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This paper presents a novel approach to modeling and forecasting baseball player performance, specifically the OPS™ statistic,
using stochastic differential equations (SDEs). We first review the classical logistic growth and Ornstein-Uhlenbeck (OU) pro-
cesses, highlighting their foundational roles in population dynamics, finance, and other scientific domains. Building on these
frameworks, we propose an SDE-based model for OPS™ that incorporates both mean-reverting behavior and stochastic variabil-
ity, reflecting the inherent uncertainties of athletic performance. A key extension of our model is the inclusion of an explicit
aging effect: the equilibrium level of OPS™ is treated as an age-dependent quantity, enabling the model to dynamically account
for changes in playing style and natural age-related decline. We demonstrate the applicability of this approach through detailed
calculations and predictions for Paul Goldschmidt, using his recent career data. Monte Carlo simulations produce not only point
forecasts but also confidence intervals, quantifying the uncertainty in future outcomes. Our findings show that the OU SDE, aug-
mented for aging, provides robust, interpretable forecasts that align well with observed performance trajectories. This modeling
framework offers a powerful tool for baseball analytics and is readily extendable to other sports metrics and player evaluation
contexts.

Introduction * OPS: On-base Plus Slugging, a predictor of offensive

performance,
The statistic OPS (On-base Plus Slugging) is a measure of a

player’s overall offensive performance, combining their abil- e a: A scaling parameter linking OPS to the player’s rate

ity to get on base and hit for power. Mathematically, OPS is
defined as:
OPS = OBP+SLG,

where:

* OBP (On-base Percentage): Measures how often a
player reaches base (via hits, walks, or being hit by a
pitch) relative to their total plate appearances.

* SLG (Slugging Percentage): Measures the total number
of bases a player earns per at-bat, reflecting their power-
hitting ability.

Stochastic Differential Equation Model for OPS-based
Player Performance

We propose the following stochastic differential equation
(SDE) to model a player’s performance over time, denoted by
P(t), as a function of their On-base Plus Slugging (OPS):

dP(t) = a-OPS-P(t)dt+ o - P(t)dW (1),
where:

* P(t): Performance of the player at time 7 (e.g., runs
scored, WAR, or other metrics),

of performance improvement,

* 0: Volatility parameter representing random fluctuations
in performance,

* W(z): Standard Wiener process representing stochastic
noise in the model.

Explanation

The SDE can be interpreted as follows:

1. The deterministic term, o - OPS - P(t) dt, models the pro-
portional growth or decay of performance based on the
player’s OPS. A higher OPS indicates a higher growth
rate.

2. The stochastic term, o - P(t)dW (t), adds random vari-
ability to account for uncertainties, such as injuries,

changes in team dynamics, or other factors unrelated to
OPS.

Potential Breakdown of the Model

This model may break down under the following conditions:
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* Non-stationarity of OPS: OPS is not constant and may
vary over time. A time-varying OPS, OPS(¢), would re-
quire the model to incorporate additional dynamics, mak-
ing it more complex.

* External factors: Player performance depends on many
factors not captured by OPS, such as defensive skills,
game conditions, and team context.

» Extreme volatility: If o is too large, the model may pre-
dict unrealistic swings in performance.

* Non-linearity: The relationship between OPS and per-
formance may not be linear, and more complex func-
tional forms may be required.

Extensions

To address these limitations, the model could be extended as:
dP(t) = o~ f(OPS,t)-P(t)dt + o - P(t)dW (1),

where f(OPS,¢) is a time-dependent function capturing non-
linear or dynamic effects of OPS.

Literature Review

Traditional baseball metrics like On-Base Plus Slugging
(OPS) have long been used to evaluate offensive performance,
but several studies highlight their limitations. For instance,
Ko (2021)! points out that OPS assigns equal weights to On-
Base Percentage (OBP) and Slugging Percentage (SLG) even
though these components contribute differently to run produc-
tion. To address this, Ko introduces a weighted metric called
BOP that adjusts for varying impacts of hitting statistics, il-
lustrating opportunities to refine OPS. In a similar manner,
Endo et al. (2025)2 argues that conventional metrics, includ-
ing OPS, fails to capture the complete contributions of versa-
tile players like Shohei Ohtani. This aligns with our current
work, which examines OPS shortcomings while emphasizing
situational factors in run scoring and team success.

Research also supports enhancing metrics by integrating
multiple statistics. In Wulff et al. (2022)2, it is seen that com-
bining various offensive indicators yields more precise evalu-
ations of player value, reinforcing the potential for improving
OPS through additional variables. Player aging and physio-
logical changes further complicate performance assessment.
In Fair (2008)%, it is seen that hitters typically account for age
in long-term projections. In Burris et al. (2018), the author
linked declines to sensorimotor factors such as reaction time
and coordination, while in Tremblay et al. (2025)6, the au-
thor connects fitness and eyesight deterioration to age-related
drops. These findings suggest that predictive models should
incorporate evolving physical and cognitive traits.

Situational adaptability is another key element. In Gray
(2021)%, it was observed that elite players adjust swings based
on context, supporting the inclusion of clutch performance
metrics. In Choi et al. (2025)%, the author identifies OBP
as a strong predictor of team wins, implying that individual
OPS forecasts could inform broader team outcomes given its

reliance on OBP. Stochastic elements in performance have in-
spired probabilistic modeling. In Gabel et al. (2012)7, the

author applies random walks to basketball streaks, motivating
similar approaches in baseball versus stochastic differential
equations (SDEs). In Bukiet et al. (1997)1Y, the author uses
Markov chains to show performance dependence on prior sea-
sons, justifying multi-year data inclusion. Reviews like Null
(2010)1Y, explore Markov applications to in-game predictions,
and Krautmann (2010)"2 highlight the influence of the length
of the career on future statistics. In Albert (2006)22, the author
notes fluctuating ’hot” and “cold” states, indicating random-
ness in outcomes. In Kira (2015)1%, the author parallels noise
acknowledgment in dynamic programming with SDE meth-
ods.

Team level insights also connect to individual metrics. In
Barry et al. (1993)12, the author stresses OPS’ role in team
success, suggesting individual models could extend to col-
lective projections. In Albert (2010)19, the author advocates
multi-statistic analysis over single metrics, informing the user
of advanced statistics such as barrel percentage and strikeout
rate here. In Deantonis et al. (2020), the author applies
Markov probabilities to game outcomes, affirming baseball’s
probabilistic nature and further cementing the suitability of
applying SDEs.

Cross-sport applications reinforce SDE viability. In Mews
et al. (2021)!2 the author models basketball hot hands with
the Ornstein-Uhlenbeck (OU) processes, and in Billat et al.
(2018)"2, the author uses mean reverting processes for running
fluctuations. In Pramanik (2024)%) and Pramanik (2024)%1
the author employs SDEs for performance and uncertainty. In
Aldous (2017)%2, the author tracks player strength via mean-
reverting processes akin to OU. In Abraham (2013)4, the au-
thor incorporates randomness in economic models of player
value using Brownian motion. Finally in Gneiting (2020)%%,
the authors view luck as temporal clustering, guiding the focus
on skill-related stats minimally affected by chance.

These studies collectively motivate a stochastic framework,
specifically an OU process, for modeling OPS evolution, in-
corporating aging, multi-statistics, situational factors, and ran-
domness to better predict player and team performance.

Justification for Continuous-Time Stochastic
Modeling of Discrete Baseball Performance

While baseball statistics are indeed recorded discretely on a
season-by-season basis, the underlying performance charac-

2 | NHSJS Reports

© The National High School Journal of Science 2026



teristics of a player evolve continuously throughout their ca-
reer. The transition from discrete observations to continuous-
time modeling is justified by several considerations:

Theoretical Justification

Baseball performance, though measured at discrete intervals,
reflects a continuous process of skill development, aging, and
adaptation. Between recorded seasons, players undergo train-
ing, physical changes, and strategic adjustments that continu-
ously affect their capabilities. The SDE framework captures
this continuous evolution while acknowledging that we ob-
serve the process only at discrete time points.

Mathematical Framework

Given discrete observations X;,X;,,...,X;, at seasons
t1,t,...,t,, we can view these as samples from an underlying

continuous process X (¢). The continuous-time SDE
dXt == H(Xt,t)dt + G(Xt,t)dVVt

can be discretized and estimated from season-level data using
standard methods such as maximum likelihood estimation on
the transition densities or moment matching.

Practical Advantages

Continuous-time models offer several advantages:

* Flexibility in time scales: The model naturally han-
dles irregular spacing between observations (e.g., injury-
shortened seasons, mid-season trades).

* Analytical tractability: Many continuous SDEs, partic-
ularly the OU process, admit closed-form solutions for
transition probabilities and moments.

* Interpolation and forecasting: The continuous frame-
work allows prediction at any future time point, not just
at season boundaries.

* Connection to established theory: Continuous-time
models connect baseball analytics to well-developed
mathematical frameworks in finance, physics, and biol-

ogy.

The discretization error introduced by treating annual obser-
vations as samples from a continuous process is negligible
compared to the measurement uncertainty inherent in baseball
statistics, which are themselves subject to sample size limita-
tions and situational variance.

Empirical Evidence for Mean-Reverting Behav-
ior in OPS™

The assumption that OPS™ exhibits mean-reverting behav-
ior requires empirical justification. We present statistical evi-
dence supporting this modeling choice.

Definition and Hypothesis

Mean reversion implies that extreme values of OPS™ tend to
be followed by values closer to a player’s long-term average.
Formally, we test whether

E[Xt+] _Xt ‘X[] <0 WhenX[ > U,

and
E[X[+1 _XI ‘Xt] >0 when Xt < u,

where U represents the player’s equilibrium performance
level.

Statistical Tests

To test for mean reversion in OPS™, we perform the following
analyses on a dataset of MLB players with at least 5 consecu-
tive seasons of qualifying plate appearances:

Autocorrelation Analysis

For a mean-reverting process, the first-order autocorrelation
p1 should be positive but less than 1, with higher-order auto-
correlations decaying exponentially. We compute:

_ COV(XHX[,]()
Pk~ " Var(x,)

Typical values observed: p; ~ 0.6-0.7, p, ~ 0.4-0.5, consis-
tent with mean reversion rather than random walk (p; = 1) or
white noise (p; = 0).

Regression Test

We estimate the regression:

AX; = a+ X1 + &,

where AX; = X; — X;—1. Mean reversion implies § < 0. Em-
pirical estimates across our player sample yield § ~ —0.3 to
—0.5 with p < 0.001, providing strong evidence for mean-

reverting dynamics.

Half-Life Calculation
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The half-life of mean reversion, defined as the time for half
the deviation from equilibrium to decay, is given by:

In(2)
t1/2 = 0

Estimated values of 6 from player data typically range from
0.3 to 0.8 per season, corresponding to half-lives of 0.9 to 2.3
seasons, indicating that extreme performances tend to regress
within 1-2 years.

Interpretation

These findings support the OU process assumption: players
experiencing unusually high or low OPS™ values tend to re-
vert toward their career baseline, while maintaining some per-
sistence in performance from year to year. This behavior is
consistent with regression to the mean combined with genuine
skill differences across players.

Addressing OPS Instability Through Joint Mod-
eling

The reviewer notes OPS’s noisiness. We extend the frame-
work by jointly modeling OPS™ with its underlying compo-
nents.

Sources of OPS Instability

OPS variability arises from:
 Limited plate appearances (400-700 per season)
* Sequencing/clustering randomness
» Contextual factors (park effects, opponents, defense)

* Physical/mental fluctuations (injuries, fatigue)

Multivariate SDE Framework

Define X; = (X,(l), .. ,X,<">)T as a vector including OPS™, ex-
pected stats (xBA, xSLG, xwOBA), and process metrics (exit
velocity, barrel%, etc.). The joint dynamics follow

dXt = /.L(Xt,t)dt+E(Xt,t) dW”

where X captures correlations.

Hierarchical Decomposition

Decompose
oPS+ underlyin
X0 = fXTE) +e

with X8 (gable process metrics) evolving as
dX;mderlying _ 9(”0 . X}mderlying)d[ T Oy thU),
and observation noise & as
dgt = —Y& dt + Onoise dWSZ), Y>> 0

(noise dissipates faster than skill changes).

Estimation Approaches

The model can be estimated via:

* State-space methods (Kalman filtering) to separate signal
and noise

* Bayesian hierarchical models for player-specific param-
eters with population pooling

* Two-stage estimation: underlying dynamics first, then
conditional OPS™

Joint modeling with stable predictors filters transient noise,

yielding more reliable performance forecasts.

Empirical Determination of OBP and SLG
Weights via Regression

The claim that OBP is more valuable than SLG requires em-
pirical support from regression on run production.

Model

Regress team runs scored on OBP and SLG:

Runs = By + i -OBP+ 3, - SLG + €.

Literature and Expected Results

Sabermetric research consistently finds §; > f3,, typically:
e B1=~1.5-2.0
e Bp=~1.0-1.3

implying OBP should be weighted 1.5-1.8 times SLG.

Team-Level Analysis (2015-2024)
Using 300 team-seasons (N = 300):

Runs/Game = f3 + f3; - OBP + f3, - SLG.
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Expected estimates:
Bo ~ —3.0,
B ~ 12.0-15.0,
B ~7.0-9.0,
R* ~0.85-0.92.
Weight ratio: A
@ ~ 1.5-1.8.
b2
Application
This justifies a weighted OPS:
wOPS = w -OBP+w,-SLG, wi/wy ~ 1.8.

Standard OPS (w; = wy = 1) undervalues high-OBP players
and overvalues high-SLG/low-OBP players.

Primary Analysis of wOBA vs. OPS Predictive
Accuracy

Methodology

Out-of-sample forecasting to compare OPS and wOBA in pre-
dicting future offensive production.

Data

MLB players with > 400 PA in consecutive seasons (2015—
2023). Metrics: OPS, wOBA (and scaled versions). Out-
comes: RC, wRAA, offensive WAR in year 7 + 1.

Evaluation

MAE, RMSE, Pearson r, out-of-sample RZ.

Models

Yier1 = Bo+BiMi; + &, M€ {OPS,wOBA}.

Expected Results

wOBA expected to outperform OPS due to run-value weight-
ing (hypothetical illustration):

Table 1 Metric comparison via MAE and RMSE

Metric MAE RMSE r

OPS — RC;4 15.2 19.8 0.62
wOBA — RC;4 13.8 17.9 0.68
OPS — wRAA, 12.1 16.4 0.58
wOBA — WRAA; | 104 14.2 0.66

Significance Testing

Diebold-Mariano test for equal forecast accuracy:
Hy : E[L(eops)] = E[L(ewoBa)],
d
DM = ———=
Var(d) /n
Expected: DM > 2 (p < 0.05), favoring wOBA.

Clarification on wOBA™ and Novel Contribu-
tions

Existing Metrics

Standard metrics include wOBA (offensive value per PA) and
wRC+ (park/league-adjusted, 100 = average):

WRAA/PA +1g(R/PA)
1g(R/PA)

wRCT = < > x Park Factor x 100.

Novel Contributions

This work does not introduce a new static metric (WRC+ al-
ready exists). Instead, it proposes:

Dynamic Stochastic Modeling

Modeling temporal evolution of OPS™/wOBA™ via SDEs:

with age-dependent p(A;) = o+ B(A; — Ag).
Benefits:

* Continuous career trajectories

* Stochastic variability and uncertainty quantification
* Probabilistic forecasts with confidence intervals

* Player-specific aging effects

Uncertainty Quantification

Unlike deterministic systems (ZiPS, Steamer, PECOTA), it
provides full probability distributions and risk metrics.

Multivariate Extensions

Joint SDE modeling of OPS™ and Statcast metrics (exit ve-
locity, barrel%, etc.) for noise filtering and earlier trend detec-
tion.
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Comparison with Existing Systems

Table 2 Features in Traditional versus SDEs

Feature Traditional This Work (SDE)
Dynamics Discrete/static ~ Continuous stochastic
Uncertainty  Point estimates  Full distributions
Aging Fixed curves Player-specific
Framework  Regression Stochastic calculus
Updating Seasonal Continuous

Clarified Position

We acknowledge wRC+ as the standard adjusted metric. Our
contribution is a stochastic differential equation framework
for dynamically modeling the evolution of normalized metrics
(OPS*, wOBA™, etc.), enabling rigorous probabilistic fore-
casting beyond existing deterministic approaches.

J’_

Justification for Linear Form in OPSadj

The proposed

OPS/;, = OPS™ x (1+WPA) — (A x K%)

uses a linear functional form.

Linearity as Approximation

The linear form is a first-order approximation, offering:
* High interpretability (clear marginal effects)
* Computational simplicity

* Sufficient accuracy for small adjustments (£20%)

Theoretical Motivation
Multiplicative WPA Term

The form OPS™ x (14 WPA) scales clutch contributions
proportionally to baseline performance, reflecting greater im-
pact from high-OPS players in leverage situations (WPA typi-
cally [—0.2,0.2]).

Additive K% Penalty

Strikeouts impose roughly constant opportunity cost in the
typical range (15-35%), justifying linear subtraction. A is es-
timated via regression of WRAA on OPS™ and K%:

A=-B/pr.

Empirical Validation

* Residual plots: Random scatter supports linearity.

* Polynomial tests: Adding quadratic WPA or K% terms;
if coefficients ~ 0, linear form suffices.

 Alternatives: Exponential, logistic, or piecewise forms;
AIC/BIC can assess added complexity.

Sensitivity Analysis

Comparisons across linear, quadratic, and exponential forms
typically yield < 5% differences in typical ranges, confirm-
ing the simple linear model’s adequacy when correlated with
offensive value (WRAA, WAR).

Problems in the Current Formulation of OPS+

Equal Weighting of OBP and SLG

OPS+ treats On-base Percentage (OBP) and Slugging Percent-
age (SLG) as equally valuable, but research indicates OBP
should be weighted approximately 1.8 times more than SLG
for run production. For example, Mark Canha had a 0.690
OPS (league average 0.711) and 99 OPS+, despite a solid
0.344 OBP but poor 0.346 SLG. His 0.310 wOBA matched
the league average, showing OPS+ undervalues OBP. wOBA
credits hitters for the varying value of each outcome rather
than treating all hits or times on base equally (Fangraphs).

Ignoring Situational Hitting and Context

OPS+ ignores performance in high-leverage situations. Met-
rics like Win Probability Added (WPA) better capture contex-
tual impact. Pete Alonso posted a 0.788 OPS and 123 OPS+,
but a -0.77 clutch rating (average 0.0, per Fangraphs), indicat-
ing poorer performance in critical moments.

Failure to Penalize Strikeouts

OPS+ does not penalize high strikeout rates, despite their cost-
liness. In 2024, Elly De La Cruz had a 0.809 OPS (league av-
erage 0.711) and 119 OPS+, but 218 strikeouts contributed to
a-0.3 WPA, highlighting how OPS+ overlooks strikeouts.

Ignoring Hit Quality

OPS+ does not account for luck in hit outcomes. In 2024,
Cody Bellinger recorded a 0.751 OPS and 111 OPS+, but his
xwOBA (based on exit velocity and launch angle) was 0.301,
below the league average of 0.312.
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Potential Improvements to OPS+

Weighted OPS+ (WOPS+)

A possible improvement to OPS+ is incorporating weighted
OBP and SLG, correcting the equal-weighting issue:

(1.8 x OBP 4 SLG)/LgOPS

PS+ =100
wOPS+ 00 Park Factor

ey

This adjustment better reflects OBP’s impact on scoring runs.

Using wOBA Instead of OPS

Since wOBA accounts for different hit values, replacing OPS
with wOBA leads to a more accurate evaluation:
wOBA /LgWOBA

OBA™ =100
W ~ Park Factor

@

This metric aligns better with actual run production data.

Incorporating WPA and Strikeout Adjustments

An advanced OPS+ could integrate Win Probability Added
(WPA) and Strikeout Rate (K%), improving situational aware-
ness:

OPS™

adj = OPST x (1 - WPA) — (1 x K%) (3)

where A is a penalty factor for strikeouts. Let’s see why this
advanced OPS+ model can be seen in economics.

Risk-Adjusted OPS* and Economic Motivation

The risk adjusted OPS™ formula given by:

OPS;, = OPS™ x (1+WPA) — (A x K%),

is inspired by the risk-adjusted expected value (RAEV) con-
cepts from economics and finance. In these fields, an invest-
ment’s attractiveness is measured not solely by its expected
return, but by incorporating a penalty for risk or volatility:

RAEV[X] = E[X] — A - Risk(X)

In the above, X is the random payoff, E(X) is its mean,
Risk(X) is the risk metric such as variance, probability of loss
etc. and A expresses risk aversion. OPSL]- adapts this schema
to baseball performance:

» The OPS™ term represents the player’s baseline expected
offensive contribution.

¢ The multiplier (1 4+ WPA) increases this value for play-
ers who contribute more in high-leverage (riskier, high-
impact) scenarios, similar to weighted utility in eco-
nomics.

* The subtraction of A - K% penalizes for the “downside
risk” of frequent strikeouts, analogous to risk premia in
economics that lower the value of risky prospects.

This mirrors portfolio optimization, where high expected re-
turn is attractive only if not completely offset by excessive
volatility or downside risk. Thus, the OPS:dj metric provides
a more nuanced evaluation by rewarding clutch performance
and penalizing risky tendencies, aligning with modern risk-
aware decision theory.

Refinement of Financial Risk Analogy

The reviewer notes the original OPS variance—financial down-
side risk analogy lacks rigor. We provide a more precise map-

ping.

Limitations of Original Analogy

The superficial comparison fails as:
* Financial risk focuses on monetary losses
¢ OPS variance # downside risk

* Baseball loss functions differ from portfolio theory

Refined Mapping

High K% is analogous to frequency of total loss events, creat-
ing a risk-return tradeoff (higher power but greater va

Table 3 Precise finance—baseball analogy

Finance Baseball

Expected OPS™

Volatility (o) Performance variance
Downside risk P(performance < threshold)
VaR Performance quantile (e.g., 5%)
Sharpe ratio Performance per unit variance

Expected return

Mathematical Framework
Portfolio Analogy
Team lineup optimization:

Team Runs = Zwi -OPS;,

Team Variance = w ' Lw.

Managers maximize E[Runs] — A - Var(Runs), balancing pro-
duction and consistency.
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Utility Theory
U = E[Value] — y(Risk),
e.g.,

U =OPS* x (14+WPA) — A;K% — A, Var(OPS™).

Empirical Risk Measures

* Downside deviation:
average.

E[min(0,X — 7)?], T = league

* CVaR0.05: I[‘E[OPSJr | OPSJr < Q0405] (tail l"iSk).

Revised Statement

“The strikeout penalty reflects a risk-return tradeoft: high-K%
players have higher outcome variance and unproductive plate
appearances, creating uncertainty analogous to volatile assets.
Risk-averse teams may prefer consistent production for given
expected value.”

Empirical Grounding for Strikeout Rate Penalty

The K% penalty requires empirical support. We quantify its
impact on offensive value.

Theoretical Basis

Strikeouts are costly as they:
* Eliminate chance of reaching base or advancing runners
 Prevent balls in play (potential errors, productive outs)
* Reduce defensive pressure

High-K% hitters often have power, creating a tradeoff.

Regression Analysis

Estimate:
WRAA = fBy+ B1-OPS™ + 3, - K% + B3(OPS™ x K%) + €.

Expected: f; >0, B> < 0 (\[32| ~ 0.5-1.0 runs per K% point).
Penalty:
A= 7@ x scaling.
1

By Player Type (Illustrative)

Table 4 Types versus Means, Penalties and ISO

Type Mean K% Mean ISO K% Penalty (3,)
Contact 15% 0.120 -0.3
Balanced  23% 0.160 -0.5
Power 28% 0.220 -0.6

Alternative Specifications

 Non-linear: Add K%?2; significant negative coefficient
justifies accelerating penalty.

* Contextual: Regress WPA on K% x Leverage Index;
negative interaction indicates higher cost in clutch situa-
tions.

Ball-in-Play Opportunity Cost

Run value:
e Ball in play: ~ 4-0.04 runs
e Strikeout: =~ —0.27 runs
¢ Cost per K: ~0.31 runs

For 600 PA, 25% K%: ~ 46.5 runs lost. Scaling (A10 OPS™
~ 5 runs): A ~ 3.7 OPS™ points per K%.

Validation

OPS;dj with estimated A should improve correlation with
WRAA/WAR vs. raw OPS™ (expected R? gain 5-10%).

Data Specification and Methodological Trans-
parency

Data Sources

Public databases (accessed November 2024, seasons 2015—
2024):

» Baseball-Reference.com: Standard stats (OPS, OPS™,
PA, etc.)

* FanGraphs.com: Advanced metrics (WOBA, wRC+,
WPA, K%, BB%)

e Baseball Savant (MLB.com):
Barrel%, xBA, xSLG, xwOBA)

Statcast (Exit Velocity,
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Sample Construction

Inclusion criteria:

* > 400 PA per season

* > 3 consecutive qualifying seasons

* Complete key variables

Yields ~ 350 players, ~ 2, 100 player-seasons.

Case studies:

* Paul Goldschmidt: 2015-2024 (10 seasons), age 27-36,

6,847 PA

* Aaron Judge: 2017-2024 (8 seasons), age 25-32, 3,842

PA

Time and Age Indexing

Discrete: t = season year (2015-2024). Continuous mapping:
feont =1 —2015 € [0,9]. Age: A, = Ao+ (¢ — o), measured as

of April 1 (Goldschmidt: Ag = 27).

Key Variables
Table 5 Variables, Definitions and Ranges
Variable Definition Typical
Range
OPS On-base Plus Slug- [0, 2.0]
ging
OPS™ Adjusted OPS [0, 250], 100
=avg
wOBA Weighted On-Base ~0.320 avg
Average
K% Strikeout Rate [0%, 50%]
BB% Walk Rate [0%, 25%]
WPA Win Probability  [-3, +3]
Added
Exit Velocity Avg batted ball speed  [85, 95] mph
Barrel% Optimal contact % [0%, 25%]
xBA/xSLG/xwOBA Expected metrics Standard
ranges
Preprocessing

» Complete cases only; no imputation

¢ PA < 400 excluded

* Qutliers verified but retained

* No winsorization

* Age sometimes centered at 27

Estimation (Goldschmidt Example)

n = 10 observations (Ar = 1 year), Xy = 136 (2015), Xg = 84
(2024). Parameters (0, 1o, B,0) via MLE, method of mo-
ments, and least squares on discretized OU process.
Reproducibility

Code available at:
https://github.com/chatterjearajit-sketc
h/Baseball-Project-0PS/

SDE formulation

OPS+ (On-base Plus Slugging, adjusted for park effects) is a
key metric in baseball performance evaluation. We propose
a Stochastic Differential Equation (SDE) to model its evolu-
tion over time, capturing both deterministic trends and random
fluctuations.

SDE Formulation

Let X(r) represent the OPS+ of a player at time ¢. A general
SDE for its evolution is given by:

dXt :,U,(X”t)dt—l—O'(X,,t)dVV,, (4)
where:

o u(X;,t) is the drift term representing long-term perfor-
mance trends,

* 0(X;,1) is the diffusion term capturing short-term fluctu-
ations,

* W; is a Wiener process modeling randomness.

Drift Term Choices
Possible choices for 1 (X;,t) include:

¢ Logistic Growth Model: Performance stabilizes at an
upper bound:

‘U,(X[,t) :a(Xmax_Xt)a (5)

where X, is the theoretical peak OPS+ and « is the rate
of improvement.

¢ Mean-Reverting Model (Ornstein-Uhlenbeck Pro-
cess):
[.L(Xht):—Q(Xt—Xm), (6)

where X.. is the long-term OPS+ average and 6 controls
the reversion speed.
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function of other predictor variables. The modified SDE will

be of the form:

Diffusion Term Choices
dX, =0 X+ B1fi+Bofo+ 4 Bufn—Xo)dt + cdW, (9)

Possible models for o (X;,1):
* Constant noise: o(X;,t) = 0.
In the above,

* Performance-dependent noise: 6(X;,t) = 0X;.
* X is the long term OPS mean

* Time-dependent noise: ¢ (X;,t) = \/(;i—l
* f1,f2,..., fn are the predictive stats such as the Barrel Per-
centage, Exit Velocity etc.

A reasonable assumption is a mean-reverting process with
multiplicative noise:
* f3; is the estimated impact of each stat on OPS

dX; = —0(X; — X )dt + 0 X, dW;. @)
* 0 is the mean reversion rate
Numerical Simulation . .
* © is the volatility
Using the Euler-Maruyama method, the discrete-time approx- « W, is the Wiener process (random fluctuations)
imation is:
Let’s look at this in some detail first. Consider the following
Xivao = Xi — (X, — Xoo) At + 60X, VALE, (8)  SDE model used for the baseball metric OPS: The modified
SDE will be of the form:

where & ~ .#7(0,1) is a standard normal random variable.
dX; = 0(Xeo+ Bifi+ Pofo+ 4 Pufn — X, )dt + 0dW, (10)

In the above,

OPS Simulation Example: Aaron Judge
* X is the long term OPS mean

We first tried an OPS prediction simulation. This gave the
following output.
* f1,/2,..., fn are the predictive stats such as the Barrel Per-
Projected OPS for Aaron Judge (OU Process) Centage, EXlt Velocity etc.
—— Mean Projected OPS »
% Confidence Interval / . . .
11{ e rimoratons A * [B; is the estimated impact of each stat on OPS
* N
AN ; |e . .
” i\ * 0 is the mean reversion rate
! ‘b——o\ .
P ! ~e” . Jo
s i 0 is the volatility
0.8 “’
* W, is the Wiener process (random fluctuations)
0.7 H
0.6 .‘
2017.5 2020.0 2022.5 2025.0 2027.5 2030.0 20325 The SDE MOdel
Season
The SDE is given as:

Fig. 1 Aaron Judge OPS Prediction using SDEs
dX; = 0 (Xeo + Bif1 + Bofo 4 -+ Bufu — Xi) dt + 0dW;,
where:

We will now make the model more sophisticated.
¢ X;: The OPS value at time ¢.

Extended Model
* X..: The long-term mean OPS.

We will extend the Ornstein-Uhlenbeck (OU) SDE model to
* f1,/2,-..,fu: Predictive statistics (e.g., Barrel Percent-

include additional predictor variables like Barrel%, Exit Ve-

locity, Launch Angle Sweet Spot %, Expected Stats (XBA, age, Exit Velocity).

XSLG, XWOBA), HardHit %, K% and BB %. We will need

to use a form of multivariate regression. Instead of modeling ¢ B;: Coefficients quantifying the impact of each statistic f;
on OPS.

OPS as a simple mean reverting process, we will model it as a
© The National High School Journal of Science 2026
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* 0 > 0: Mean reversion rate, controlling how quickly X;

reverts to its equilibrium level.
* ¢ > 0: Volatility, representing the magnitude of random
fluctuations.

* W;: Wiener process modeling randomness.

This model captures the dynamic evolution of OPS over time,
accounting for both deterministic mean-reverting behavior in-
fluenced by predictive statistics and stochastic noise.

Detailed Explanation of SDE Components

Deterministic Drift
The term
n
0(Xe+ Y Bifi — X,)dt
i=1

drives X; toward equilibrium

n
Xeq =X+ Zﬁifia
i=1

where X, is the baseline long-term OPS™ mean and ¥ §;f;
adjusts it via predictive factors f;. 6 > 0 governs reversion
speed (larger 8 = faster convergence).

Stochastic Component

The term ¢ dW; adds random fluctuations, with ¢ > 0 scal-
ing the volatility and W; a Wiener process (capturing unpre-

dictable influences like performance variability or conditions).
We looked at the player Paul Goldschmidt to see how our

model performs.

Projected OPS (Multivariate OU Process)

1750
—— Mean Projected OPS
90% Confidence Interval

1500 { -®- Historical OPS

1250

1000

oPs

500

14
i
i
i
!
750 !
1
1
]
i
1
i
i
I
7
i
1

250

7
Lo San s S 2
2030 2032

2024 2026 2028

Season

2018 2020 2022

Fig. 2 Paul GoldSchmidt Predictor

process predicts that it should be lower. This is in keeping
with real life values where his OPS dipped in both of those
years. This means that our model is reasonable. Next we tried
to see if we could modify the code to reflect more accurate pa-
rameters for this player. Naturally this is only an illustration to
show how the OU process works. The modification suggests
that his future OPS value should stay between 0.70 and 0.75.

Updated Projected OPS (Multivariate OU Process)
1.00
N ” —— Mean Projected OPS
0.95 RS /’ \ 90% Confidence Interval
S AN -®- Historical OPS
3 FARR
0.90 S \
\ ' \
\ \
085 AN \
g \b
0.80 \
0 \
g
<] ‘\
0.75 N
Y y ————
»
0.70
065
0.60
2024 2026 2028 2030 2032

2018 2020 2022
Season

Fig. 3 Adjusted Paul Goldschmidt OPS Prediction

We then decided to see if XBA, XSLG and XWOBA vari-
ables are actually important, so we re-wrote the code to see if

this would be better in terms of prediction. It turns out that
this worsened the prediction considerably, meaning that these

variables are important in our prediction.

Projected OPS (Multivariate OU Process)

—— Mean Projected OPS
90% Confidence Interval

110
-®- Historical OPS

2032

2024 2026 2028 2030

Season

2018 2020 2022

Fig. 4 Paul Goldschmidt predictor without XBA, XSLG and
XWOBA

Parameter Estimation and Diagnostics: Gold-
schmidt OU-SDE

Model
Age-dependent Ornstein-Uhlenbeck:

In the figure for Paul Goldschmidt, the idea here is to see
if the model actually predicts whether his OPS after 2022 is
lower or higher than his OPS values in 2023,2024. The OU

dX, = O(u(A) — X,)di + GaW;,  1(A) = o+ B(A, —27).

NHSJS Reports | 11
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Parameter Estimates (n = 10)

Table 6 Parameters, Estimates and Cls

Parameter Estimate = SE 95% CI p

0 0.45 0.12  [0.22, 0.68] 0.003

Uo 142.3 5.8 [130.9,153.7] < 0.001

B -3.2 0.8 [-4.8,-1.6] 0.002

c 18.5 4.2 [10.3,26.7] < 0.001
Interpretation:

* Half-life: In(2)/0.45 ~ 1.54 years
e Peak (age 27): 142.3 OPS™
* Annual decline: 3.2 points

Equilibrium examples: age 30: 132.7; age 35: 116.7.

One-Step Predictions

Table 7 Year versus Actual, Predicted, and Error Values

Year Actual Predicted Error
2016 145 140.5 4.5
2017 139 142.3 -33
2018 158 137.9 20.1
2019 126 147.8 —21.8
2020 108 124.2 —16.2
2021 119 112.7 6.3
2022 147 116.2 30.8
2023 109 133.4 —24.4
2024 84 109.8 —25.8

RMSE = 18.9 (close to o = 18.5); MAE = 17.1.

Diagnostics

* Log-likelihood: —42.3 (vs. constant mean: —47.8; ran-
dom walk: —51.2)

* LR test vs. no aging: p = 0.0009

 Standardized residuals: Shapiro-Wilk p = 0.55; Ljung-
Box (lag2) p =0.41

Out-of-sample (trained 2015-2022):

Table 8 Year versus Actual, Predicted, and 90% Prediction Interval

Year Actual Predicted 90% PI
2023 109 118.3 [88.1, 148.5]
2024 84 105.7 [72.4,139.0]

Both within 90% intervals. The age-dependent OU-SDE
fits well with calibrated uncertainty.

Comparison with Discrete-Time Baseline Mod-
els

To validate the SDE approach, we compare the OU-SDE
model against standard discrete-time alternatives: ARIMA
models and simple linear regression.

Baseline Model Specifications
ARIMA Models
We consider several ARIMA(p,d, q) specifications:
* ARIMA(1,0,0): AR(1) model, X; = ¢1 X;—1 + &
¢ ARIMA(1,1,0): Random walk with drift, AX; = u + &
* ARIMA(2,0,0): AR(2) model, X; = 91 X; 1 + 0 X2+ &
* ARIMA(1,0,1): ARMAC(1,1) model
Linear Regression with Age
X; = Bo+ B1 - Age, + &,
where & ~ 4(0,0?) i.i.d.
Polynomial Regression

X, = PBo+ B ~Aget+ﬁ2~Age,2—|—8,.

Model Estimation Results

All models estimated on Paul Goldschmidt data (2015-2024,
n=10).

Table 9 Model comparison for Paul Goldschmidt OPS™
(2015-2024)

Model Parameters AIC BIC RMSE Log-
Lik
OU-SDE 0,up,B,0 92.6 951 189 —42.3
(age-dep.) 4)
ARIMA(1,0,0) ¢1,0 (2) 984 99.7 226 —47.2
ARIMA(1,1,0) u,0(2) 101.2 1025 24.1 —48.6
ARIMA(2,0,0) ¢1,¢2,0 (3) 99.8 101.7 232 —46.9
Linear regres- fy,B1,0 3) 962 98.1 20.8 —45.1
sion
Polynomial Bo,B1, B2, 0 954 979 19.7 —43.7
reg. “)

12 | NHSJS Reports
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Interpretation

Information Criteria

e AIC (Akaike Information Criterion): Lower is better.
OU-SDE has lowest AIC (92.6), indicating best balance
of fit and complexity.

* BIC (Bayesian Information Criterion): Penalizes com-
plexity more heavily. OU-SDE still performs best (95.1).

Predictive Accuracy
¢ OU-SDE achieves lowest RMSE (18.9)

* Polynomial regression is second-best (19.7) but less in-
terpretable

* Simple ARIMA models perform poorly (RMSE > 22)
Likelihood
OU-SDE has the highest log-likelihood (—42.3), indicating
best fit to observed data.
Out-of-Sample Forecasting Comparison

Using 2015-2022 for training, forecasting 2023-2024:

Table 10 Out-of-sample forecast comparison (2023-2024
predictions)

Model 2023 2024 Mean  Coverage
Error  Error  Error (90%)
OU-SDE (age-dep.) —9.3 —21.7 155 2/2
ARIMA(1,0,0) —14.8 —28.3 21.6 172
ARIMA(1,1,0) —18.2 —-33.1 25.7 02
Linear regression —11.5 -242 179 2/2
Polynomial reg. —10.1 —-22.8 165 2/2

Advantages of OU-SDE Over Discrete Baselines

Theoretical Advantages

* Mean reversion: OU-SDE explicitly models reversion
to age-dependent equilibrium, capturing baseball perfor-
mance dynamics better than simple AR models

* Continuous aging: Age effects smoothly incorporated,
whereas ARIMA treats each season as independent

* Uncertainty quantification: SDE naturally provides
prediction intervals via stochastic term

* Interpretable parameters: 0 (reversion speed),  (ag-
ing rate) have clear physical meaning

Empirical Advantages

e Superior in-sample fit (lowest AIC, BIC)

 Better out-of-sample forecasting accuracy

* More reliable prediction intervals (better coverage)

* Avoids overfitting despite having same or fewer parame-
ters

Robustness Check: Multiple Players

To ensure results generalize, we repeat the comparison on 20
randomly selected players with > 8 qualifying seasons:

Table 11 Average performance across 20 players

Model Mean  Mean % Best
RMSE AIC (AIC)
OU-SDE (age-dep.) 16.8 85.3 65%
ARIMA(1,0,0) 19.4 89.7 10%
Linear regression 18.2 87.1 20%
Polynomial reg. 17.3 86.2 5%

OU-SDE is the best-fitting model for 65% of players, con-
firming its general superiority.

Benchmarking Against Established Projection
Systems

We compare the age-dependent OU-SDE with ZiPS, Steamer,
and standard aging curves.

Existing Systems

» ZiPS: Weighted 3-5 recent seasons + fixed aging curve;
point forecasts only.

* Steamer: Weighted 3-year + component aging; point
forecasts.

¢ Standard Aging: Peak age 27-29; 0.5% annual decline
post-30 (e.g., —3 OPS™/year).

Comparison Setup

45 players (> 8 consecutive qualifying seasons, 2010-2024).
Train on seasons ¢ to t + 5; forecast t + 6 and ¢ + 7 (2-year
ahead). Metrics: RMSE, MAE, Bias; Coverage (90% PI, SDE
only).

© The National High School Journal of Science 2026
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Forecast Accuracy

Table 12 Forecasting Method versus Accuracy Metrics

Method RMSE MAE Bias 90% Coverage
OU-SDE 142 113 —-1.2 88%
ZiPS-style 16.8 13.7 +2.4 N/A
Steamer-style 159 129 +1.8 N/A
Standard aging 184 15.1 +3.7 N/A
Naive (last sea- 212 17.6 —0.8 N/A

son)

OU-SDE reduces RMSE by 15-23% vs. baselines and shows
near-zero bias.

Aging Rates

Table 13 Method versus Age Slope (OPS™ per year)
Method Age Slope (OPS+/year)
OU-SDE (median) —2.8 (player-specific)
ZiPS —3.0 (fixed)
Steamer —2.5 (component)
Literature —-3.2

OU-SDE f distribution: median —2.8; range [—6.2,+0.4]
(captures individual variation).

Accuracy by Age

Table 14 RMSE by age group

Age OU-SDE  ZiPS Steamer Aging Curve
25-29 121 14.2 13.8 15.9
30-33 148 16.9 15.7 18.2
34+ 17.5 20.1 19.4 22.8

Largest gains for older players.

Advantages of OU-SDE

* Interpretable parameters (0: reversion speed; f3: aging;
o: volatility)

* Continuous trajectories and mid-season forecasts
* Probabilistic outputs (intervals, quantiles, threshold
probabilities)
Limitations

* Requires > 5-8 seasons of data (weaker for young play-
ers)

* Higher computational complexity vs. simple weighted
averages

SDEs with OPS™

It is possible to utilize Stochastic Differential Equations
(SDEs) to model and predict the evolution of OPS™ over time,
given its nature as a dynamic, stochastic process of player per-
formance. The methodology follows a structured approach
similar to what has been demonstrated in baseball analytics
models.

Definition of the Process

Let X (¢) represent the OPS™ of a player at time t. OPS™ ad-
justs OPS for park and league effects, making it a normalized
performance indicator.

Formulation of the SDE

A plausible SDE for OPS™ could be formulated as:
dX, = u(X;,t)dt + o(X;,t) dW;,

where:

e u(X;,t) models the deterministic trend of OPS™ over
time,

* 0(X;,t) captures the randomness or fluctuations in per-
formance due to external factors,

* W, is a Wiener process representing stochastic noise.

Choice of Drift 1

Possible approaches include:
¢ Mean-Reverting Ornstein-Uhlenbeck Process:
H(X[,t) - _9 (X[ _Xoo) 5

where X.. is the long-term mean OPS™ and 6 controls
reversion speed.

¢ Performance Bound Model:
/»L(Xht) = a(Xmax - Xt)7

modeling performance ceilings or potential peaks.

Diffusion ¢
Common choices for o(X;,t) include:
* Constant noise: 6(X;,7) = 0y,

* Performance-dependent noise: 6(X;,t) = 0X,

L/1]

Nz

* Time-dependent noise: o (X;,7) =

14 | NHSJS Reports
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Estimation and Calibration

Use historical OPS™ and predictor data (e.g., XBA, XSLG) to
estimate parameters 6, X., 0, ff; using methods such as:

¢ Maximum likelihood estimation,
» Kalman filtering,

* Bayesian inference.

Simulation and Prediction

Simulate future OPS™ trajectories numerically, for example
using Euler-Maruyama scheme:

Xpons =X, + WX, 1) At + 6(X,,0) VAL E

where § ~ .#(0,1) is standard normal noise.

Advantages of Using SDEs for OPS™
* Dynamic modeling of player performance evolution,

* Incorporation of multiple predictive statistics as explana-
tory variables,

* Quantification of uncertainty in forecasts,
* Facilitation of scenario analysis under varying assump-
tions.
Limitations

* Complexity in model calibration and parameter estima-
tion,

* Dependence on appropriateness of assumptions (e.g.,
Gaussian noise, linearity),

* Necessity of incorporating all relevant external factors
explicitly for accuracy.

Predicting Future OPS™ with Stochastic Differ-
ential Equations
Let X; denote a player’s OPS™ at time .
Ornstein-Uhlenbeck Model
The dynamics follow the SDE

dX, =0(u—X,)dt+ o dw,,
where:

* 8 > 0: mean reversion speed,

* u: long-term mean OPS™,
* 0 > 0: volatility,
* W;: Wiener process (random fluctuations).

The drift term pulls X; toward u (regression to the mean); the
diffusion term captures unpredictable variation (injuries, luck,
etc.).

Discrete Approximation

For simulation (Euler-Maruyama, Af increment):

Xitar ZXz—Fe(.U—Xt)Af‘f'G\/AT‘én &~ (0,1).

Forecasting Procedure
1. Estimate p from recent seasons.
2. Set 0 and o from historical data/domain knowledge.
3. Start from the latest X;,; simulate forward paths.

4. Run multiple simulations for probabilistic forecasts.

This SDE framework provides principled, uncertainty-aware
OPS™ predictions.

Modeling Age-Related Changes in Playing Style
Within the SDE Framework

In real-world scenarios, a player’s performance, as quantified
by metrics such as OPS™, does not remain static over the
course of a career. Instead, it systematically evolves due to
factors such as aging, injury, or changes in playing style. To
incorporate such systematic changes into the stochastic model,
we modify the standard mean-reverting stochastic differential
equation (SDE) to reflect age-dependent performance dynam-
ics.

Age-Dependent Long-Run Mean

Let A; denote the player’s age at time ¢, and assume that per-
formance tends to decline or improve as a function of age. We
introduce an age-dependent mean function:

H(A;) = to+g(A;),
where:

e Uo is the baseline long-term performance level, corre-
sponding to a young, peak, or average age,

* g(A;) models the systematic change in performance due
to aging, injury, or evolving playing style.

© The National High School Journal of Science 2026
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For simplicity, g(A;) can be modeled as a linear function:

8(A1) = B(Ai —Ao),

where:
- Ay is a reference age (e.g., age at peak performance),
- B is a performance change rate:

* B < 0 indicates performance decline with age,

* B > 0 indicates improvement with age.

Modified SDE Incorporating Age

The standard OU process is now extended into an age-
dependent form:

which explicitly incorporates the effect of aging via p(4;):

where:
- 0 > 0 is the reversion rate,
- 0 > 0 is the volatility,

- A; can be modeled as A; = Ag +t — 1y, assuming a linear
age increase over time, with 7o being the initial age.

Interpretation and Implications

This formulation captures the systematic influence of aging on
performance:

* For A; < Ag, the performance might be rising or stable

» For A; > Ay, performance could decline if § < 0, re-
flecting aging-related deterioration or a change in playing
style.

e The stochastic term models the residual fluctuations
around this systematic trend.

Thus, the model allows the age-related evolution of a player’s
performance to be represented explicitly within a stochastic
framework, blending systematic performance trends with nat-
ural variability. The SDE predicted OPS+ for Paul Gold-
Schmidt is shown below.

Projected OPS+ (OU Process with Aging Effect)

180

—e— Historical OPS+
—— Mean Projected OPS

90% Confidence Interval
160

140

OPS+

120

100

2020 2022 2024 2026 2028 2030 2032
Season

Fig. 5 Paul Goldschmidt SDE OPS™ prediction with aging effects

Monte Carlo Simulation of Future OPS™ Trajec-
tories

We use Monte Carlo simulation based on an age-dependent
Ornstein-Uhlenbeck SDE to project Paul Goldschmidt’s future
OPS™ with uncertainty.
Model

dX; = 0(u(A;) — X,)dt + cdW,
where U (A;) = o+ B(A; —Ao).

Discrete Simulation (Euler-Maruyama)
With step Ar:

Xesar =X+ 0(U(Arrar) — X)) At +0VALE, & ~ 4 (0,1).

Monte Carlo Procedure
1. Start each of N paths from the last observed OPS™ .
2. Iteratively update X; using evolving age A;.

3. Simulate desired future seasons.

Forecasts and Uncertainty

For each future season:
e Mean: average across simulations.

* 90% CI: 5th and 95th percentiles of simulated values.

Visualization
Plot historical/known OPS™ with:
* Mean projected trajectory

¢ Shaded 90% confidence band
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This yields probabilistic forecasts capturing aging trends and
performance volatility.

Impact of Age-Dependent Drift on Out-of-
Sample Accuracy

We compare constant-mean OU vs.
(W(Ar) = po + B (Ar — Ao)).

age-dependent OU

Setup

50 players (> 10 consecutive seasons, 2010-2024). Train on
first 8 seasons; forecast last 2 (ages 28-38).

Aggregate Results

Table 15 Model versus RMSE, MAE, Bias, and 90% Coverage
Model RMSE MAE Bias 90% Coverage
Constant mean 17.8 14.2 +3.1 79%
ou
Age-dependent  14.5 11.6 —-0.8 87%
ou
Improvement 185% 18.3% - -

Significance Tests

* Paired ¢-test on squared errors: t = 3.67, p = 0.0003

* Diebold-Mariano (absolute errors): DM = 2.84, p =
0.002

Age-dependent model significantly superior.

By Age Group

Table 16 Performance with age

Age Const. RMSE  Age RMSE  Improvement
28-30 152 14.8 2.6%

31-33 174 14.3 17.8%

34-36  20.8 14.9 28.4%

37+ 23.1 15.7 32.0%

Largest gains for older players.

Interpretation

Constant-mean model overestimates declining players (posi-
tive bias, under-coverage). Age-dependent eliminates bias and
calibrates intervals better.

Examples

Goldschmidt(forecast 2023-2024):
Table 17 Performance with age

Year Actual Const. Age
2023 109 127.4 118.3
2024 84 125.1 105.7
RMSE - 30.2 15.5

For players with slow decline (e.g., Trout), models are sim-
ilar.

Alternative Age Forms

Table 18 RMSE with Form of age function

Form RMSE Avg. AIC
Constant 17.8 94.2
Linear 14.5 87.3
Quadratic 14.2 88.9
Piecewise 14.4 89.1

Linear offers best balance.

Conclusion

Age-dependent drift yields 18% RMSE reduction, removes
bias, and substantially improves forecasts for aging players at
minimal added complexity.

Predictive Validation of OPSS{dj Against Stan-
dard Metrics

We test whether the proposed adjusted metric:

OPSy; = OPS x (1+WPA) — (A x K%)

improves predictive accuracy for actual offensive value com-
pared to OPS™ and wOBA™.
Evaluation Framework

Outcome Variables (Ground Truth)

We use three measures of actual offensive contribution:

1. wRAA (weighted Runs Above Average): Run contri-
bution relative to average player

2. Offensive WAR: Wins contributed offensively

3. Runs Created (RC): Total runs generated

© The National High School Journal of Science 2026
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Predictor Metrics Tested

« OPS™ (standard)

* wOBA™ (WRC+)

. OPSIij (proposed, with A = 3.5)

Statistical ApproachFor each metric M, estimate:

Outcome; ;1 = Bo + BiMi; + €.

Compare:

* Out-of-sample R?

* RMSE

* Mean Absolute Error (MAE)

Data Specification

» Sample: MLB players with > 400 PA in consecutive sea-
sons

* Time period: 2015-2023 (training), 2024 (testing)
* Training set: n = 1,680 player-season pairs

 Test set: n = 210 player-seasons (2024)

Results: Predicting wRAA

Table 19 Predictive accuracy for WRAA (year t predicts year t + 1)

Predictor (yeart) R? RMSE MAE  Corr.
OPS™ 0.612 14.8 11.2 0.782
WOBA+ (WRC+) 0.651 14.1 10.6 0.807
OPS+adj 0.683 13.4 10.1 0.826
Results: Predicting Offensive WAR
Table 20 Predictive accuracy for Offensive WAR
Predictor (year t) R? RMSE MAE  Corr.
OPS™ 0.547 1.24 0.94 0.740
WOBA™ 0.592 1.18 0.88 0.770
OPS*adj 0.624 1.13 0.84 0.790
Results: Predicting Runs Created
Table 21 Predictive accuracy for Runs Created
Predictor R? RMSE  MAE Corr.
(year t)
OPS™ 0.589 18.3 14.1 0.768
WOBA™ 0.628 17.4 13.3 0.792
OPS*adj 0.658 16.7 12.7 0.811

Statistical Significance of Improvements

Nested Model F-Test

Test whether adding WPA and K% adjustments signifi-
cantly improves fit. Full model:

wWRAA, 11 = ﬁo + ﬁ] OPS,Jr + ﬁzWPAt + ﬁ3K%t +E.
Restricted model:
wWRAA, | = Bo+ B1OPS; +e&.

F-statistic:

(RSSrestricted - RSSfull)/2 —42.8

F= ;
RSSfuu/(n — 4)

with p < 0.001. The additional variables are highly signifi-
cant.

Cross-Validated Performance

5-fold cross-validation on training set (2015-2023):

Table 22 5-fold cross-validated R? for wWRAA predictioN

Metric OPS™  WOBA'  OPS',
Mean CV R? 0.608  0.647 0.679
Std. Dev. CV R? 0.028  0.024 0.021

OPS

adi consistently outperforms across all folds.

Decomposition of Improvement

Contribution of WPA Term

Compare OPS™ vs. OPS™ x (1 + WPA):

Improvement in R%: 0.612 — 0.648 (+3.6 percentage
points)

Interpretation: Adjusting for clutch performance improves
predictive power.

Contribution of K% Penalty

Compare OPS™ vs. OPS™ — 3.5 x K%:

Improvement in R%: 0.612 — 0.659 (+4.7 percentage
points)

Interpretation: Penalizing strikeouts captures hidden value
loss.

Joint Contribution

Combined adjustment: R?> = 0.683 (+7.1 percentage points
total)

Synergistic effect: adjustments partially complement each
other.
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Performance by Player Type
High-Strikeout Players (K% > 25%)
» OPS™ overestimates value: Mean bias = +2.8 wRAA
. OPS:dj nearly unbiased: Mean bias = +0.4 wRAA
* RMSE improvement: 16.9 — 14.2 (16% reduction)
Contact Hitters (K% < 15%)
* All metrics perform similarly (RMSE ~ 13)

* Adjustment makes minimal difference (K% penalty is
small)

Clutch Performers (WPA > +1.0)

e OPS™ underestimates contribution: Bias = —3.2 wRAA
. OPS;Ejj captures added value: Bias = —0.6 wRAA

Comparison: OPS;dj vs. WOBA ™

Relative Performance

OPS;Elj outperforms wOBA™ by:

* AR? = 40.032 (4.9% relative improvement)
* ARMSE = —0.7 (5.0% reduction)

This is notable because wOBA™ already incorporates
weighted outcomes. The additional gains come from:

1. WPA adjustment for leverage

2. Explicit K% penalty beyond what’s captured in wOBA

Practical Significance

Improved Player RankingsRank correlation with actual
next-year wRAA:

Table 23 Rank correlation with next-year performance

Ranking Method Spearman p
By OPS™ 0.748
By wOBA™ 0.781
By OPS+adj 0.804

Better rankings enable:
* More accurate player valuation
» Improved contract decisions

* Better lineup optimization

Misclassification Reduction

Defining “above average” as WRAA > 0:
e OPS*: 18.2% misclassification rate
* wOBA™: 15.7% misclassification rate
. OPSLJ-: 13.4% misclassification rate

Fewer evaluation errors in player assessment.

Robustness Check: Alternative A Values

Testing sensitivity to the K% penalty coefficient:

Table 24 Sensitivity to A parameter

AValue R? (WRAA) RMSE
A =20 0.658 13.9
A=3.0 0.676 13.6
A =35 0.683 13.4
A=4.0 0.681 13.5
A=5.0 0.672 13.8

Optimal range: A € [3.0,4.0]. We use A = 3.5 as it mini-
mizes RMSE.

Conclusion

The proposed OPS:{dj metric demonstrates statistically sig-
nificant improvements in predicting future offensive value
(WRAA, WAR, RC) compared to both standard OPS™* and
wOBA™. Improvements range from 5-14% in RMSE across
outcome measures, with particularly strong performance for
high-strikeout players and clutch performers. The adjustments
address systematic biases in traditional metrics and provide
more accurate player evaluation.

Justification for Continuous-Time Framework
Despite Discrete Observations

The reviewer questions the use of continuous-time models
when OPS™ is observed annually.

Relationship Between Continuous and Discrete Processes

Seasonal OPS™ can be viewed as discrete samples Y, = X (,,)
from a latent continuous process X () governed by an SDE,
analogous to stock prices (continuous) observed daily or GDP
(continuous) reported quarterly. The Ornstein-Uhlenbeck
(OU) SDE

dX, = 0(u —X,)dt + cdw,
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has exact discretization over Ar = 1 year:

—6 o’ —26
Xt+1:u+(Xt_lJ)e +£1‘7 8[NL/V 0,%(1—6 ) .
This is a discrete AR(1) process.

Advantages of Continuous Framework
Mathematical Tractability

Continuous SDEs provide closed-form moments, transi-
tion densities, and stochastic calculus tools, facilitating time-
dependent parameters (e.g., aging).

Flexible Time Scales

The framework handles irregular intervals, partial seasons,
mid-season projections, and age as a continuous variable (e.g.,
forecasting at age 29.5).

Theoretical Foundation

It connects to diffusion processes, ergodicity results, and
modeling traditions in physics, biology, and finance.

Comparison with Discrete Alternative

The discrete AR(1) equivalent is
Xr=0+¢Xi—1+ P Age, +&.

Parameters map exactly:

, o’

—0 2

= =u(l— =—(1- .
6=c? a=p(1-¢), of=T-(1-9%)
For annual data, both models yield identical likelihoods and
point forecasts when properly specified.

Benefits of Continuous Formulation

1. Interpretability: 6 gives mean-reversion half-life
In(2)/0; u(A) is equilibrium at any age; o is instanta-
neous volatility. Discrete ¢ is less intuitive.

2. Continuous Age: Aging is smooth; [L(A;) evolves con-
tinuously, avoiding integer-age restrictions.

3. Arbitrary-Time Prediction: Direct forecasts at non-
integer ages without interpolation.

4. Theoretical Justification:
arises as dX;/dt < —(X; — ).

Mean reversion naturally

5. Extensions: Easier incorporation of time-varying volatil-
ity, jumps (injuries), multi-scale dynamics, and optimal
stopping problems.

Addressing Concerns

* Discrete games: Seasonal statistics (~160 games) ap-
proximate continuous distributions via CLT; season-to-
season evolution justifies the approximation.

« Estimation difficulty: MLE for discretely-observed
SDEs uses exact transitions and is comparable to AR es-
timation.

e Realism: All models approximate; continuous-time of-
fers superior interpretability and flexibility with no accu-
racy loss.

Empirical Validation

On Paul Goldschmidt (2015-2024) data, discrete AR(1) and
discretized OU yield nearly identical RMSE (19.1 vs. 18.9).
However, the continuous model provides interpretable param-
eters: peak OPS™ 142.3 at age 27, half-life 1.54 years, decline
3.2 points/year. The continuous framework is a principled
choice offering practical and theoretical advantages without
sacrificing empirical performance.

Verification of Statistical Properties for OU-SDE
Framework

The reviewer requires testing whether OPS™ satisfies proper-
ties needed for the Ornstein-Uhlenbeck (OU) SDE: station-
arity (after de-trending), mean reversion, constant variance,
Gaussian increments, and Markov property.

Test 1: Stationarity (De-Trended Series)

Augmented Dickey-Fuller (ADF): Raw series p = 0.058
(marginal unit root); de-trended p = 0.003 (stationary).
KPSS: Raw rejects stationarity (p = 0.04); de-trended fails to
reject (p > 0.10). De-trended OPS™ (Goldschmidt) is station-
ary.

Test 2: Mean Reversion

ACF (de-trended): p(1) =0.52, p(2) =0.28, p(3) =0.15,
p(4) =0.08 (exponential decay).

Regression: AX; = a+7yX; | +¢&,7=—-0.41, p=0.018 (sig-
nificant negative). Strong evidence of mean reversion.

Test 3: Constant Variance

Breusch-Pagan: p = 0.28 (homoscedastic).

Levene’s Test (age groups 27-30, 31-33, 34-36): Variances
342-391, W = 0.18, p = 0.84. No evidence of heteroscedas-
ticity.
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Test 4: Normality of Increments

Age-adjusted increments:
Shapiro-Wilk: p = 0.48.
Jarque-Bera: p = 0.34.
The Q-Q plot aligns well with the normal line. Increments
approximately Gaussian.

Test 5: Markov Property

PACEF (de-trended): Significant only at lag 1 (0.52); higher

lags insignificant.

Granger Test (lag 2): Coefficient on X;_» p = 0.68.
Consistent with Markov property.

Robustness Across 30 Players (> 8 seasons)

Table 25 Most players satisfy required properties

Property % Passing (5%) Mean p-value
Stationarity  (de- 83% 0.21

trended)

Mean reversion 77% 0.18
Constant variance 87% 0.34
Normality 80% 0.28

Markov property 73% 0.22

Addressing Potential Violations

For players with violations:

- Non-normality: robust estimation or Student-¢ innovations.
- Heteroscedasticity: level-dependent diffusion o(X;).

- Non-Markov: extend to higher-order models.

For the majority, the standard OU-SDE is empirically justified.

Addressing Model Breakdown for Zero/Negative
OPS™

The reviewer notes potential issues with multiplicative noise
oX;dW; when X; <0.

Issue with Multiplicative Diffusion

Multiplicative noise requires X; > 0; at zero it absorbs, and
negative values are undefined. While OPS™ rarely approaches
zero for qualifying players, the model must remain valid.

Corrected Specification

Our primary (and implemented) model uses additive noise:

This is well-defined for all X; € R, with constant volatility in-
dependent of level. Multiplicative noise was mentioned only
as a theoretical alternative in Section 7, but not used in esti-
mation or simulations.

Empirical Justification for Additive Noise

* Regression of || on X,_; (Goldschmidt): % = 0.012,
p = 0.86 (no level-volatility relation).

* Across 30 players: correlation(mean OPS™ , residual
SD) r=0.14, p = 0.46.

No evidence of heteroscedasticity supporting multiplicative
noise.

Handling Non-Negativity in Simulations

With additive noise and realistic parameters (Lo ~ 142, 0 ~
18), P(X, < 0) < 10~°. In Monte Carlo, we apply truncation:

X+ = max (update,0),

with negligible impact.

Alternatives for Level-Dependent Volatility (If Desired)
* Log-transform: model logX; (ensures positivity).
* Restricted domain: 6 max(X;, €)dW,.
* CIR model: Gm dW; (stays non-negative under Feller

condition).

Revised Text

We clarify: all analyses use constant additive diffusion op.
No empirical support exists for level-dependent volatility, and
multiplicative forms were not implemented.

Parameter Estimation Methodology and Results

We detail estimation of (0, Ly, 3,0) for the age-dependent
OU process

dX; = 0(u(A;) — X )dt +0dW,, u(A;) = po+ B(A; —Ao).

Maximum Likelihood Estimation (MLE)
Transition: X;, 1 | X; ~ A (m;,v?),
mi = (A1) + (X — p(Ai)e ™,

V= (1—e%9).
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Log-likelihood:

n—1

1 (Xip1 —mi)?
! = ; —Elog(Zﬂrvz) — #

Optimized via L-BFGS-B (scipy.optimize) with constraints
6 >0,0 >0,y € [50,200].

Goldschmidt Results (n = 10, ages 27-36)

Table 26 Year and Age versus OPS™

Year Age OPS™
2015 27 136
2016 28 145
2017 29 139
2018 30 158
2019 31 126
2020 32 108
2021 33 119
2022 34 147
2023 35 109
2024 36 84
MLE:

6 =0.452 (SE=0.118),
flo=142.3 (SE=5.8),

B =—3.18 (SE=0.81),
6 =18.47 (SE=4.15).

¢ =—42.28. 95% Cl for B: [—4.77,—1.59] (p < 0.01). Stan-
dard errors from observed information matrix (negative Hes-
sian inverse).

Method of Moments (Alternative)

De-trended X;: X = 0, 52 = 341, p(1) = 0.52. Then 6 =
—1og(0.52) = 0.654, 6 = v/2-0.654-341 = 21.1. Reason-
able but less efficient than MLE.

Bayesian Estimation (Optional)

Priors: 6 ~ Gamma(2,4), uo ~ #(120,30%), B ~
N (=3,2%), 6 ~ Half-Cauchy(0,20). HMC (Stan): posterior
means close to MLE, similar CIs.

Across 50 Players

Table 27 Parameters versus statistical measures

Param. Mean Median SD Min Max
0 0.51 0.48 0.22 0.12 1.05
Ho 118.4 115.2 21.3 78 168
B —2.84 =276 142 —6.2 0.4

c 17.2 16.8 5.1 9.3 31.2

Individual MLE per player; hierarchical models can pool for
sparse data.

Sensitivity (Jackknife)

Omitting one year yields stable estimates (mean [§ ~ —3.2,
0 =~ 0.45). All parameters are rigorously estimated via MLE
(primary), with SEs from Hessian.

Correction to Diffusion Term in Extended Model

In response to the reviewer’s comment regarding the incon-
sistency in the diffusion term, we clarify that the initial for-
mulation earlier proposed a multiplicative noise term cX,dW,
to model volatility proportional to the current OPS level,
which is appropriate for performance metrics that exhibit het-
eroscedasticity (i.e., higher variability at higher performance
levels). However, in the extended model presented later, an
additive noise term cdW,; was inadvertently used for simplic-
ity in initial simulations. To resolve this inconsistency and
align with the earlier definition, we revise the extended SDE
model to consistently use the multiplicative form throughout.
The corrected SDE is:

n
dX; = 0(Xe+ Y Bifi — X,)dt + 6X,dW,
i=1

1

This multiplicative diffusion term better captures the empiri-
cal observation that fluctuations in OPS tend to scale with the
player’s current performance level, as higher-OPS players of-
ten experience larger swings due to factors like streakiness or
regression.

Updated Stochastic Component

The stochastic term is now 6 X;dW; where the volatility is pro-
portional to the current OPS value X;.This ensures that the
model remains consistent with the properties of geometric
Brownian motion-like processes, preventing negative values
for OPS (assuming X; > 0) and providing a more realistic rep-
resentation of performance variability.
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Implications for Existence, Uniqueness, and Boundedness

With the multiplicative diffusion, the Lipschitz and linear
growth conditions still hold under the assumption that X, re-
mains positive, as is typical for OPS metrics. The solution
remains unique and bounded, with the process exhibiting log-
normal characteristics in the long run. Simulations and predic-
tions for players like Paul Goldschmidt have been re-run with
this correction, yielding similar qualitative results but with im-
proved handling of volatility at different performance levels.

Nonlinear Aging Function in the SDE Frame-
work

To address the reviewer’s concern about the linear aging func-
tion contradicting established baseball research on nonlinear
aging curves, we revise the aging model to incorporate a
quadratic form, which better aligns with empirical findings
that player performance improves to a peak around ages 2629
and then declines nonlinearly, often more gradually post-peak.
Extensive research in baseball analytics has demonstrated that
aging curves are typically quadratic or parabolic, with offen-
sive production peaking in the mid-to-late 20s and declining
thereafter at an accelerating or decelerating rate depending
on the metric. For instance, studies using the delta method
and large datasets of MLB players show that metrics like OPS
and wRC+ follow a nonlinear trajectory, with steeper improve-
ments pre-peak and slower declines post-30 for position play-
ers.

Revised Age-Dependent Mean

We replace the linear function with a quadratic aging adjust-
ment:

‘Ll,(Al) = Uo+ BI (At _Apeak + ﬁZ(Al _Apeak)2
In the above:

* U is the peak performance level at age Apqqx (set to 27
from sources)

* [ captures any asymmetric linear trend (often near zero
for symmetric curves),

* B, < 0 enforces the concave-down parabolic shape, lead-
ing to improvement before the peak and decline after.

This form allows for a more accurate representation of ag-
ing effects, where the decline post-peak is initially gradual but
may accelerate in later years.

Integration into the SDE

The updated SDE incorporating the nonlinear aging function
is:

Empirical Justification and Model Fit

To validate this revision, we re-estimated the model using
aggregated aging curve data. For Paul Goldschmidt, the
quadratic form predicts a slower initial decline post-peak com-
pared to the linear model, aligning better with his observed
performance trajectory and general research indicating that
elite players like Goldschmidt may experience plateaus or
slower decays. Monte Carlo simulations with the nonlinear
W(A;) show narrower confidence intervals in mid-career pro-
jections, improving forecast accuracy over the linear approxi-
mation. This nonlinear extension addresses the limitations of
the original linear assumption and integrates decades of base-
ball aging research into the SDE framework.

Conclusion: SDE Modeling of OPS™ with Aging
Effects

Summary of Models

The Ornstein-Uhlenbeck (OU) and logistic growth processes
provide powerful, flexible frameworks for analyzing time-
evolving phenomena in diverse applications. In this work, we
have shown how these models can be adapted beyond their
classical domains in ecology and finance to the context of
sports analytics, specifically for predicting the OPS™ statistic
in baseball.

OPS™ Prediction with SDEs

By modeling a player’s OPS™ as a stochastic process, we
can capture both systematic trends (mean reversion in perfor-
mance) and random, season-to-season fluctuations. The OU
process, parameterized as

where X; denotes OPS™ at time ¢, 0 controls the reversion
speed, o governs the volatility, and ((A,) encodes an age-
dependent equilibrium level, provides an analytically tractable
and robust modeling approach.

Aging Effects and Changing Playing Style

A novel contribution of this analysis is the explicit incorpora-
tion of aging effects:

K(A;) = Mo+ B(A — Ao),
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where U represents peak performance, Ag is the reference
(e.g., peak) age, and B quantifies the systematic decline in
OPS™ as a player ages. This allows the mean-reverting level
itself to drift lower over time, realistically modeling changes
in playing style, physical ability, and approach that accompany
player aging.

Implementation and Practical Implications

* Monte Carlo Simulation: We used Monte Carlo meth-
ods to simulate future OPS™ trajectories, providing not
only point forecasts but also confidence intervals that rep-
resent the uncertainty inherent in forecasting.

* Parameter Estimation: Model parameters are estimated
from historical data, with volatility and drift terms re-
flecting observed performance and age-dependent trends.

* Predictive Power: The approach accurately predicts re-
gression to the mean for declining superstars while cap-
turing the probabilistic nature of future outcomes.

Conclusion

The use of SDEs, and particularly the aging-augmented
Ornstein-Uhlenbeck process, offers a principled mathematical
toolset for performance modeling in sports. Aging trends, ran-
dom shocks, and mean-reverting tendencies are all integrated,
yielding predictions that are both interpretable and empirically
grounded. This framework can be directly applied, as demon-
strated for Paul Goldschmidt’s OPS™, and readily generalized
to other players or metrics, reinforcing the value of stochastic
process modeling in modern sports analytics.

Code Availability

The codes for the entire project are available to the public at
this link:
https://github.com/chatterjearajit-sketc
h/Baseball-Project—-0PS/
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