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Floods are a growing threat to human life, infrastructure, and economies around the world. They are driven by factors such as
extreme rainfall, humidity, and land use patterns. Traditional hydrologic models (e.g., Soil & Water Assessment Tool (SWAT),
Hydrologic Modeling System (HEC-HMS)) often struggle to deliver accurate, real-time predictions when presented with rapidly
changing situations. This study developed a machine-learning-based flood- prediction system using the Bangladesh Flood
Prediction Dataset, which spans diverse climatic and geographic areas within the country. After cleaning and standardizing ten key
environmental factors (e.g., rainfall, humidity, temperature, pressure, etc.), exploratory data analysis was conducted using the
Pearson correlation heatmapping to identify the strongest predictors of flood incidents. Two feed-forward neural networks were
then tuned and trained with varying layer counts and neuron counts, and compared to logistic regression, multiple linear regression,
and random- forest classifier. The best-performing neural-network architecture (six hidden layers of 60 Rectified Linear Unit
(ReLU) neurons) achieved 98.89 % accuracy on the validation data after 100 epochs, followed by logistic regression (98.66 %),
Random Forest Classifier (98.55 %), and linear regression (91.78 %). These results therefore indicate that relatively straightforward
deep-learning architectures can match or exceed both traditional physics-based forecasts and alternative machine-learning methods.
By using a country-wide dataset rather than river-specific measurements, this methodology offers scalable, generalizable flood-risk
prediction suitable for data-scarce regions with similar characteristics as Bangladesh. Further future work can explore the
integration of land-use and infrastructure predictors, time-series models, and automated hyperparameter optimization to further
enhance early-warning capabilities.

Introduction

A flood is an overflow of water onto land normally dry land.
Flooding can be caused by numerous factors such as heavy rain-
fall, deforestation, and dam failures. Floods can last for days
or even weeks, as opposed to flash floods which last for short
periods of time, and can cause immense loss of human lives and
the economy of affected areas1. This type of natural disaster
is influenced by many environmental and human factors such
as rainfall intensity, topography and urbanization2. Floods are
especially important to study because they inflict devastating im-
pacts on the lives of humans, the economy, and the environment.
According to the World Meteorological Organization (WMO),
between 1994 and 2013 nearly 2.5 billion people were impacted
by floods around the world and floods have caused over $40
billion in damage every year. The WMO also reports that the
impact of these floods is also rising at a very rapid pace, as
the population residing in flood-prone areas has grown by 24%
between 2000 and 20153. The frequency and danger of such
floods also indicate the importance of reliable flood forecasts in
order to provide the necessary precautions and evacuations.

Conventional flood forecasting models, which rely on sophis-
ticated statistical and hydrologic computations such as the Soil
and Water Assessment Tool (SWAT) or Hydrologic Modeling
System (HEC-HMS), have played a critical role in flood fore-

casting. These hydrologic models represent the watershed and
physical processes explicitly. SWAT is a basin-scale model used
to simulate the quality and quantity of surface and ground water,
and is widely used to predict the environmental impact of land
use and climate change4. HEC-HMS, on the other hand, is
designed to simulate the hydrologic processes of certain water-
shed systems. It integrates various hydrologic procedures such
as hydrologic routing, event infiltration and unit hydrographs,
which makes it suitable for a variety of applications such as
flood prediction and surface erosion studies. However, these
models are considered to be imperfect, when used to forecast
dynamic and rapidly-changing conditions. A study by Mosavi
et al.5 confirms that these models are often rigid, require much
adjustment, and are generally not capable of making accurate
short-term or real-time predictions. This is due to their reliance
on predetermined parameters and assumptions that cannot adapt
to unexpected weather or hydrologic changes. Therefore, these
flaws have the potential to cause delayed warnings and pose
safety risks to human lives.

In contrast to those traditional models, recent technological
advancements in machine learning have introduced very flexible
models that are capable of learning subtle patterns from large
and dynamic data. Machine learning algorithms, such as Neural
networks or Long Short-Term Memory networks, excel at short-
term predictions by detecting interdependencies within data
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streams. Recent work has shown that deep learning models
can match or exceed the capabilities of traditional hydrologic
models in accuracy; large-sample machine learning studies have
demonstrated that data-driven models can learn regional and
local hydrologic behaviour when trained on large datasets.

More recently, the field has moved towards geospatial arti-
ficial intelligence (GeoAI) and hybrid hydrological machine
learning models which bridge data-driven analysis and spatial /
geospatial information. GeoAI combines geospatial data from
satellite imagery or remote sensing, with deep learning models
such as convolutional neural networks (CNNs) or transformers
to improve flood mapping. Hybrid hydrological machine learn-
ing models, on the other hand, use output or physical constraints
from process models (such as SWAT / HEC-HMS outputs) to
improve generalization to unseen or changing environments and
reduce the need for massive datasets.

An example of such a study is one that is conducted by Shi
et al.6 on flood predictions in South Florida, in which the use
of machine learning algorithms is demonstrated in flood risk
prediction. This model has several strengths over traditional
physics-based models. Most notably, the deep learning models
rivaled or outperformed conventional models in terms of error
rates while gaining a significant computational boostreportedly
at least 500 times faster than traditional models6. Such effi-
ciency enables rapid predictions, which is critical for real-time
flood prediction as well as emergency responses. Although the
model’s predictions are particularly accurate, its specific focus
on Miami River and surrounding areas might confine it to South
Florida only. Thus, its strength and applicability to other re-
gions of the world with different environmental factors might be
limited, making it not widely applicable. Also, their utilization
of a large range of river-specific variables might confine it to
areas having a large array of river data, which might render it
inapplicable in areas having limited river data.

This study overcomes this limitation by using a dataset -
Bangladesh Flood Prediction Dataset7 - which collects climatic
and hydrologic data from across Bangladesh. This national
dataset uses multiple geographical and climatic parameters and
therefore possesses a broader model training base. Compared
to Shi et al.’s approach, this model considers a wider set of
environmental factors such as temperature, rainfall intensity,
humidity, and pressure and is consequently able to provide a
more detailed estimation of flood probability. This approach
also demonstrates the ability to estimate flood probabilities even
for sparse data locations; thus it is more applicable in real-
life, data-scarce environments. To achieve this, this paper uses
classification neural networks on a diverse dataset in order to
build an efficient and scalable model. By doing that, the model
can make predictions that are not geographically specific, but
applicable to a wider range of environments with similar climatic
and monitoring characteristics.

Methodology

To analyze the probability of flooding in different situations,
this study uses the Bangladesh Flood Prediction Dataset7 from
Github. The dataset has a heterogeneous range of features rel-
evant to flood prediction such as geographical, hydrologic pa-
rameters spanning from the years 1948 to 2013. It has variables
including latitude, rainfall, and wind speed. The wide range of
variables gives a broad overview of the environmental variables
that influence floods and the complex interplay between envi-
ronmental flood risk variables. Furthermore, the dataset collects
data on a city level, which allows for more in-depth analysis
of the country’s regional variation. It provides a binary Flood
column which represents whether flooding occurred (labeled 1)
or not (labeled 0). The author compiled the flood labels from
sources such as news reports and national flood reports, and
the flood variable reports flood occurrence at a specific station
in a given month of a year. Of the original 20,544 rows in
the dataset, 4,493 (21.87%) rows had flood labels while 16,051
(78.13%) were missing flood labels. Thereby, all unlabeled rows
were excluded from training so that incorrect assumptions about
flood occurrences were not made. To preprocess the dataset for
modeling, several procedures were implemented to clean the
dataset. The variables were normalized through standardization
to ensure that all variables have an equal contribution to the
model’s output. To further investigate the dataset, exploratory
data analysis was conducted in order to examine the relationship
between the variables.
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Fig. 1 Correlation Heatmap of Flood Risk Factors
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A correlation heatmap (Figure 1) was derived from the Pear-
son correlation coefficients to examine the correlations among
various environmental factors and the flood occurrence. The
majority of the variables are revealed to have weak to moderate
associations with flood occurrence according to the heatmap.
However, some specific factors stand out among them. No-
tably, Minimum Temperature is strongly correlated with flood
occurrence (r = 0.82), followed by cloud coverage and relative
humidity (r = 0.74), rainfall (r = 0.52), and maximum tempera-
ture (r = 0.43). Bright sunshine, however, negatively correlates
with floods (r = -0.55). These results show that none of the vari-
ables are entirely predictive on their own, but combinations of
those climatic factors can be strong predictors of floods. Feature
importances were also computed from a Random Forest Clas-
sifier using the model’s impurity-based feature importance. A
SHAP summary of the neural network model was also evaluated
to validate the feature importance ranking. However, there is
some notable class imbalance between the number of Flood oc-
currences and the number of No Flood Occurrences, as shown in
Figure 2. Specifically, the dataset contains a total of 4132 Flood
occurrences and 361 No Flood occurrences. The imbalance
between the number of flood occurrences within the dataset can
have an impact on the effectiveness and the bias of the model.
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Fig. 2 Distribution of the Flood variable (0 = No Flood, 1 = Flood)

To analyze the diverse flood-causing factors efficiently, a clas-
sification neural network was used as the primary algorithmic
approach. As the objective of the task is to predict the chances
of a flood event, a classification neural network is appropriate.
Classification neural networks are well-suited to calculate the

probability of a condition belonging to a specific class, which,
in this case, is either flood-prone or flood-safe state. A classifica-
tion neural network also enables the model to detect the subtle,
non-linear connections between the variables, thus making it a
perfect tool to predict flood risk. To train the model, a chrono-
logical (time-based) holdout was used: the dataset was sorted
based on the month and year of the event, and split into training,
validation, and test sets in an 7:2:1 ratio, respectively.

The classification neural network model consists of 6 hidden
layers with 60 neurons each and uses the Rectified Linear Unit
(ReLU) activation function. To determine the most efficient
structure, two different tuning methods were evaluated. A grid
search was performed by testing out different hyperparameter
combinations (layers and neuron count for uniform-layer neural
networks models; number of layers and the number of neurons
in the first hidden layer for a funnel shaped network where each
layer has half the neurons of the previous one), training each
architecture for 100 epochs and selecting the best model based
on validation accuracy.

In the first approach, the model was constructed with an input
layer followed by a number of hidden layers, each having a
uniform number of neurons. Layer (4, 6, 8, 10 layers) and
neuron (20, 30, 40, 50, 60 neurons) combinations were tested
systematically to determine their impact on the performance of
the model.

The second approach evaluated architectures in which the
number of neurons decreased sequentially in powers of 2 per
layer. Starting from a larger number of neurons (256, 128, 64,
32 neurons) and decreasing gradually down to smaller sets of
neurons, different configurations were tested by adjusting the
starting point and the number of hidden layers.

The architectures of both tuning methods were trained and
tested using 100 epochs, and validation accuracy (on a 20%
hold-out set) was monitored after each training session. After
training, the model’s outputs were converted into binary labels
using a 0.3 decision threshold (rather than 0.5). This threshold
value was chosen to increase the recall value and reduce the
number of false negatives while balancing the ROC-AUC and
precision values. Based on the tuning process, the architecture
with 6 hidden layers, each with 60 neurons, had the highest
validation accuracy (on a 20% hold-out set) and was therefore
selected for further testing and final evaluation.

To evaluate the model’s generalization ability, a 5-fold strati-
fied cross validation was performed. For each fold, the binary
outputs were thresholded at 0.3 to reduce the number of false
negatives and the accuracy, precision, recall, F1 score, and ROC-
AUC of each fold was summarized across all folds based on
mean and standard deviation. A post-hoc analysis was also con-
ducted, using the model to predict the flood labels on the full
dataset, to analyze the trends of the model’s errors.
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Results

With the first tuning method (a fixed number of neurons in every
hidden layer), the optimal structure was a 6-hidden-layered
network with 60 neurons in each. The model gained a 98.89%
validation accuracy (on a 20% hold-out set) after 100 epochs and
performed better than any of the other architectures attempted.

A training and validation accuracy graph over 100 epochs is
presented in Figure 3. Both training accuracy and validation
accuracy increased during the first few epochs before plateauing
for the remainder of training. Specifically, training accuracy
steeply increases in the first 10 epochs, from around 97% to
99.8%, and plateaues at around 99.7% to 99.9% for the next 90
epochs.

Validation accuracy also follows the same pattern as training
accuracy with a slight increase in the initial 10 epochs. It then
fluctuates mildly between 98.5% and 98.8% in the next 90
epochs. These trends indicate that the model learns efficiently
in the early stages and plateaus in performance in the rest of
training.
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Fig. 3 Training Accuracy and Validation Accuracy graph for selected
model

The training precision stays high throughout the course of
training, at around 99.9% to 100%. Similarly, validation preci-
sion also
stays decently high throughout training, increasing from around
98.4% to 98.82% in the first 25 epochs before fluctuating slightly
at around 98.6% to 98.8% in the next 75 epochs.

Similar to training precision, the training recall value also
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Fig. 4 Training Precision and Validation Precision graph for selected
model

stays very high throughout training, always at around 99.8% to
100%. The model’s validation accuracy follows a similar trend,
staying relatively high over the 100 epochs and fluctuates at
around 99.52% to 99.9%. The high recall value shows that the
model is strong in predicting positive events, suggesting a low
the number of false negatives.

The F1 curves mirror the trends of recall and precision: train-
ing F1 and validation F1 stays relatively high throughout train-
ing, with little fluctuation. Specifically, the training F1 score
stays at around 99.8% to 100% while the validation F1 score
fluctuates between 99.1% to 99.3%. The training and validation
F1 curves are close, showing a balanced precision and recall
behaviour on the validation set.

In contrast, the ROC-AUC trend is way less consistent. The
training ROC-AUC stays at 100% across the 100 epochs. Vali-
dation ROC AUC however, drops from 99.4% to 88.2% in the
first 10 epochs before increasing to 93.78% at epoch 30. From
epoch 31 to 100, it fluctuates at around 90% to 94%. Although
the precision and recall values are very high, the ROC AUC is
noticeably lower and more variable. It implies that the model
had some level of overfitting during training: the model per-
forms nearly perfectly on the training set but is more sensitive
to noise in the validation set.

For the second tuning approach, which used a progressively
decreasing number of neurons per layer (i.e., 32, 16, 8, 4),
the best-performing configuration yielded a marginally lower
validation accuracy of 98.77%. Thus, the uniform-layer model
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Fig. 5 Training Recall and Validation Recall graph for selected model
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Fig. 6 Training F1 and Validation F1 graph for selected model

was thus selected for final testing. In addition to neural networks,
several other algorithms were evaluated for comparison.

Firstly, Multiple Linear Regression was implemented as a
baseline model, resulting in a Mean Squared Error (MSE) of
0.10431, which is a decently low Mean Squared Error for a
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Fig. 7 Training ROC-AUC and Validation ROC-AUC graph for
selected model

linear model but it still has a lower accuracy than classification-
based models.

Secondly, Logistic Regression was tested and achieved
98.66% validation accuracy, demonstrating a strong perfor-
mance with significantly faster training time and simpler ar-
chitecture. Further evaluation of the performance of the Logistic
Regression model is shown in the confusion matrix (Figure 8).
It accurately predicted 33 cases of No Flood and 381 cases of
Flood, with 36 false positives and 0 false negatives.

Thirdly, a Random Forest Classifier was employed and
achieved a 98.55% validation accuracy, which is slightly lower
than the Logistic Regression model and the best-performing
neural network model. This shows the potential of ensemble
approaches for classification on environmental data. Further
evaluation of the performance of the Random Forest model is
shown in the confusion matrix (Figure 9). The model correctly
predicted 35 cases of No Flood and 380 cases of Flood, with
only 34 false positives and 1 false negatives.

The Random Forest Classifier’s impurity-based feature impor-
tances indicate that rainfall is the dominant flood predictor (≈
29.0%), followed by minimum temperature (≈ 15.1%), cloud
coverage (≈ 13.4%), bright sunshine (≈ 11.1%) and relative
humidity (≈ 9.5%). Geographical features such as altitude or x
coordinates only contribute modestly to the final result (< 5%),
while the period of the flood event contributes negligibly (≈
0.4%). The SHAP analysis of the neural network model also
shows that rainfall (≈ 17.6%) and bright sunshine (≈ 17.1%) are
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Fig. 8 Confusion Matrix for the Logistic Regression model
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Fig. 9 Confusion Matrix for the Random Forest model

the top predictors. The geographical features, however, played a
more important role in the neural network model, with the Y co-
ordinates, latitude, and longitude contributing 11.4%, 9.5%, and
9.0% respectively. Some features, such as cloud coverage, mini-
mum temperature, and relative humidity, played a less important

role in the neural network model compared to the Random For-
est Classifier. Overall, both methods consider rainfall as the
most important factor, but the higher focus on spatial features
of the neural network model indicates that the models differ in
how local context is used.
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Fig. 10 Feature importance ranking of the Random Forest Classifier
and SHAP summary of the neural network model

Over a 5 time 5-fold cross-validation, the optimal neural
network structure (the model with 6 layers of 60 neurons) out-
performed the logistic regression model by 0.00913 in accuracy.
This improvement is statistically robust: the paired t-test p-value
is around 1.3×10−11 and the Wilcoxon p ≈ 1.22×10−5. Over-
all, the neural network model performed consistently better than
the logistic regression across all folds.

After evaluating all the models, the neural network model
with 6 layers of 60 neurons was chosen. To further evaluate the
performance of that model, a 5-fold stratified cross validation
was performed. The results of the cross validation are excellent:
mean accuracy across 5 folds is 99.26% with a mean ROC-
AUC of 99.84%, indicating the model has a strong ability to
distinguish between classes. The precision (≈ 97.1%) and recall
(≈ 98.1%) values are also high, giving an F1-score of around
97.55%. The variability of the values are also very low, with
only precision having a standard deviation larger than 0.01 (≈
0.016). Overall, these cross validation scores suggest very strong
generalization on new and unseen data.

The post-hoc analysis revealed that many false positives oc-
curred at stations with little to no rainfall, suggesting that the
model might be missing some local predictor variables. Fur-
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thermore, the majority of errors occur for events after 2005,
indicating that model performance degrades on later years. This
pattern is consistent with changes in climate and the environ-
ment, suggesting the need for time-aware evaluation to enhance
model performance.

On the measured hardware (Kaggle’s 2 NVIDIA T4 GPUs),
training required 87.66 seconds wall time and 106.25 seconds
Central Processing Unit (CPU) time. The mean inference speed
averaged 0.094 seconds and corresponds to 0.208 milliseconds
per sample or around 4802.83 samples per second. This makes
the model fast enough for real-time flood forecasting.

Discussion

This study reaffirms that machine learning algorithms can suc-
cessfully predict flood events when trained on large environmen-
tal data. The best performing neural network model, which had
six hidden layers with 60 neurons in each, achieved a validation
accuracy of 98.89%, followed by the funnel-shaped network
achieved a validation accuracy of 98.77%. The logistic regres-
sion model achieved a 98.66% validation accuracy, the random
forest classifier achieved 98.55%, and multiple linear regression
attained an MSE of 0.10431. Furthermore, the Random Forest
confusion matrix also contained only 34 false positives and 1
false negatives across nearly 450 validation cases, underscoring
the power of ensemble methods.

An analysis of the flood occurrences from the Bangladesh
dataset shows that flood incidence is heavily concentrated be-
tween June and September, which correlates with the monsoon
months. Because the dataset records flood occurrences on a
monthly basis and relies on news or national reports for labels,
it can overlook some short-duration flash floods and events in
sparsely populated or poorly monitored areas. Therefore, the
model may be able to accurately predict monsoon-driven floods
but might underperform when predicting micro-scale events.

These findings are important to the growing body of research
on machine learningbased flood forecasting. By applying classi-
fication neural networks to a geographically extensive national
dataset, this study confirms that accurate flood prediction is
possible even in areas with complex climates. In contrast to
previous research that depends on localized or river-specific
information, the design of this model prioritizes generalizabil-
ityallowing adaptation to data-scarce regions that are susceptible
to floods. The broad applicability across various environments
serves to mitigate a significant research gap in literature where
models are often either too specifically designed or require huge
amounts of data. Additionally, the high validation accuracy in-
dicates that even relatively straightforward architectures, when
carefully adjusted, can equal more intricate alternatives. These
findings are comfortably within this study’s initial research tar-
get: to develop a scalable and accurate prediction model using
deep learning algorithms.

An important methodological choice in this study was lower-
ing the neural network’s decision threshold from 0.5 to 0.3 to
prioritize recall. In flood prediction, the consequences of false
negatives are typically more damaging compared to false posi-
tives. False negatives can lead to insufficient safety measures,
causing loss of lives, infrastructural damage. By contrast, false
positives can result in false alarms and temporary evacuation,
but its damage and cost is better than false negatives. Thus, the
threshold adjustment is a necessary precaution to prioritize re-
ducing false negatives in order to decrease the potential damage
caused by floods.

In the future, several possibilities could further enhance and
expand this work. The incorporation of human-infrastructure
variablessuch as urbanization, deforestation, and land use pat-
ternsmay reduce the residual error in some borderline cases.
Including time-series inputs through recurrent or attention-
based models could reflect temporal dynamics often preced-
ing extreme events. Automated hyperparameter selection (e.g.,
Bayesian search) and stacked ensembles that combine neural
networks, random forests, and logistic regression could improve
the model’s performance with minimal tuning. In addition, au-
tomated threshold optimization methods - such as cost-sensitive
thresholding or ROC Curve Analysis - could further refine the
balance between the number of false negatives and false posi-
tives by tuning the decision threshold to reflect real-world mis-
classification.

Despite the strong performance of the model, there are six sig-
nificant limitations that can influence the result. First, the dataset
is dominated by environmental factors such as rainfall, humidity,
and temperature, but no human and infrastructural variables.
Variables such as urbanization, land use pattern, and population
can significantly contribute to flood behavior in urban or popu-
lous areas. Without such characteristics, the model could lack
crucial context relevant to occurrences of floods. To address
these limitations, future work can augment the dataset with hu-
man and infrastructure-related data from various public sources
for example, census or population maps, OpenStreetMap for
data on roads and drainage systems, and satellite imagery and
combine them accordingly with the environmental data based
on time and location. This data can give the model important
context about where people and infrastructure can affect flood
risk and its potential damage. These richer inputs can then be
processed using multi-modal models (models that can process
image and tabular time-series inputs) which can improve its per-
formance by considering more flood-related variables and make
predictions more useful for planning and response. Second, the
dataset contains high collinearity among some variables (e.g.,
such as rainfall vs. flood, longitude vs. X coordinate) as demon-
strated in the correlation heatmap. Having such high correlation
between the variables can lead to unnecessary computations
and distorts the variance of the model’s coefficients. This study
did not implement feature selection or dimensionality reduction

© The National High School Journal of Science 2025 NHSJS Reports | 7



techniques to mitigate this limitation. Addressing this limitation
in future work such as implementing regularization (Lasso or
Ridge), Principle Componenet Analysis (PCA), or analyzing
the correlation heatmap can reduce unnecessary variables and
enhance the model’s stability and performance. Third, although
the dataset consists of an extensive number of flood events, it has
substantial class imbalance (4,132 flood events versus 361 no
flood events). Such an imbalance can lead the model to predict
flood conditions more accurately, potentially underestimating
vital flood events. Methods such as synthetic oversampling (Syn-
thetic Oversampling Minority Technique (SMOTE) or Adaptive
Synthetic Sampling (ADASYN)), class-weighted loss functions,
and cost-sensitive training can reduce the model’s bias and re-
call/precision tradeoffs. Therefore, implementing these methods
in future studies can help reduce bias towards the majority class
and provide a fairer assessment of the model’s performance.
Fourth, the time range of the dataset spans from 1948 to 2013.
While it does provide data on long term environmental trends,
it undermines the recent climatic patterns and the increasing
number of extreme weather events over the past decade due to
climate change8, limiting the model’s sensitivity to present-day
risks. Furthermore, this study’s model treats each monthly la-
bel as a static input rather than modeling temporal sequences.
Time series models such as long short-term memory (LSTM) or
gated recurrent unit (GRU) could help capture these seasonal
and temporal dynamics which are important flood factors. Fifth,
this study overlooked alternative deep learning structures, such
as 1D convolutional neural networks (CNN) for time-series data
and recurrent neural networks, which could help put the feed-
forward neural network’s performance into a broader context.
Lastly, the dataset has a limited geographical scope. Although
the dataset covers a wide range of environmental conditions
within Bangladesh, its scalability to global contexts - particu-
larly regions with vastly different climates, landforms - remains
uncertain. In addition, monthly label granularity and event
reporting biases may overstate the overall accuracy and over-
estimate the true accuracy of under-represented, minor events.
These limitations leave scope for further work to extend the
dataset and fairness to the model.

Overall, this study demonstrates that machine learning mod-
elswhen optimized using vast, high- quality datasetscan reliably
predict nearly 99% of flooding incidents. With further tuning of
the model inputs and architectures, it is becoming increasingly
feasible to approach real-time, reliable early-warning systems
that are able to prepare societies and mitigate the impacts of one
of nature’s most destructive forces.

All codes, preprocessing scripts, trained model weights, and
the dataset used in this study are available at the Github reposi-
tory in the Reference section.
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