kinetic Energy-based model, while
the ANN model did about the same as the Kinetic Energy-
based model in terms of MAE and MAPE. For the prediction
for 5-day ahead, the ARIMA(p,d,q) and Double Exponential
Smoothing model also did better than the Kinetic Energy-
based model, while the ANN model did slightly better than
the Kinetic Energy-based model in terms of MAE and MAPE.

Besides comparing the model’s performance in predicting
the future closing prices, we also compared the model’s per-
formance in trading the S&P 500 stocks. The first comparison
we looked at is the model’s returns when compared against the
S&P 500 index itself. Note that for back testing purposes and
the limitation of data, we assume single-agent market, mean-
ing we are the only one who traded stocks on daily resolution,
using daily closing price as execution price for all trades. The
formula for the return for N-day holding is expressed in Def-
inition 4.4 with a naive trading algorithm using signals of -1
and 1. To be specific, if the model predicts a positive change
in the closing price after N days, then it will buy and hold for
N days (go long), else if the model predicts a negative change
in the closing price after N days, then it will sell the stocks (go
short).

Definition 4.4 Given a signal generated by a model, where
signal =-1 (indicating sell) if prediction for P4y < P, and sig-
nal =1 (indicating buy) if prediction for P,y > P, the return
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Table 7 Performance comparison of forecasting models for S&P 500 stocks’ closing price at time 7+ 1, ¢+ 3, and r + 5

Performance for ¢ + 1 prediction Performance for ¢ + 3 prediction Performance for ¢ + 5 prediction
Model MAE MAPE MAE MAPE MAE MAPE
KE-based | (2.187,2.222) | (0.92%, 0.93%) | (10.654, 11.467) | (4.240%, 4.410%) | (13.034, 13.881) | (5.430%, 5.590%)
ARIMA 2.451 1.168% 3.00 1.460% 3.728 1.816%
(p.d.q)
Double 2.598 1.240% 3.059 1.550% 4.1355 2.00%
ES
ANN 7.016 3.170% 10.795 4.540% 11.958 5.220%
for N-day holding is calculated as follows model’s mean returns are greater than that of the S&P 500
index.
Risn = signal, Pirue(t +N) = Prrue(1) (29) The second metric for trading we employed to compare the

Ptrue(t)

Using the models, we then compared the mean return for N-
days holding using prediction of t+N for all S&P 500 stocks
with the mean return of the S&P 500 index after N-day. Table
8 shows the comparison for the mean S&P 500 stocks return
for 1-day, 3-days, and 5-days holding of the models using t+1,
t+3, and t+5 predictions, respectively, and the S&P 500 index.
Note that for the Kinetic Energy-based model, the results are
in the 95% confidence interval from 30 runs, following the
similar computation method from Definition 4.3 (the mean re-
turns are from a sample of 500 stocks so Central Limit Theo-
rem applies, meaning the distribution of the mean returns are
approximately normal, thus the computation for the 95% con-
fidence interval applies). Note that the models and the S&P
500 index were evaluated on the entire test set.

Table 8 Comparison of the models’ mean return for S&P 500 stocks
and S&P 500 index fort+1,¢t+3,and ¢t +5

Model 1-day 3-days 5-day
holding holding holding
KE-based (0.0950%, | (0.0013%, | (0.159%,
0.103%) | 0.0617%) | 0.262%)
ARIMA(p.d,q) | -0.375% -0.0831% | -0.140%
Double ES -0.355% 0.0314% | 0.0619%
ANN -0.163% -0.397% -0.670%
S&P 500 index | 0.112% 0.113% 0.111%

According to the results shown in Table 8, the Kinetic
Energy-based model overall has higher mean returns than the
other traditional models when evaluated for 1-day, 3-days,
and 5-days holding ahead using t+1, t+3, and t+5 predictions,
respectively (except when compared to Double Exponential
Smoothing model for 3-days holding). For 1-day and 3-days
holding using t+1 and t+3, respectively, the Kinetic Energy-
based model’s mean return is less than that of the S&P 500
index, while for 5-days holding, the Kinetic Energy-based

models is the Sharpe Ratio?* which is a financial metric that
measures the risk-adjusted return of an investment: the higher
the value, the better the risk-adjusted return. The formula for
the Sharpe Ratio is expressed in Definition 4.5.

Definition 4.5 Given the average return of a portfolio R),,
the risk-free return Ry, and the standard deviation of the port-
folio excess return (volatility) o, the Sharpe Ratio is calcu-
lated as follows

R, —Ry

s, (30)

SharpeRatio =

We compared the models’ Sharpe Ratios using the t+1
prediction (daily) and traded for 7 days, 10 days, and 30
days. The reason we used the t+1 prediction for the trad-
ing signal was because from Table 7, among all time hori-
zons (t+1, t+3, and t+5), the t+1 prediction for the Kinetic
Energy-based model produced the best mean returns. There-
fore, we wanted to compare the models in the scenario when
the Kinetic Energy-based model did at its best. Note that this
back testing procedure also assumes single-agent market us-
ing daily closing price as execution of price for all trades. To
find the value for the risk-free return Ry, we derived it from
the value of 4.37% or 0.0437 for the annual risk-free return
reported recently as of February 6, 2025 by the U.S. Depart-
ment of The Treasury>. Assuming there are 252 trading days
in a year?®, the daily risk-free return is about 0.0173. Table
9 shows the comparison for the models’ Sharpe Ratios when
traded for 7 days, 10 days, and 30 days on all S&P 500 stocks
using the t+1 prediction for generating buy and sell signals.
Note that the for the Kinetic Energy-based model, the results
are in the 95% confidence interval from 30 runs, following the
similar computation method from Definition 4.3 (the portfolio
or global Sharpe Ratio was calculated from the mean returns
of 500 stocks so the Central Limit Theorem applies, meaning
the distribution of the mean returns are approximately normal,
thus the computation for the 95% confidence interval applies).
Note that the models were evaluated on 7-days, 10-days, and
30-days into the test set.
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Table 9 Comparison of the models’ Sharpe Ratios when traded for 7

days, 10 days, and 30 days on all S&P 500 stocks using the t+1
prediction for generating buy and sell signals.

Model 7-days SR 10-days SR | 30-days SR

KE-based | (0.159, (0.0425, (0.0120,
0.166) 0.0492) 0.0141)

ARIMA -0.787 0.0494 -0.0537

(p.d.q)

Double 1.444 1.170 1.220

ES

ANN 0.2758 0.1591 0.132

According to the results shown in Table 9, the t+1 pre-
dictions made by ANN model overall resulted in the highest
Sharpe Ratios when used to trade for 7 days, 10 days, and
30 days. The t+1 predictions made by the Double Exponen-
tial Smoothing model overall resulted in the second highest
Sharpe Ratios when used to trade for 7 days, 10 days, and 30
days. When used to trade for 7 days and 30 days, the pre-
dictions of the Kinetic Energy-based model resulted in greater
Sharpe Ratios than those of the ARIMA(p,d,q) model.

Discussion

In this section, we discuss the strengths and weaknesses of our
stock closing price forecasting model.

Strengths

The first strength that our model has is its consideration of the
amount of trading volume. As mentioned, the trading volume
has an effect on the behavior of the stock price. The greater
the trading volume, the greater the kinetic energy, which likely
increases the stock price after some time. By using kinetic
energy, our model is able to incorporate such a relationship
between the trading volume and stock price to predict the fu-
ture prices. This exploitation of the kinetic energy explains the
better accuracy in our model’s predictions compared to that of
some of the other models when predicting the closing prices
for 1 day ahead.

The second advantage that our model has is its simplic-
ity. Our model relies on the idea of kinetic energy which
can be computed easily. The only variables needed to be esti-
mated are the future kinetic energy, the trading volume, and
the weight 8 for the weighted average between the Monte
Carlo simulation and the mean of the recent closing prices.
Our model also allows for tuning the number of simulations.
Given such simplicity and flexibility, traders can implement
this model with ease and with the ability to tune it.

‘Weaknesses

The first weakness that we observe in our model is its method
to calculate the future kinetic energy and the trading volume.
Since such calculations rely on random variables from the dis-
tribution of kinetic energy and trading volume themselves, the
prediction is not deterministic but rather stochastic, generat-
ing different results each time the simulations are run. The
number of simulations also influences the performance of the
model. In particular, increasing the number of simulations im-
proves the model’s performance by generating a more stable
estimation of future kinetic energy and trading volume. How-
ever, as the number of simulations increases, the time taken
to run them will also increase, which can hinder the trading
process in situations where high frequency trading is required.
Therefore, traders should take this trade-off into consideration
when tuning the model.

The second weakness that our Kinetic Energy-based model
has is its unreliability in predicting the closing prices on the
long time horizon. From the results in Section 4.2, it can
be seen that the model outperforms other traditional models
when forecasting closing prices for 1-day ahead. However, it
did worse than other models when forecasting closing prices
for 3-days and 5-days ahead. These results indicate that the
Kinetic Energy-based model is more applicable in predict-
ing short-term changes rather than long-term changes in clos-
ing price. For long trading periods, the Kinetic Energy-based
model underperforms the Double Exponential Smoothing and
ANN model in terms of Sharpe Ratios, even though the Ki-
netic Energy-based model outperforms the Double Exponen-
tial Smoothing and ANN model in terms of mean returns for
holding N-days. The reason is due to the fact that the Kinetic
Energy-based model predicts possible values of variables (exg
and e,,) from their past distributions and is stochastic, which
results in higher volatility. These results show that gener-
ally, while the Kinetic Energy-based model is better than some
other models at generating returns on trades, its returns are not
as stable as those of some other models. Therefore, using the
Kinetic Energy-based model, traders should take these char-
acteristics into consideration to decide whether they want to
trade for a short-term period or invest for a long-term period,
and whether they want to maximize the return or minimize the
risk.

Conclusion

In this research paper, we investigated the changing of the
S&P 500 index from December 6, 2023, to December 2,
2024. We then developed a model to predict the future value
of the stock closing price for the SP 500 companies based
on the idea of kinetic energy. Our model is evaluated with
the ARIMA(p,d,q), Double Exponential Smoothing, and ANN
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model using the mean absolute error (MAE) and the mean ab-
solute percentage error (MAPE). The models were then eval-
uated on the mean returns for 1-day, 3-days, and 5-days hold-
ing, using t+1, t+2, and t+3 predictions, respectively. Using
the t+1 predictions, the models were also evaluated using the
Sharpe Ratios for 7 days, 10 days, and 30 days of trading.

Overall, the S&P 500 index showed an upward trend with
slight fluctuation throughout the period. In forecasting future
stock closing prices for one day ahead, the Kinetic Energy-
based model resulted in higher accuracy than the other fore-
casting models. To be specific, in predicting the price the day
after the last date of the training set of the SP 500 stocks,
the Kinetic Energy-based model got MAEs and MAPEs in
their 95% confidence intervals of (2.187, 2.222) and (0.92%,
0.93%). In general, the Kinetic Energy-based model was bet-
ter at generating returns, while it underperformed some other
models in the stability of those returns. Therefore, from these
results, the Kinetic Energy-based model is generally better
for short-term forecasting, and for maximizing the returns on
trades, but it is not as good for long-term forecasting, and min-
imizing the risks that those returns have.

It is also worth noting that the algorithm used for evaluating
the model’s performance in terms of mean returns and Sharpe
Ratio was naive for generating signals. In other words, the
signals for buy and sell depended purely on whether the mod-
els predict a positive or negative change for the future prices.
Therefore, it is recommended that traders and researchers ex-
periment with and optimize some thresholds that can trigger
the signals for buy and sell more efficiently.
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Appendix

Below is the pseudocode for the KE-based model in predicting future prices
at time 7+ N.

with Regularization

Algorithm 1 Kinetic Energy Monte Carlo Forecas
Require: Historical prices P[0 7], volumes sl

number of simulations num_sim, regularization weight o € [0,1]
Ensure: Mean forecasted prices f’mm,"mgﬂ : N|
: Compute historical velocitices and kinetic cnergics:
2: fort =1to T do
vlt] « Plt] — Plt — 1|
4= KE[f] « 0.5 x mlt] x vft]*
- end for
- Compute historical pereent changes:
wfort=110T 1 do
KEt 1] KE[l
'-'Kh‘l” t W
wmlft 1] — m|t]

mlt|

. foreeast horizon N,

w

L3

emlt] €

10: end for
Fit distributions for pereent changes:
+ mean and std of exp

ey Tenn
e s P 4 mean and std of g,
Monte Carlo simulations:
for sim =1 to num_sim do
KBy ¢ KE[I
A
Pyrew - PIT]
19: for k=1to N do
3 Sample eK Eam ~ Distribution(fie, .. 0e, .}
Sample enteim ~ Distribution(je_ o)

KE ¢ (1 +eKEgm) % K Eim
23: 14— (1 + eMigim ) X Maim
2: Unert 4+ sign sampled from training data =

Pert + Ppren + Uner:

Store Puym|sim||[k] ¢ Praze

KBy ¢ KE, tagm ¢ 1 Pprew + Prest
end for
- cnd for
Compute mean forecast aecross simulations:
for k=1 to N do

5 1 s R
Lncanlk] ¢ ——o Ynimet Poimlsim] [k]

regularization: weighted average with last 5 historical

T B -
a6 F, Yimr_a Plil e use fewer if T < 5

Paugs ;
for k= 1to N do

Prncan_reglk] € 8 - Prgan[k] + (1 = 8) - Paugs
end for
a0: return Preanreg
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