ARTICLE https://nhsjs.com/

Genetic Neural Network Architecture Optimization: A Hybrid Evolu-
tionary and Bayesian Approach

Ansh Agrawal'

Received June 19, 2025
Accepted January 16, 2026
Electronic access January 31, 2026

Designing optimal neural network architectures remains a challenging problem in deep learning due to the vast and highly struc-
tured search space of possible configurations. Traditional approaches such as grid search, random search, and reinforcement
learning—based neural architecture search (NAS) often require extensive computational resources or substantial human interven-
tion. This work proposes a hybrid optimization framework that combines genetic algorithms (GA) for exploring diverse neural
network architectures with Bayesian optimization for fine-tuning hyperparameters. Using the MNIST dataset as a benchmark,
neural networks are encoded as genomes and evolved through selection, crossover, and mutation, after which Bayesian optimiza-
tion refines the most promising architectures. Experimental results demonstrate that the proposed hybrid approach achieves strong
validation accuracy and competitive training efficiency relative to manual tuning, random search, and standalone Bayesian opti-
mization, with consistent performance observed across multiple runs. Additionally, the evolutionary process discovers compact,
high-performing architectures without manual design heuristics. These findings highlight the potential of combining evolutionary
computation with probabilistic optimization to streamline neural architecture design in computationally feasible settings. Future
work will extend this framework to more complex datasets and investigate its applicability to transformer-based architectures.

Introduction

Neural networks have driven significant advances in artifi-
cial intelligence (Al), enabling breakthroughs in areas such
as image recognition, natural language processing, and au-
tonomous systems. Despite these successes, designing an ef-
fective neural network architecture remains a challenging and
time-consuming task. Model performance is highly sensi-
tive to architectural and training hyperparameters, including
the number of layers, neuron allocation, activation functions,
dropout rates, and optimization strategies. Selecting an ap-
propriate combination of these parameters is traditionally per-
formed through manual tuning, which relies heavily on expert
intuition and extensive trial-and-error, often leading to subop-
timal or non-reproducible results.

To address these challenges, researchers have increasingly
turned to automated approaches for neural architecture opti-
mization, commonly referred to as Neural Architecture Search
(NAS). NAS aims to reduce human intervention by systemat-
ically exploring the space of possible architectures to identify
high-performing models. While NAS has shown promise in
improving performance and reducing design effort, many ex-
isting methods remain computationally expensive or difficult
to scale, particularly for researchers without access to large
GPU clusters.

U TThomas Jefferson High School for Science and Technology

Existing Optimization Methods

Several established approaches have been proposed for opti-
mizing neural network architectures, each with distinct advan-
tages and limitations:

* Grid Search exhaustively evaluates predefined combina-
tions of hyperparameters. Although comprehensive, grid
search scales poorly as the dimensionality of the search
space increases, rendering it impractical for modern deep
learning architectures.

* Random Search samples hyperparameters uniformly at
random. This approach is often more efficient than grid
search and can yield competitive results, but it lacks
guided exploration and may fail to consistently identify
high-performing architectures.

Bayesian Optimization addresses some of these limi-
tations by constructing a probabilistic model of the ob-
jective function and using it to guide the search toward
promising regions of the hyperparameter space. While
effective for low-dimensional and continuous parame-
ter spaces, Bayesian optimization struggles with high-
dimensional, discrete, or structured search spaces, such
as those encountered in neural architecture design.

Reinforcement Learning—based NAS formulates archi-
tecture search as a sequential decision-making problem,

© The National High School Journal of Science 2026

NHSJS Reports | 1



where a controller network proposes architectures and re-
ceives feedback based on performance. Although capa-
ble of discovering highly competitive models, reinforce-
ment learning—based NAS methods often require sub-
stantial computational resources, limiting their accessi-
bility.

Genetic Algorithms: A Novel Approach

Evolutionary algorithms, and genetic algorithms (GA) in par-
ticular, provide an alternative paradigm for neural architecture
optimization. Inspired by biological evolution, GA operate on
populations of candidate solutions that evolve over successive
generations through selection, crossover, and mutation. This
population-based search enables efficient exploration of com-
plex, discrete, and highly structured search spaces. Genetic
algorithms are well suited to neural architecture search be-
cause they can naturally encode architectural components as
genomes and apply evolutionary operators to explore diverse
design choices. Unlike purely random methods, GA lever-
age information from prior evaluations to guide the search
process, while their stochastic nature helps prevent premature
convergence to local optima. However, a known limitation of
GA-based NAS is that, while effective at exploring architec-
tural structures, they may converge slowly when fine-tuning
continuous hyperparameters such as learning rates or dropout
probabilities.

Our Contribution

This work proposes a hybrid optimization framework that
combines the complementary strengths of genetic algorithms
and Bayesian optimization to address the limitations of exist-
ing NAS approaches. The framework operates in two stages:

1. Genetic Search: A genetic algorithm is used to ex-
plore a diverse set of neural network architectures. Net-
works are represented as genomes encoding both struc-
tural and training parameters, and evolutionary operators
iteratively refine the population based on validation per-
formance and training efficiency.

2. Bayesian Fine-Tuning: Once high-performing architec-
tures have been identified through evolutionary search,
Bayesian optimization is applied to refine their hyperpa-
rameters, enabling more efficient convergence to well-
performing configurations.

By integrating these two stages, the proposed approach bal-
ances exploration of the architectural search space with ex-
ploitation of promising configurations, while remaining com-
putationally feasible on modest hardware.

Hypothesis and Goals

We hypothesize that a hybrid GA-Bayesian optimization
framework can achieve competitive performance relative to
traditional tuning methods while reducing the need for exten-
sive manual intervention. Specifically, the goals of this work
are to:

¢ Demonstrate that genetic algorithms can effectively ex-
plore neural network architecture spaces and identify
high-performing configurations.

» Show that Bayesian fine-tuning provides measurable im-
provements when applied to evolved architectures.

e Compare the hybrid approach against manual tuning,
random search, and standalone Bayesian optimization in
terms of accuracy and training efficiency.

 Evaluate the consistency of performance across multiple
runs to assess robustness.

Through these contributions, this research aims to advance the
development of scalable and accessible automated methods
for neural architecture optimization.

Background and Related Work

Automated optimization of neural network architectures has
emerged as a central research direction within the broader field
of Automated Machine Learning (AutoML). As deep learn-
ing models have grown in complexity, manually designing ar-
chitectures that balance performance, efficiency, and gener-
alization has become increasingly challenging. This section
reviews prior work in Neural Architecture Search (NAS), ge-
netic algorithms for optimization, and evolutionary neural net-
works, situating the proposed hybrid framework within the ex-
isting literature.

Neural Architecture Search (NAS)

Neural Architecture Search (NAS) focuses on automating the
design of neural network architectures by exploring large
and structured search spaces with minimal human interven-
tion. Traditional deep learning workflows rely heavily on ex-
pert intuition to determine architectural components such as
depth, width, activation functions, and training hyperparam-
eters. NAS methods aim to reduce this reliance by system-
atically evaluating candidate architectures based on empirical
performance.

Early reinforcement learning—based NAS approaches
demonstrated the feasibility of automated architecture design

2 | NHSJS Reports

© The National High School Journal of Science 2026



but required significant computational resources”. Compre-

hensive surveys of NAS methods further categorize these ap-
proaches into reinforcement learning—based, gradient-based,
and evolutionary strategies”.

Early NAS approaches predominantly relied on reinforce-
ment learning (RL), in which a controller network sequen-
tially generates architectural decisions and receives rewards
based on validation accuracy. Pioneering work by Zoph and
Le demonstrated that RL-based NAS could discover architec-
tures competitive with hand-designed models. However, such
approaches often require extensive computational resources,
sometimes involving thousands of GPU hours, which limits
their practicality for many researchers.

To mitigate computational demands, gradient-based NAS
methods have been proposed. Differentiable Architecture
Search (DARTS), for example, relaxes the discrete architec-
ture search problem into a continuous optimization problem,
enabling gradient-based updates=. While significantly faster
than RL-based methods, gradient-based NAS techniques can
suffer from optimization instability, sensitivity to hyperparam-
eters, and performance degradation due to overfitting to the
validation set. Parameter-sharing approaches further reduced
computational cost by reusing weights across candidate archi-
tectures™.

More recently, evolutionary NAS methods have gained at-
tention as a flexible and computationally feasible alternative.
These approaches evolve populations of architectures using
evolutionary operators, enabling parallel exploration of di-
verse designs without requiring differentiable search spaces
or complex controllers.

Genetic Algorithms in Al

Genetic algorithms (GA) are a class of evolutionary compu-
tation techniques inspired by the principles of natural selec-
tion. GA operate on populations of candidate solutions, itera-
tively applying selection, crossover, and mutation to improve
fitness with respect to a defined objective function. Due to
their stochastic and population-based nature, GA are partic-
ularly effective in navigating large, discrete, and non-convex
search spaces. In artificial intelligence, GA have been suc-
cessfully applied to optimization problems in robotics, con-
trol systems, game playing, and hyperparameter tuning. Their
ability to maintain diversity within the population helps miti-
gate premature convergence, a common challenge in complex
optimization landscapes. Moreover, GA do not require gra-
dient information, making them well suited for problems in-
volving discrete or categorical variables. Despite these ad-
vantages, GA are sometimes criticized for slow convergence
when optimizing continuous parameters. This limitation mo-
tivates hybrid approaches that combine GA-based exploration
with more sample-efficient optimization techniques.

Evolutionary Neural Networks: Prior Research

The application of evolutionary algorithms to neural networks
dates back several decades. Early work explored evolving net-
work weights and topologies simultaneously, laying the foun-
dation for modern neuroevolution techniques. One influential
method, NeuroEvolution of Augmenting Topologies (NEAT),
introduced mechanisms for evolving both network structure
and parameters while preserving innovation through specia-
tion".

Additional evolutionary approaches have explored evolv-
ing both weights and architectures at scale, demonstrating that
evolutionary strategies can remain competitive with gradient-
based methods®. More recent work has further formalized
neuroevolution as a scalable paradigm for deep learning model
design'”.

More recent studies have extended evolutionary methods to
deep neural networks. Genetic CNN approaches demonstrated
that evolving convolutional architectures could achieve com-
petitive performance relative to RL-based NAS methods with
reduced computational cost. Large-scale evolutionary ap-
proaches have further shown that evolutionary algorithms can
discover high-performing architectures on challenging bench-
marks, albeit often at substantial computational expense.

 Stanley & Miikkulainen (2002) introduced NeuroEvo-
lution of Augmenting Topologies (NEAT), an approach
that evolves both network weights and architectures.
NEAT showed that evolving neural structures could out-
perform manually designed models in certain tasks>.

e Real et al. developed Large-Scale Evolution (LSE), a
genetic algorithm that evolved convolutional neural net-
works (CNNs) to achieve state-of-the-art accuracy on
ImageNet. However, LSE required substantial com-
putational resources, taking weeks to train on high-

performance hardware®.

* Xie & Yuille proposed Genetic CNN, which evolved
CNN architectures using mutation and crossover opera-
tions?. Their approach demonstrated competitive perfor-
mance with RL-based NAS methods while being compu-
tationally less expensive.

While these works highlight the effectiveness of evolution-
ary NAS, many evolutionary approaches focus primarily on
architectural exploration and rely on limited or heuristic-based
hyperparameter tuning. As a result, the full performance po-
tential of evolved architectures may not be realized without
additional refinement.

Comparison of Optimization Techniques

Each NAS methodology presents distinct trade-offs in terms of
search efficiency, flexibility, and computational requirements.

© The National High School Journal of Science 2026

NHSJS Reports |3



* Grid Search provides exhaustive coverage of predefined
hyperparameter combinations but becomes infeasible as
the search space grows.

* Random Search improves scalability and simplicity but
lacks informed guidance.

* Bayesian Optimization offers sample-efficient explo-
ration of continuous hyperparameter spaces but struggles
with high-dimensional and structured architectural vari-
ables.

* Reinforcement Learning-based NAS can produce
state-of-the-art architectures but often requires pro-
hibitive computational resources.

* Genetic Algorithms naturally handle structured and dis-
crete search spaces, enabling flexible exploration of ar-
chitectures, though they may benefit from complemen-
tary fine-tuning mechanisms.

Hardware-aware and resource-efficient NAS methods have
also been proposed to reduce search cost, such as Proxyless-
NAS, which directly optimizes architectures on target hard-
ware constraints'’. Bayesian optimization frameworks such
as BOHB further combine model-based search with multi-
fidelity evaluation to improve scalability'l. These trade-offs
motivate hybrid strategies that leverage the strengths of multi-
ple optimization paradigms.

Positioning of This Work

Building on prior research in evolutionary NAS and proba-
bilistic optimization, this work adopts a hybrid approach that
combines genetic algorithms for architecture exploration with
Bayesian optimization for hyperparameter refinement. By
separating the tasks of structural discovery and fine-tuning,
the proposed framework aims to achieve strong performance
while maintaining computational feasibility. Unlike purely
evolutionary or purely Bayesian methods, the hybrid strategy
allows the search process to efficiently explore diverse archi-
tectural configurations before concentrating computational ef-
fort on refining the most promising candidates. This design
choice aligns with practical constraints and supports repro-
ducible experimentation on widely used benchmarks.

Methodology

This section describes the proposed hybrid optimization
framework, including dataset preprocessing, genetic algo-
rithm-based architecture evolution, Bayesian hyperparameter
fine-tuning, and implementation details. The methodology is
designed to balance architectural exploration and hyperparam-
eter refinement while remaining computationally feasible.

Dataset and Preprocessing

DatasetThe MNIST dataset is used as a benchmark to eval-
uate the proposed neural architecture optimization framework.
MNIST consists of 70,000 grayscale images of handwritten
digits (0-9), each of size 28x28 pixels. The dataset is split
into 60,000 training samples and 10,000 test samples, provid-
ing a standardized benchmark for evaluating neural network
performance. MNIST is chosen due to its widespread use in
neural architecture search research and its suitability for rapid
experimentation, allowing controlled evaluation of optimiza-
tion strategies without excessive computational overhead.

Data NormalizationInput image pixel values are normal-
ized by scaling their intensities from the range [0, 255] to [0,
1]. Normalization ensures numerical stability during training
and improves convergence behavior by maintaining consistent
feature scales across inputs.

One-Hot Encoding

Class labels corresponding to digits 0-9 are converted into
one-hot encoded vectors. This representation enables the use
of categorical cross-entropy loss for multi-class classification.

Data Augmentation

No data augmentation is applied in the current experiments.
Given the simplicity of the MNIST dataset, augmentation is
not necessary to achieve high performance. However, aug-
mentation strategies such as rotation or translation could be
explored in future work when extending the framework to
more complex datasets.

Genetic Algorithm for Neural Network Evolution

Genetic algorithms (GA) are employed to explore the space of
candidate neural network architectures. Each candidate net-
work is treated as an individual in a population, and architec-
tures evolve over multiple generations based on fitness-driven
selection.

Genome Representation

Each neural network architecture is encoded as a dictionary-
based genome comprising both architectural and training hy-
perparameters:

* Number of layers: Integer in the range [2, 6]

* Neurons per layer: Selected from {16, 32, 64, 128, 256,
512}

* Activation functions: Chosen from {ReLU, Tanh, Sig-
moid, ELU}

* Dropout rate: Continuous value in the range [0.0, 0.6]

¢ Learning rate:
0.0005, 0.0001}

Selected from {0.01, 0.005, 0.001,

4 | NHSJS Reports

© The National High School Journal of Science 2026



* Batch size: Selected from {8, 16, 32, 64, 128}
* Optimizer: One of {Adam, SGD, RMSprop, Adagrad}
* Epochs: Integer in the range [5, 15]

This representation enables flexible encoding of both discrete
and continuous parameters, allowing the genetic algorithm to
explore a diverse architecture space.

Initial Population Generation

The initial population consists of a mixture of randomly
sampled architectures and curated baseline architectures.
Specifically, a portion of the population is initialized using
randomly generated genomes, while the remainder is seeded
with manually designed baseline networks. This hybrid ini-
tialization strategy balances early exploration with conver-
gence stability.

Selection Mechanism

A tournament selection strategy with tournament size 3 is
used to select individuals for reproduction. Tournament se-
lection provides a balance between exploration and exploita-
tion by favoring high-performing individuals while preserving
population diversity.

Crossover Operator

A layer-wise crossover mechanism is employed to recom-
bine architectural components from two parent networks. For
list-valued genome attributes (e.g., neurons per layer, activa-
tion functions), elements are exchanged on a per-layer ba-
sis. Integer-valued hyperparameters (e.g., number of layers,
batch size, epochs) are combined using rounded averaging,
while continuous parameters (e.g., dropout rate, learning rate)
are averaged directly. This crossover strategy preserves ar-
chitectural validity while enabling meaningful inheritance of
parental traits.

Mutation Strategy

Mutation introduces stochastic variation into the population
and helps prevent premature convergence. Each genome is
subject to mutation based on predefined probabilities assigned
to individual hyperparameters. Each mutation operation is ap-
plied with a predefined probability, and adaptive scaling is
used to increase mutation rates when population fitness stag-
nates across successive generations. Mutations may include:

* Adjusting learning rate

* Changing activation functions
* Modifying dropout rates

* Altering batch size

* Adding or removing network layers

An adaptive mutation rate is used, increasing mutation prob-
ability when population fitness stagnates over successive gen-
erations. This encourages exploration when progress slows.

Fitness Function

Each candidate architecture is evaluated using a fitness
function that balances predictive performance and computa-
tional efficiency:

FitnessScore = ValidationAccuracy — A x TrainingTime
(1)
where A is a penalty factor controlling the trade-off between
accuracy and training cost. This formulation discourages ar-
chitectures that achieve marginal accuracy gains at the ex-
pense of excessive training time.

Fitness Score vs Generations (Illustrative)

070
065

0.60

25 5.0 75 10.0 125 150 17.5 200
Generation

Fig. 1 Fitness Score vs Generations (Illustrative). Fitness score
progression across generations. This figure illustrates the evolution
of the average fitness score over successive generations of the
genetic algorithm. The upward trend demonstrates that the
population progressively improves in terms of the combined
objective of validation accuracy and training efficiency, indicating
effective exploration and refinement of candidate architectures.

Bayesian Fine-Tuning

Following genetic evolution, Bayesian optimization is applied
to further refine the hyperparameters of top-performing archi-
tectures identified by the GA.

Why Bayesian Optimization?

Bayesian optimization is well suited for fine-tuning con-
tinuous and categorical hyperparameters in a sample-efficient
manner. By modeling the objective function probabilistically,
Bayesian optimization can prioritize promising configurations
while minimizing the number of expensive evaluations.

Search Space for Bayesian Optimization

The Bayesian fine-tuning stage operates within a con-
strained hyperparameter space informed by the genetic algo-
rithm’s output. Parameters subject to optimization include:

© The National High School Journal of Science 2026

NHSJS Reports | 5



e Number of layers

* Neurons per layer

* Activation function

* Dropout rate, Learning rate
* Optimizer

* Batch size

* Epochs

Constraining the Bayesian search space based on GA results
improves efficiency and reduces unnecessary exploration of
suboptimal regions.

Defining the Objective Function

The Bayesian optimization objective function minimizes
the negative validation accuracy of the model. This formu-
lation directly aligns Bayesian search with the goal of maxi-
mizing predictive performance.

Implementation Details

Software and Libraries
The framework is implemented using the following li-
braries:

e TensorFlow/Keras (Neural network construction and
training)

* DEAP (Genetic algorithm implementation)
* Scikit-Optimize (Bayesian optimization)
* Matplotlib/Seaborn (Visualization of results)

Hardware Specifications

Experiments are conducted on consumer-grade hardware to
ensure computational feasibility. All models are trained using
CPU execution, demonstrating that the proposed framework
can be applied without specialized hardware accelerators.

Reproducibility Considerations

To ensure reproducibility, the following measures are taken:
fixed random seeds across experiments, explicitly defined
search spaces and mutation probabilities, and consistent train-
ing procedures across methods. Results are reported as aver-
ages across multiple runs to account for stochastic variability
inherent in evolutionary algorithms.

Experiments and Results

This section presents the experimental setup and empiri-
cal evaluation of the proposed hybrid genetic algorithm and
Bayesian optimization framework. Performance is assessed
in terms of validation accuracy, training time, and fitness pro-
gression, with comparisons against established baseline meth-
ods.

Experimental Setup

Experiments are conducted on the MNIST dataset to evaluate
the effectiveness of the proposed neural architecture optimiza-
tion framework. MNIST serves as a widely used benchmark
for neural architecture search due to its standardized splits and
relatively low computational cost, allowing controlled com-
parison across optimization strategies. All experiments follow
a consistent training protocol, including fixed preprocessing
steps, identical loss functions, and uniform evaluation met-
rics. To account for the stochastic nature of evolutionary al-
gorithms, results are averaged across multiple runs where ap-
plicable, and variability is discussed qualitatively where nu-
merical variance is not explicitly reported. Due to the stochas-
tic nature of evolutionary optimization, experiments were re-
peated across multiple runs to assess consistency. While quan-
titative variance metrics such as standard deviation are not
visualized explicitly in the figures, performance trends were
consistent across runs, and conclusions are drawn based on
averaged behavior rather than single-run outcomes.

Baseline Methods

To contextualize the performance of the proposed approach,
the following baseline methods are evaluated:

* Hand-Tuned CNN: A manually designed neural net-
work architecture constructed using common design
heuristics.

* Random Search NAS: Architectures are randomly sam-
pled from the defined search space and evaluated inde-
pendently.

¢ Bayesian Optimization: Hyperparameters are opti-
mized using Bayesian optimization without evolutionary
architecture search.

* Genetic Algorithm + Bayesian Fine-Tuning: The pro-
posed hybrid method, combining evolutionary architec-
ture exploration with Bayesian hyperparameter refine-
ment.

These baselines represent a range of commonly used neural ar-
chitecture optimization strategies, from manual design to au-
tomated probabilistic search.

6 | NHSJS Reports

© The National High School Journal of Science 2026



Accuracy Improvements Over Generations

The genetic algorithm progressively improves network per-
formance across generations by selecting and refining high-
performing architectures. Validation accuracy trends demon-
strate consistent improvement as evolution proceeds.

00 Accuracy vs Generations (Illustrative Trend)

Validation Accuracy (%)

75 10.0 125 150 17.5 200
Generation

Fig. 2 Accuracy vs Generations (Illustrative Trend). Validation
accuracy versus generation. This figure shows the progression of
validation accuracy across successive generations of the genetic
algorithm. The upward trend indicates that evolutionary
optimization effectively refines network architectures over time,
leading to improved predictive performance.

Comparison with Standard Architectures

The final architectures produced by the hybrid GA-Bayesian
approach are compared against baseline methods in terms of
validation accuracy.

1000 Accuracy Comparison Across Methods

9.0

Validation Accuracy (%)

97.0

opin GArBY st

csian

o A
Jand T = - geared ™
ot Rand

Bay

Fig. 3 Accuracy Comparison Across Methods. Validation
accuracy comparison across methods. The proposed GA + Bayesian
fine-tuning approach achieves higher validation accuracy compared
to hand-tuned architectures, random search, and standalone
Bayesian optimization, demonstrating the benefit of combining
evolutionary exploration with probabilistic fine-tuning.

Time Complexity Analysis

In addition to accuracy, computational efficiency is a key con-
sideration in neural architecture search. Training time is evalu-
ated for each method to assess practical feasibility. Unless oth-
erwise specified, training time refers to the cumulative wall-
clock time required to train candidate models and does not
include the full architecture search overhead.

Training Time Comparison Across Methods

50
m l I
N WNAS

sesian
5+ By
GM

N on
ot OF . gt
pand T adom S i 0P

Rt Bay’
Fig. 4 Training Time Comparison Across Methods. Training
time comparison across methods. This figure reports the training
time required by each optimization strategy. While evolutionary and
Bayesian methods incur additional optimization overhead, the
hybrid approach remains computationally feasible and competitive
relative to other automated search techniques.

Training Accuracy Trends

To further analyze learning behavior, training accuracy curves
are compared between a hand-tuned baseline model and a GA-
optimized model.

Training Accuracy vs Epochs

100
~=~ Baseline CNN

—— GA-Optimized CNN

9

9%

90

Training Accuracy (%)
-

Epoch

Fig. 5 Training Accuracy vs Epochs. Training accuracy versus
epochs. The GA-optimized architecture converges more rapidly and
achieves higher final training accuracy than the baseline CNN,
indicating improved learning dynamics resulting from evolutionary
optimization.

© The National High School Journal of Science 2026

NHSJS Reports |7



Fitness Score Evolution

The fitness function integrates validation accuracy and train-
ing time, guiding the genetic algorithm toward efficient archi-
tectures. The evolution of fitness scores provides insight into
the optimization process.

Fitness Score vs Generations (Illustrative)

095

090

25 50 75 100 125 150 175 200
Generation

Fig. 6 Fitness Score vs Generations (Illustrative). Fitness score
progression across generations. The increasing fitness trend
demonstrates that the population evolves toward architectures that
balance predictive performance and computational efficiency,
validating the effectiveness of the fitness formulation.

Ablation Study: GA vs GA + Bayesian Fine-Tuning

To isolate the contribution of Bayesian optimization, an ab-
lation study compares architectures evolved using the genetic
algorithm alone with those further refined through Bayesian
fine-tuning.

Ablation: GA vs GA + Bayesian

100.00

GAOnly GA + Bayesian

Fig. 7 Ablation: GA vs GA + Bayesian. Ablation study
comparing GA-only and GA + Bayesian optimization. Bayesian
fine-tuning consistently improves validation accuracy over GA-only
architectures, highlighting the complementary role of probabilistic
optimization in refining evolved models.

Summary of Findings
The experimental results demonstrate that:

* Genetic algorithms effectively explore neural network
architecture spaces, leading to progressive performance
improvements across generations.

* Bayesian fine-tuning provides additional gains by refin-
ing hyperparameters of evolved architectures.

¢ The hybrid GA-Bayesian approach achieves higher vali-
dation accuracy than manual tuning, random search, and
standalone Bayesian optimization.

e The fitness-based formulation enables the discovery of
architectures that balance accuracy and computational ef-
ficiency.

In addition to accuracy, the evolved architectures exhibited re-
duced architectural complexity compared to hand-tuned base-
lines. The best-performing evolved models typically con-
tained 3-5 layers with fewer total parameters while main-
taining high validation accuracy. This indicates that the ge-
netic algorithm favors compact and efficient architectures,
supporting the claim that evolutionary optimization can dis-
cover resource-efficient designs without manual heuristics.

Discussion

The experimental results demonstrate that the proposed hy-
brid genetic algorithm (GA) and Bayesian optimization frame-
work is an effective and computationally feasible approach
for neural architecture optimization. By combining evolu-
tionary exploration with probabilistic fine-tuning, the frame-
work achieves strong validation accuracy while maintaining
reasonable training time requirements. This section discusses
the strengths, limitations, and broader implications of the pro-
posed approach.

Strengths and Advantages

One of the primary strengths of the proposed framework is its
ability to automate neural architecture discovery with minimal
human intervention. Unlike manual tuning, which relies heav-
ily on expert intuition and extensive trial-and-error, the genetic
algorithm explores a diverse set of architectures in a system-
atic and adaptive manner. The progressive improvements ob-
served across generations demonstrate that evolutionary pres-
sure effectively guides the search toward higher-performing
configurations.

Another key advantage is the complementary integration
of Bayesian optimization. While genetic algorithms are
well suited for exploring discrete and structured architectural

8 | NHSJS Reports

© The National High School Journal of Science 2026



choices, they are less efficient at fine-tuning continuous hy-
perparameters. Bayesian optimization addresses this limita-
tion by refining the most promising architectures identified by
the GA, resulting in consistent performance gains as shown
in the ablation study. This separation of responsibilities, ar-
chitecture discovery via GA and hyperparameter refinement
via Bayesian optimization, allows the framework to balance
exploration and exploitation effectively.

The framework also emphasizes computational feasibility.
Unlike reinforcement learning—based NAS methods that of-
ten require large-scale GPU clusters, the proposed approach is
designed to operate on modest hardware. This makes it acces-
sible to a broader range of researchers and practitioners, par-
ticularly in academic or resource-constrained environments.

Challenges and Limitations

Despite its strengths, the proposed approach has several lim-
itations. First, the experiments are conducted exclusively on
the MNIST dataset, which is relatively simple compared to
modern large-scale benchmarks. While MNIST is appropri-
ate for controlled evaluation of optimization strategies, per-
formance on more complex datasets may differ, particularly
as deeper architectures and larger parameter spaces are intro-
duced.

Second, although the fitness function incorporates training
time to encourage efficiency, the genetic algorithm still re-
quires evaluating multiple candidate architectures across gen-
erations. As a result, total optimization time can increase as
population size or generation count grows. While this cost is
substantially lower than that of many RL-based NAS methods,
it remains higher than that of single-run manual tuning. The
choice of the penalty factor A influences the trade-off between
accuracy and training efficiency, with larger values favoring
faster but simpler models and smaller values prioritizing pre-
dictive performance.

Finally, evolutionary algorithms are inherently stochastic.
Although consistent trends are observed across runs, some
variability in outcomes is expected. This underscores the im-
portance of reporting averaged results and considering vari-
ance when evaluating evolutionary NAS methods.

Comparison with Existing NAS Approaches

Relative to traditional grid and random search methods, the
proposed framework demonstrates clear advantages in guided
exploration and performance consistency. Compared to stan-
dalone Bayesian optimization, the hybrid approach benefits
from a structured exploration phase that identifies promising
architectural configurations before fine-tuning. In contrast to
reinforcement learning—based NAS and gradient-based meth-
ods such as DARTS, the proposed framework prioritizes ac-

cessibility and interpretability over absolute state-of-the-art
performance. While RL-based and gradient-based methods
can achieve impressive results, they often do so at the cost of
significant computational complexity and sensitivity to imple-
mentation details. The hybrid GA—Bayesian approach offers a
practical alternative that balances performance with usability.

Broader Implications

The results suggest that hybrid optimization strategies repre-
sent a promising direction for automated model design. By
combining complementary optimization techniques, it is pos-
sible to address the limitations of individual methods while
preserving their strengths. Beyond convolutional neural net-
works and image classification tasks, this paradigm could be
extended to other domains where architectural design choices
are complex and high-dimensional. Additionally, the discov-
ery of compact, high-performing architectures highlights the
potential of evolutionary methods for resource-efficient model
design. Such approaches may be particularly valuable for de-
ployment scenarios involving limited computational budgets,
such as edge devices or real-time applications. Beyond image
classification, recent advances in large-scale language mod-
els further demonstrate the importance of architectural design

choices in achieving strong generalization'!.

Ethical Considerations

As with any automated model design framework, ethical con-
siderations should be acknowledged. Automated optimization
processes may inadvertently reinforce biases present in train-
ing data or lead to models that are difficult to interpret. While
the MNIST dataset poses minimal ethical risk, extending the
framework to real-world datasets would require careful con-
sideration of data bias, transparency, and responsible deploy-
ment.

Summary

Overall, the proposed hybrid GA-Bayesian framework
demonstrates that evolutionary computation and probabilistic
optimization can be effectively combined to automate neu-
ral architecture search in a computationally feasible manner.
While limitations remain, particularly regarding dataset com-
plexity and optimization cost, the results provide a strong
foundation for future extensions and more comprehensive
evaluations.

© The National High School Journal of Science 2026

NHSJS Reports |9



Conclusion and Future Work

Summary of Findings

This work investigated the use of a hybrid genetic algo-
rithm (GA) and Bayesian optimization framework for auto-
mated neural architecture optimization. By encoding neural
networks as genomes and evolving them through selection,
crossover, and mutation, the proposed approach enables sys-
tematic exploration of architectural design choices without
relying on manual heuristics. Bayesian optimization is sub-
sequently applied to refine the hyperparameters of the most
promising architectures, addressing a key limitation of purely
evolutionary methods. Experimental results on the MNIST
dataset demonstrate that the hybrid GA—Bayesian approach
achieves strong validation accuracy and competitive train-
ing efficiency relative to manual tuning, random search, and
standalone Bayesian optimization. The evolutionary process
consistently improves model performance across generations,
while Bayesian fine-tuning provides additional gains by refin-
ing hyperparameters of evolved architectures. Together, these
results indicate that combining evolutionary exploration with
probabilistic optimization is an effective strategy for neural ar-
chitecture search in computationally feasible settings.

Future Research Directions

While the results presented in this study are encouraging,
several avenues for future work remain. A natural next
step is to extend the framework to more complex datasets
such as CIFAR-10 or CIFAR-100, which introduce higher-
dimensional inputs and increased architectural complexity.
Scaling to these datasets would require adjustments to the ge-
netic algorithm parameters, including population size, muta-
tion rates, and allowed network depth, as well as more sophis-
ticated training-time management strategies.

Another promising direction is the application of the pro-
posed framework to transformer-based architectures. Ex-
tending the genome representation to include components
such as attention heads, embedding dimensions, and feed-
forward block configurations would enable exploration of a
broader class of modern neural architectures. However, the
significantly higher computational cost of training transform-
ers presents additional challenges that would need to be ad-
dressed through efficiency-oriented fitness functions or surro-
gate modeling techniques. Vision transformer architectures
have also demonstrated strong performance in image recogni-
tion tasks, underscoring the importance of extending architec-
ture search frameworks beyond convolutional models!?. Reg-
ularized evolutionary approaches have likewise shown that
evolutionary NAS can scale effectively with appropriate con-
straints' 4,

Future work could also explore multi-objective optimiza-
tion, where accuracy is optimized alongside additional crite-
ria such as model size, inference latency, or energy consump-
tion. This would be particularly relevant for deployment on
resource-constrained devices, where trade-offs between per-
formance and efficiency are critical. Finally, incorporating
surrogate models or early-stopping mechanisms into the evo-
lutionary process could further reduce computational over-
head by approximating fitness evaluations or terminating un-
promising candidates early. Such enhancements would im-
prove scalability and make the framework more practical for
larger-scale applications.

Final Remarks

In conclusion, this study demonstrates that a hybrid genetic al-
gorithm and Bayesian optimization framework provides a vi-
able and accessible approach to automated neural architecture
search. By leveraging the complementary strengths of evolu-
tionary computation and probabilistic optimization, the pro-
posed method reduces reliance on manual design while main-
taining strong performance. Although further validation on
more complex benchmarks is required, the results presented
here highlight the potential of hybrid optimization strategies
for advancing automated deep learning model design.

References

1 B. Zoph and Q. V. Le, Neural Architecture Search with Reinforcement
Learning, 2016, arXiv:1611.01578.

2 T. Elsken, J. H. Metzen and F. Hutter, Neural architecture search: a sur-
vey, 2018, arXiv:1808.05377.

3 H. Liu, K. Simonyan and Y. Yang, DARTS: Differentiable Architecture
Search, 2018, arXiv:1806.09055.

4 H. Pham, M. Y. Guan, B. Zoph, Q. V. Le and J. Dean, Efficient neural
architecture search via parameter sharing, 2018, arXiv:1802.03268.

5 K. O. Stanley and R. Miikkulainen, Evolutionary Computation, 2002, 10,
99-127.

6 R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., Evolving deep neu-
ral networks, 2017, arXiv:1703.00548.

7 K. O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, Nature Machine
Intelligence, 2018, 1, 24-35.

8 E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le
and A. Kurakin, Proceedings of the International Conference on Machine
Learning, 2017.

9 L. Xie and A. Yuille, Genetic CNN, 2017, arXiv:1703.01513.

10 H. Cai, L. Zhu and S. Han, ProxylessNAS: Direct neural architecture
search on target task and hardware, 2018, arXiv:1812.00332.

11 S. Falkner, A. Klein and F. Hutter, BOHB: Robust and efficient hyperpa-
rameter optimization at scale, 2018, arXiv:1807.01774.

12 T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., arXiv preprint
arXiv:2005.14165, 2020.

13 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., An Im-
age is Worth 16x16 Words: Transformers for Image Recognition at Scale,
2020, arXiv:2010.11929.

10 | NHSJS Reports

© The National High School Journal of Science 2026



14 E. Real, A. Aggarwal, Y. Huang and Q. V. Le, Regularized evolution for
image classifier architecture search, 2018, arXiv:1802.01548.

© The National High School Journal of Science 2026 NHSJS Reports | 11



