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Kidney cancer poses major challenges in diagnosis and surgical management, requiring precise tumor assessment to guide treat-
ment. This study introduces a two-stage deep learning framework designed to support personalized surgical planning. In the
first stage, a segmentation model accurately delineates kidney tumors from CT images, enabling precise identification of tumor
boundaries critical for planning. The second stage integrates imaging features derived from the segmented tumors with patient
clinical data, such as age, body mass index, and tumor size, to recommend optimal surgical strategies and predict operative time.
By combining radiological imaging with relevant clinical information, the framework provides tailored surgical guidance that
considers both anatomical and patient-specific factors. This multimodal approach allows for more accurate, data-driven decision-
making that can adapt to each patient’s unique condition. The model demonstrates strong potential for improving preoperative
planning by offering efficient and personalized recommendations, which may lead to better surgical outcomes and resource uti-
lization. Additionally, this study highlights the importance of integrating diverse data sources in medical AI development to
capture the complexity of kidney tumors and surgical contexts. The results underscore the value of deep learning in enhancing
surgical assistance by bridging imaging data with clinical insights, ultimately contributing to advancements in precision medicine
and patient-centered care. This framework represents a promising step towards AI-enabled kidney cancer surgery planning that
supports clinicians in making informed, patient-specific treatment decisions.

Introduction

The kidney serves as the body’s primary regulator of home-
ostasis, maintaining stable fluid balance and plasma volume
despite fluctuations in diet, environment, or physical stress
across individuals and over time. By precisely managing the
retention and elimination of water and electrolytes, the kid-
ney controls the composition of both intracellular and ex-
tracellular fluids. It also removes nitrogenous waste from
metabolism and clears pharmacologic and toxic substances1.
Beyond waste elimination, the kidneys are essential for regu-
lating blood pressure, producing red blood cells, and manag-
ing bone and mineral metabolism. Given their crucial role in
maintaining systemic homeostasis, any pathological changes
in the kidneys, including neoplasms, can have profound con-
sequences for overall health. Kidney cancer is an increas-
ingly prevalent malignancy that poses significant diagnostic
and therapeutic challenges in clinical practice. As one of the
top ten most common cancers worldwide, it accounts for a
substantial proportion of global cancer-related morbidity and
mortality. In 2008, 54,390 Americans were diagnosed with
kidney cancer and 13,010 died; Renal cell carcinoma (RCC),
accounting for approximately 90% of renal malignancies, typ-
ically occurs around age 65 and has shown a consistent 2%
annual increase in incidence2.

RCC often develops asymptomatically and is frequently
discovered incidentally during imaging for unrelated condi-
tions. Because of this, early detection remains difficult, lim-
iting therapeutic options and worsening outcomes. Computed
tomography (CT) has become central tools in the non-invasive
evaluation of kidney masses. These modalities provide de-
tailed cross-sectional images that help identify tumor size,
shape, and location, as well as detect potential metastases.
However, interpreting these images manually requires consid-
erable time and expertise, and segmentation of renal tumors by
hand is both labor-intensive and susceptible to observer vari-
ability. Accurate and efficient segmentation is therefore vi-
tal not only for diagnosis but also for preoperative planning
and treatment monitoring. In recent years, automated seg-
mentation methods have gained traction due to their potential
to enhance diagnostic precision while reducing human work-
load. Traditional image processing techniques, such as thresh-
olding and region-growing algorithms, have laid the ground-
work for segmentation tasks. Traditional segmentation meth-
ods rely on high contrast and often fail with dense pathologies
common in clinical scans. A segmentation-by-registration
approach aligns normal scans to pathological ones, applying
transformed masks refined by voxel classification—achieving
accurate results without needing manual pathological training
data3. However, these traditional methods often fail in clini-
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cal settings due to low contrast, imaging noise, and anatom-
ical variability across patients. Tumors also exhibit irregular
boundaries and intensity patterns similar to adjacent tissues,
further complicating segmentation.

Variable Category /
Statistic

Frequency
(percentage) / Value

Surgical
Procedure

Partial
Nephrectomy

138 (66.6%)

Radical
Nephrectomy

69 (33.3%)

Surgical
Approach

Transperitoneal 169 (81.6%)

Retroperitoneal 38 (18.3%)
Operation
Time (min)

Maximum 613

Minimum 44
Mean 242.29
Standard
Deviation

98.86

Table 1 Summary of surgical characteristics in the dataset, including
the distribution of surgical procedures and approaches, as well as
statistics for operation time.

To overcome these limitations, deep learning, partic-
ularly convolutional neural networks (CNNs)—has trans-
formed medical image segmentation. Architectures such as
U-Net and its variants have achieved remarkable accuracy in
delineating kidneys and renal tumors by learning hierarchical
representations from annotated CT datasets4 5. These models
outperform conventional algorithms in both speed and con-
sistency. However, segmentation alone does not address the
full spectrum of clinical needs. Surgical planning for kidney
cancer requires integrating imaging data with relevant clinical
information, including patient demographics and tumor char-
acteristics, to inform the choice of surgical method and antic-
ipate operative complexity.

Although a few recent studies have explored multimodal
learning frameworks that combine CT images with clinical
features to predict tumor type or surgical decision, they typi-
cally treat segmentation and decision-making as separate pro-
cesses6 7 8. This gap highlights the need for an integrated
pipeline linking image segmentation with surgical assistance.

In this study, I propose a two-stage deep learning frame-
work for personalized kidney cancer surgery planning. The
first stage performs kidney tumor segmentation from CT im-
ages using a 2D nnU-Net model. In the second stage, a multi-
modal surgical assistance model takes the largest tumor slice
from the segmented CT volume along with clinical features
such as radiological tumor size, age, and BMI to recommend
the surgical procedure and approach, and predict operative

time. By integrating imaging and clinical data, my frame-
work delivers actionable, patient-specific recommendations
that support clinical decision-making and enhance operative
efficiency.

Fig. 1 Overview diagram of the proposed deep learning framework.

Methodology

Dataset

This study utilizes the publicly available C4KC-KiTS dataset,
which includes volumetric abdominal CT scans from patients
diagnosed with kidney cancer, along with expert-annotated
segmentation masks for kidneys and tumors. The dataset is
widely used in kidney tumor segmentation research due to its
high-quality annotations and comprehensive clinical informa-
tion. For this study, the dataset was divided into 155 patients
for training, 10 for validation, and 42 for testing, following
standard protocols to ensure robust model evaluation and re-
producibility. The data size is 512 by 512 pixels, but since the
resolution along the z-axis varies for each patient, the num-
ber of slices also differs from patient to patient. To achieve
consistent data distribution across slices, I applied min–max
normalization individually to each slice of all subjects, scal-
ing pixel intensity values to fall within the range of 0 to 1.

Each patient record contains not only the imaging data but
also detailed clinical and procedural metadata. As shown
in Table 1, surgical procedures were categorized into partial
nephrectomy (138 cases) and radical nephrectomy (69 cases),
while surgical approaches were classified as transperitoneal
(169 cases) or retroperitoneal (38 cases). Operation times
showed wide variability, ranging from 44 to 613 minutes, with
a mean duration of approximately 242 minutes and a standard
deviation of 98.86 minutes.

In terms of clinical characteristics, the dataset includes pa-
tient age, body mass index (BMI), tumor size, and other rele-
vant variables. Patient ages ranged from 1 to 90 years, with a
mean of 58.01 years and a standard deviation of 13.66 years.
BMI, calculated as weight in kilograms divided by height in
meters squared (kg/m2), ranged from 16.2 to 49.61, with an
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Fig. 2 Architecture of the proposed segmentation model, which follows the standard 2D nnU-Net framework consisting of an
encoder–decoder structure with skip connections.

average of 31.21 and a standard deviation of 6.77, indicating a
predominance of overweight and obese individuals. Tumor
size was quantified by the maximum diameter of the renal
mass, ranging from 1.2 cm to 16.2 cm, with an average of
4.6 cm and a standard deviation of 2.56 cm.

Proposed Deep Learning Framework

The proposed deep learning framework consists of two stages.
In the first stage, a 2D nnU-Net performs slice-by-slice seg-
mentation. In the second stage, the largest segmented tumor
slice per patient, along with clinical information such as age,
BMI, and radiological size, is fed into a multi-modal model.
This model simultaneously predicts the surgical procedure,
surgical approach, and operative time. The framework not
only provides kidney tumor segmentation results but also de-
livers personalized surgical planning recommendations based
on both imaging data and patient-specific information.

Segmentation Model

As shown in Figure 2, the segmentation stage is based on a 2D
nnU-Net architecture, which independently processes each ax-
ial CT slice. Segmentation refers to dividing an image into
meaningful regions—for example, separating a tumor from
surrounding healthy tissue—to enable precise localization and
quantification of anatomical structures.

The model consists of an encoder-decoder structure with
skip connections, facilitating the preservation of spatial detail
while capturing contextual information. An encoder-decoder
architecture involves two main parts: the encoder progres-
sively extracts features by reducing spatial dimensions, while

Layer
Type

Input
Features
#

Output
Features
#

Parameters
#

Linear # of
clinical
metadata

256 512

ReLU - - -
Linear 256 512 131,584
ReLU - - -
Linear 512 1024 525,312
ReLU - - -
Linear 1024 1024 1,049,600
ReLU - - -

Table 2 Architecture of the multi-layer perceptron (MLP) in
MPL 1. The number of clinical metadata features is variable; the
current table assumes a single clinical metadata feature. [The total
number of trainable parameters in this architecture is approximately
2.76 million.]

the decoder reconstructs the spatial resolution to produce de-
tailed segmentation maps. Skip connections link correspond-
ing layers in the encoder and decoder to preserve fine-grained
spatial information that might otherwise be lost during down-
sampling. From a theoretical perspective, recent advances
have provided a unified framework that explains why encoder-
decoder CNNs perform effectively. This framework links the
architecture to nonlinear frame representations based on com-
binatorial convolutional frames, with expressivity that grows
exponentially as network depth increases. Moreover, skipped
connections are shown to significantly enhance the model’s
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expressive capacity and shape a favorable optimization land-
scape, helping the network learn robust and coherent geomet-
ric features9. Each encoder block comprises two convolu-
tional layers followed by batch normalization and leaky ReLU
activation, while the decoder mirrors this structure with up-
sampling layers to reconstruct the segmentation mask.

Fig. 3 Architecture of the Kidney Cancer Surgery Assistance
Model.

A convolutional layer, a key part of convolutional neural
networks (CNNs) inspired by the animal visual cortex, applies
learnable kernels across input images to detect local patterns
like edges and textures. These kernels slide over the image’s
2D pixel grid, producing feature maps that capture important
characteristics and grow more complex through layers. CNNs
are trained by optimizing these kernels to minimize errors via
backpropagation and gradient descent10. Batch normalization
is a technique that normalizes the output of a layer by adjust-
ing and scaling activations, which helps stabilize and acceler-
ate training by reducing internal covariate shift. Leaky ReLU
(Rectified Linear Unit) is an activation function applied after
batch normalization; unlike the standard ReLU that zeroes out
negative inputs, leaky ReLU allows a small, non-zero gradient
for negative values, preventing neurons from becoming inac-
tive and improving model learning11.

The model was trained using variants of the Dice loss func-
tion, derived from the Dice similarity coefficient, which mea-
sures the overlap between predicted and ground truth masks
and is well-suited to handling class imbalance in medical
image segmentation. Several hybrid loss functions (Dice +
Cross-Entropy and Dice + Focal) were also tested; however,
the plain Dice loss achieved the highest segmentation per-
formance and was therefore adopted as the final loss func-
tion. Experiments demonstrated that these weighting strate-
gies interact strongly with the choice of initial learning rate,
influencing model performance notably. For instance, varying
learning rates of 0.001 and 0.01 yielded differences in average
Dice scores across weighting types, highlighting the need to
optimize both hyperparameters jointly. Training utilized the
Adam optimizer, an adaptive algorithm that dynamically ad-
justs learning rates per parameter, supporting stable and effi-

cient convergence over 100 epochs12.

Layer
Type

Input
Features
#

Output
Features #

Parameters
#

Linear 3072 4096 12,587,008
ReLU - - -
Dropout - - -
Linear 4096 2048 8,390,656
ReLU - - -
Dropout - - -
Linear 2048 1024 2,098,176
ReLU - - -
Dropout - - -
Linear 1024 512 524,800
ReLU - - -
Dropout - - -

Table 3 Architecture of the MPL 2. The input consists of
3072-dimensional features obtained by concatenating
2048-dimensional features from ResNet50 and 1024-dimensional
features from MLP 1. The total number of trainable parameters in
this architecture is approximately 23.6 million.

Kidney Cancer Surgery Assistance Model

The second stage, referred to as the Kidney Cancer Surgery
Assistance Model, is designed to recommend personalized
surgical strategies and predict operative time. As illustrated
in Figure 3, the model adopts a multi-modal architecture with
two distinct branches.

In the first branch, a single axial CT slice containing the
largest segmented tumor area—obtained from the segmenta-
tion model in the first stage—is used as input. Both the CT
image and its corresponding segmentation map are processed
by a modified ResNet-50 backbone. The final average pool-
ing and fully connected layers are removed, retaining only the
convolutional feature extractor. An adaptive average pooling
layer is then applied to the final feature map to produce a fixed-
size 2048-dimensional features.

The second branch incorporates patient-level clinical meta-
data, including radiological tumor size, age, and body mass in-
dex (BMI). These numerical features are processed by a multi-
layer perceptron (MLP) consisting of five fully connected lay-
ers with ReLU activations, resulting in a 1024-dimensional
feature embedding. This component is denoted as MLP 1 in
Figure 3, and its detailed architecture is provided in Table 2.

The image and clinical feature vectors are concatenated and
passed through a shared MLP (MLP 2), which consists of four
fully connected layers with dropout regularization. This mod-
ule produces 512-dimensional latent features. The structure

4 | © The National High School Journal of Science 2025



Fig. 4 Distribution of Dice scores across patients. (Left) Boxplot showing the median, interquartile range, and outliers of segmentation
performance. (Right) Violin plot illustrating the distribution density of Dice scores, with mean and range marked.

of MLP 2 is detailed in Table 3. From this shared feature,
the model branches into three task-specific heads. Two classi-
fication heads predict the surgical procedure (2 classes) and
surgical approach (2 classes), while a regression head esti-
mates the operative time as a continuous value. This multi-
task learning framework enables the model to leverage shared
features across tasks, improving learning efficiency while cap-
turing task-specific patterns effectively.

The total loss function for multi-task learning was defined
as a weighted sum of task-specific losses, combining binary
cross-entropy losses for the classification heads and mean
squared error for the regression head, as follows

Ltotal = λ1Lprocedure +λ2Lapproach +λ3Loperative time

Where λ1 = 1, λ2 = 1, and λ3 = 0.00001, Lprocedure and
Lapproach denote binary cross-entropy losses for classification
tasks, while Loperative time represents the mean squared error
loss used for the regression task.

Results

Performance Metrics

The performance of the segmentation model was evaluated us-
ing the Dice similarity coefficient (DSC), which quantifies the
overlap between predicted and ground truth masks. For the
Kidney Cancer Surgery Assistance Model, classification ac-
curacy and mean absolute error (MAE) were used13 14.

DSC

The Dice Similarity Coefficient (DSC) is a widely used metric
to evaluate the accuracy of image segmentation by quantifying
the spatial overlap between the predicted segmentation mask
and the ground truth mask. Mathematically, it is defined as:

DSC =
2 |A∩B|
|A|+ |B|

where A represents the set of pixels in the predicted segmen-
tation and B represents the set of pixels in the ground truth.
The numerator 2 |A∩B| corresponds to twice the number of
pixels common to both sets, while the denominator sums the
total pixels in both sets. The DSC ranges from 0 to 1, where
1 indicates perfect overlap and 0 indicates no overlap at all.
This metric balances sensitivity to false positives and false
negatives, making it particularly suitable for medical image
segmentation tasks where precise segmentation of anatomical
structures is critical. The DSC has been extensively validated
in clinical applications such as brain and prostate tumor seg-
mentation, demonstrating its robustness as a spatial overlap
index. It is important to note that while DSC provides a clear
measure of segmentation overlap, it may be biased by the size
of the target region, with smaller structures often resulting in
lower DSC values despite accurate segmentation.

MAE

The Mean Absolute Error (MAE) is used to evaluate the accu-
racy of regression models, such as the prediction of operative
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time in surgical assistance systems. It is defined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi|

where yi is the true value, ŷi is the predicted value, and n is the
total number of samples. MAE represents the average absolute
difference between predicted and actual values, providing an
intuitive measure of prediction error magnitude without regard
to direction. Unlike metrics that square errors, MAE treats
all deviations linearly, making it less sensitive to outliers but
still effective in quantifying average prediction accuracy. In
clinical contexts, MAE offers a straightforward interpretation
of how close predicted operative times are to actual durations,
which is critical for surgical planning and resource allocation.

Fig. 5 Kidney tumor segmentation results obtained from the
proposed 2D nnU-Net model. The first column displays the original
CT slices, the second column shows the ground truth labels with
tumor regions highlighted, and the third column presents the
model’s predicted segmentations. In addition to typical examples
with accurate boundaries, several representative failure cases are
also included to illustrate the model’s limitations.

Model stage performance

The segmentation model architecture achieved high accuracy
in segmenting kidney tumors from CT images, with a Dice
score of 0.9247±0.093 (95% CI: 0.881–0.968). In contrast, a
conventional U-Net trained under the same settings achieved
a lower Dice score of 0.887± 0.102 (95% CI: 0.842–0.931).
As illustrated in Figure 4, the boxplot and violin plot provide
a clear depiction of the distribution of Dice scores across pa-
tients, highlighting both the overall consistency and variability

of the segmentation performance. As shown in Figure 5, vi-
sual inspection of the segmentation results reveals that while
minor discrepancies are observed within the internal regions
of the tumor, the model accurately captures the overall tumor
boundaries. This suggests that the segmentation model effec-
tively learns the global structure of the tumor, even if slight
variations exist in pixel-level predictions.

Table 4 and Table 5 present results for the multi-modal sur-
gical assistance model evaluated under different input feature
combinations. When only imaging features were used, the
model achieved 76.3% accuracy in predicting the surgical pro-
cedure and 83.1% accuracy for surgical approach classifica-
tion, with an MAE of 76.4 minutes for operative time pre-
diction. Incorporating patient age alongside imaging features
did not improve surgical procedure accuracy and slightly re-
duced surgical approach accuracy to 81.0%, with a marginal
increase in MAE to 77.1 minutes. Adding BMI to imaging
inputs improved surgical procedure accuracy to 78.6% and re-
duced MAE to 73.5 minutes, indicating that patient body com-
position contributes meaningfully to operative time estimation
and procedure selection. The most significant improvement in
surgical procedure prediction was observed when radiological
tumor size was included with imaging data, raising accuracy
to 85.4% and lowering MAE to 70.8 minutes. This highlights
the critical role of tumor size in determining surgical strategy
and operative complexity. Interestingly, surgical approach ac-
curacy remained relatively stable around 81.0% with the ad-
dition of tumor size, suggesting that imaging features alone
may be sufficient for this classification task. Combining BMI
and tumor size with imaging maintained the highest procedure
accuracy (84.9%) but slightly decreased surgical approach ac-
curacy to 78.8% and increased MAE to 73.7 minutes, pos-
sibly due to feature redundancy or interactions. The surgical
approach appears to depend mainly on anatomical features ev-
ident in CT images rather than on clinical characteristics.

Discussion

I developed a segmentation model based on the 2D nnU-Net
architecture. While the 3D nnU-Net generally offers supe-
rior performance, it also has significant drawbacks, including
higher GPU memory consumption and longer inference time.
In my study, however, I was unable to utilize the 3D nnU-
Net due to the inconsistency in the z-axis resolution and the
anatomical coverage of CT scans across patients. If only one
of these factors had varied—for instance, if only the z-axis
resolution differed—interpolation could have addressed the is-
sue. Alternatively, if only the scanned anatomical range var-
ied, I could have manually cropped the kidney region. How-
ever, due to the simultaneous variation in both aspects, apply-
ing a 3D model was not feasible. Moreover, the large disparity
in z-axis resolution was expected to significantly degrade the
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Method Surgical procedure
accuracy (95% CI)

Surgical approach
accuracy (95% CI)

Operative time MAE
(95% CI, min)

Only image input 76.3% (69.5%, 82.9%) 83.1% (77.1%, 88.3%) 76.4 (67.9, 85.2)
Image + Age 75.9% (69.0%, 82.3%) 81.0% (74.3%, 86.9%) 77.1 (68.2, 86.7)
Image + BMI 78.6% (72.3%, 84.5%) 81.4% (75.0%, 86.8%) 73.5 (65.4, 81.8)
Image + radiological
size

85.4% (80.2%, 90.1%) 81.0% (75.1%, 86.2%) 70.8 (63.1, 78.2)

Image + BMI +
radiological size

84.9% (79.6%, 89.5%) 78.8% (72.4%, 84.6%) 73.7 (65.5, 82.1)

Table 4 Quantitative performance results of the Kidney Cancer Surgery Assistance Model across classification and regression tasks.

Method Confusion matrix Class Precision Recall F1-score

Surgical Procedure
Actual partial (138)
123 (TP), 15 (FN) Partial Nephrectomy 0.90 0.89 0.89

Actual radical (69)
13 (FP), 56 (TN) Radical Nephrectomy 0.79 0.81 0.80

Surgical Approach
Actual transperitoneal (169)
150 (TP), 19 (FN) Transperitoneal 0.95 0.89 0.92

Actual Retroperitoneal (38)
8 (FP), 30 (TN) Retroperitoneal 0.61 0.79 0.69

Table 5 Confusion matrices and per-class performance for surgical procedure and surgical approach classification using the Image +
Radiological Size inputs. The table presents true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN) for each
class, along with the corresponding precision, recall, and F1-scores.

performance of a 3D model, justifying my use of the 2D nnU-
Net.

The second-stage model, the Kidney Cancer Surgery As-
sistance Model, faced similar constraints. Ideally, a 3D vol-
ume input per patient would allow for more comprehensive
predictions of surgical procedure, surgical approach, and op-
erative time. However, due to the aforementioned limitations,
I adopted a strategy of selecting a single axial slice with the
largest estimated tumor region. I then input both the CT im-
age and its corresponding segmentation mask for that slice to
maximize model performance. As shown in Table 4 and Table
5, this approach yielded promising results.

To further enhance performance, I conducted an ablation
study with available clinical metadata. Interestingly, some
metadata improved model performance when included, while
others led to performance degradation. As shown in Figure 6,
radiological size emerged as a statistically significant clinical
feature correlated with improved performance in the second-
stage model. These findings are consistent with the results
reported in Table 4 and Table 5. Radiological size was as-
sociated with surgical procedure selection and showed mod-
erate correlation with operative time. Given that operative
time can vary significantly depending on the individual sur-
geon, and dataset includes surgeries performed by multiple
surgeons across training and test sets, a degree of prediction

error is expected. I hypothesize that incorporating surgeon-
specific data—such as surgical experience—could further im-
prove model accuracy for operative time prediction.

Although the current mean absolute error exceeds one hour,
this level of deviation may still offer practical insight for
preoperative planning, particularly in estimating relative sur-
gical complexity and resource requirements across diverse
cases. Future work will aim to reduce this error by integrating
surgeon-specific and intraoperative variables.

Conclusion

This study presents a practical and effective two-stage deep
learning framework for personalized kidney cancer surgery
planning. By leveraging a 2D nnU-Net model, I achieved
high-accuracy kidney tumor segmentation despite challenges
posed by variable CT scan resolutions and anatomical cov-
erage that limited the use of 3D models. My multi-modal
surgical assistance model, integrating imaging data with se-
lected clinical features such as radiological tumor size and
BMI, demonstrated notable improvements in predicting sur-
gical procedures and operative time. Statistical analysis high-
lighted radiological tumor size as a key factor correlated with
enhanced model performance, underscoring its clinical impor-
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Fig. 6 The first row represents age, the second row represents BMI, and the third row represents radiological size. The first column shows
surgical procedures, the second column shows surgical approaches, and the third column displays operative time. The first and second
columns present box plots, while the third column shows Ordinary Least Squares (OLS) regression plots.

tance in surgical decision-making. While the adoption of a
single axial slice with the largest tumor area provided promis-
ing results, incorporating full 3D volume data and surgeon-
specific factors such as experience may further enhance pre-
dictive accuracy, particularly for operative time estimation.
Additionally, the relatively limited dataset size and the ab-
sence of external validation cohorts should be acknowledged
as constraints that may affect generalizability. Future work
should therefore explore these directions alongside larger and
more diverse datasets to comprehensively validate and extend
the applicability of the proposed framework. Moreover, fu-
ture extensions could leverage federated learning frameworks
to enable cross-institutional validation without data sharing,
or apply transfer learning strategies to adapt the model to
institution-specific imaging distributions and surgical prac-
tices. These approaches would help generalize the framework
across diverse clinical settings while preserving patient data
privacy.
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