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The rapid growth of social media has increased the presence of toxic online language, exposing users to hate speech, cyberbullying,
and harassment. Traditional moderation techniques, such as keyword filtering and manual review, are insufficient for moderating
content at a large scale and often fail to detect context-specific toxicity. This study addresses these limitations by developing a
binary classification model for identifying toxic comments with improved accuracy and contextual understanding. Using the
Kaggle Toxic Comment Classification dataset, I trained a Bidirectional Long Short-Term Memory (BiLSTM) neural network
enhanced with pre-trained GloVe embeddings. The original dataset with about 159,000 labeled comments across six toxicity
categories was restructured into binary labels (toxic vs. non-toxic) due to resource constraints and to focus on detecting harmful
content. Data preprocessing involved text cleaning, tokenization, padding, and embedding. The model was trained using the Adam
optimizer and binary cross-entropy loss. The BiLSTM model achieved over 70% accuracy and 78% true positive rate. However,
precision was only 54.1%, and the model missed 3,411 toxic comments (false negatives), highlighting that it is not a foolproof
solution for content moderation. The F1-score was approximately 64%. Word frequency analysis further revealed distinct patterns
in toxic vs. non-toxic comments, aiding model refinement. These findings show BiLSTM networks with semantic embeddings
significantly outperform traditional methods in toxic comment detection. While the model needs further refinements to address

precision limitations, this binary classification approach gives valuable insights for online content moderation strategies.
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Introduction

The rise of social media has revolutionized global communi-
cation, allowing individuals to share ideas and connect across
boundaries. However, this increase in connectivity has also
exposed users to harmful and toxic language. According to
a 2024 report by Dixon', over 500 million tweets are posted
daily, a number that reflects the enormous scale at which user-
generated content is produced. While most of this content is
benign, a significant portion includes hate speech, harassment,
and cyberbullyingthreatening user safety and well-being. Stud-
ies estimate that 15% of teens face cyberbullying each year, a
troubling trend associated with serious consequences such as
anxiety, depression, and sometimes even suicidal behavior.

Despite growing awareness, traditional moderation tech-
niquessuch as manual review and keyword-based filtersstruggle
to detect context-dependent toxicity, such as sarcasm, slurs, and
implicit threats. These methods often result in false positives
or fail to flag genuinely harmful content. Early machine learn-
ing approaches like Nave Bayes and Support Vector Machines
marked progress in automation but lacked the depth to fully
understand the evolving complexities of language.

Toxic comment classification, BiLSTM, GloVe embeddings, Natural Language Processing, cyberbullying,

This study addresses that gap by proposing a more sophisti-
cated solution: a deep learning framework using Bidirectional
Long Short-Term Memory (BiLSTM) networks enhanced with
GloVe word embeddings. Recent systematic reviews have
demonstrated the superiority of deep learning approaches over
traditional methods in hate speech detection, with ensemble
neural networks like HarmonyNet showing promise for social
media applications®. This architecture allows the model to cap-
ture contextual relationships in both forward and backward di-
rections while leveraging semantic meaning through pre-trained
word vectors. Due to computational resource constraints and to
focus on the primary objective of detecting harmful content, the
original six-category toxicity classification was simplified to a
binary classification problem (toxic vs. non-toxic). Together,
these technologies offer a promising research approach to un-
derstanding effective architectures for toxic content detection.

The main objective of this research is to develop and eval-
uate a binary text classification model capable of accurately
distinguishing toxic comments from non-toxic ones. By simpli-
fying the original multi-category dataset into binary categories,
the model balances resources with the goal of harmful content
identification. Performance is measured using metrics such
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as accuracy, precision, recall, and F1-score to assess the mod-
els effectiveness in filtering harmful language. This research
is grounded in recent advances in Natural Language Process-
ing (NLP), particularly in context-aware architectures. While
transformer-based models like BERT have pushed boundaries
in this space, this study focuses on BiLSTM because of its bal-
ance between performance and efficiency. It is important to
note that this binary classification approach, while computation-
ally practical, loses the precise distinctions between different
types of toxicity present in the original dataset. Additionally,
the model has several limitations that affect its usability in real-
world applications, including precision challenges that would
require careful threshold adjustment or, in some cases, human
review. These concerns align with recent research highlighting
the importance of addressing unintended model biases in toxic
comment detection systems>©. The model is not yet optimized
for real-time deployment and would require further development
for large-scale implementation. Future iterations could incorpo-
rate more toxicity categories, sarcasm detection, or the ability
to process in real-time. By presenting a binary classification
approach that shows improvements over traditional methods,
this work contributes to ongoing research in digital safety and
automated content moderation. The findings give insights into
effective architectures for toxic comment detection, though fur-
ther development would be required to create a production-ready
model. Ultimately, the goal is not just technical innovationbut
enabling a safer, more inclusive online environment.

Methods

To address the challenges in toxic comment classification, this
study uses a structured pipeline to maximize accuracy and relia-
bility. The model development process began with structured
text preparation, discussed in more detail in the Data Preprocess-
ing section. The classification model, further detailed below, is
based on a BiLSTM neural network architecture that captures
contextual dependencies in text. Evaluation metrics such as
accuracy, precision, recall, and F1-score are used to assess the
model’s performance and guide future improvements.

Description of the Overall Pipeline

The pipeline for this research project is designed carefully with
consideration of the challenges in toxic comment classification.
The major stages of this pipeline include data collection, prepro-
cessing, model design and training, and evaluation. The process
is structured in a way that efficiently transforms raw text into
meaningful features, which are fed into a deep learning model
created using Python and TensorFlow.

Data Collection

The dataset used in this study is taken from the Kag-
gle Toxic Comment Classification Challenge |https:

//www.kaggle.com/competitions/jigsaw—toxic—
comment-classification—-challenge/data. It
contains 159,000 user-generated comments with varying
levels of toxicity labeled as ’toxic’, ’severe toxic’, ’obscene’,
’threat’, ’insult’, and ’identity hate’. These data points provide
a solid base for creating an approach that might capture even
very subtle linguistic information”, following established
benchmarks for offensive language detection®.

Dataset Characteristics

The dataset utilized in this study has characteristics that are
essential for understanding the scope of the toxic comment clas-
sification task. The dataset has a significant class imbalance,
with non-toxic comments comprising approximately 90% of the
total dataset, while toxic comments make up the remaining 10%.
This imbalance shows real-world distributions where harmful
content makes up a minority of the online community. Com-
ment lengths also vary considerably across the dataset, ranging
from single-word responses to multiple paragraphs. The aver-
age comment length is approximately 394 characters, with a
standard deviation of 590 characters, showing substantial vari-
ability in user patterns. The text includes typical features of
online communication, like informal language, abbreviations,
and varying levels of grammatical structure, reflecting realistic
online environments. But it lacks other sorts of features, such
as emojis and further context beyond just the text, leaving room
for improvement.

Data Preprocessing

A preprocessing step is used to clean and prepare the text
from the dataset. This involves removing unneeded elements
from the text, tokenizing the text into sequences, standardizing
the input lengths by padding, and using pre-trained embeddings
to understand the semantic relationships®. Such steps would
enhance the ability of the model to detect complex patterns in
text.

Model Architecture and Training

The core of the classification model is a Bidirectional Long
Short-Term Memory (BiLSTM) network. This architecture pro-
cesses input sequences in both forward and backward directions,
allowing it to capture context effectively. The model uses a
dense output layer with sigmoid activation for the classification
of toxicity into its several categories. The model is trained us-
ing the Adam optimizer with binary cross-entropy loss, both of
which are good for a binary text classification task'.

Evaluation

The performance of the model is evaluated using several
metrics: accuracy, precision, recall, F1-score, and a confusion
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matrix. These metrics provide an idea of the strengths and weak-
nesses of the model, helping to guide further improvements.

It is important to note that no explicit rebalancing strategies,
such as class weighting or oversampling, were applied during
training. The model was trained directly on the imbalanced
dataset, allowing us to evaluate model behavior under realistic
data conditions, while leaving targeted imbalance mitigation for
future work.

Data Preprocessing

Effective data preprocessing is essential to any successful ma-
chine learning model; in the context of NLP, this becomes even
more important because of the noise in the data. Although the
comments were already classified into 6 categories, for better
accuracy and due to the limited power supply on my end, the
categories were regrouped under two major labels: Toxic and
Non-Toxic. The raw text data required many preprocessing steps
to clean and convert it into a form usable by the model. This
involves cleaning, tokenization, and the representation of text in
a structured format. These are explained as follows:

Text Cleaning: The raw text data is generally noisy, including
unwanted characters like punctuation marks and special symbols.
The text needs to be cleaned by removing those irrelevant ele-
ments in preprocessing. This will make the model focus on the
actual content of the comment rather than the non-linguistic ele-
ments. However, this approach may have accidentally removed
important contextual cues for detecting forms of toxicity such
as sarcasm or emotional tone. Punctuation marks, exclamation
points, question marks in rhetorical contexts, or capitalization
patterns can provide valuable insights for identifying toxic lan-
guage that relies on the tone of the content rather than just pure
language.

Tokenization: Tokenization is the process of breaking the
cleaned text into smaller units. These tokens are the basic
units in further steps of the model. Tokenization allows the
model to treat each word individually, which helps it understand
the meaning of the text. Mathematically, tokenization can be
represented as:

Tokens = Tokenize(Tijean)

Where Tokens is the list of tokens resulting from the cleaned text
Clean. These are the smallest meaningful units of text, typically
words or roots, separated depending on the tokenization method
used. For example, Tokens for a cleaned sentence such as "The
movie was amazing!” can appear as ["The”, "movie”, "was”,
”amazing”]. They are then transformed into their numeric rep-
resentations with the help of pre-trained GloVe embeddings.
Padding: Since the lengths of text inputs vary, padding is per-
formed to make all tokenized sequences of equal length. This
ensures that all input sequences are of the same size, thereby

allowing for optimal performance from the model. This sort of
padding is achieved by adding zeros to shorter sequences. The
model is also trained to ignore these paddings, allowing it to
focus on the main message of each input.

GloVe Embeddings: Pre-trained GloVe embeddings are used to
improve the semantic representation of words. The embedding
maps each word to a dense vector that reflects its meaning based
on context. The transformation of a word w to its corresponding
embedding w is defined as:

w = GloVeEmbedding(w)

where w represents the embedding vector for the word w,
and GloVe provides a pre-trained, context-independent word
representation. By following these preprocessing steps, the raw
text from the dataset is transformed into a format that the model
can effectively use to make accurate predictions. These steps
help reduce unnecessary details, allowing the model to focus
only on the most important information for classification. After
preprocessing, the dataset was simplified into a binary classi-
fication systemlabeling all toxic comments as “Toxic” and all
other comments as "Non-Toxic.” This transformation is shown
in Table 1.

Table 1 Mapping of original dataset categories to binary labels.

Original Categorization | Binary Categorization
Toxic Toxic

Severe Toxic Toxic

Obscene Toxic

Threat Toxic

Insult Toxic

Identity Hate Toxic

Non-Toxic Non-Toxic

This categorization allowed for a better training process while
still being able to focus on the identification of harmful content
effectively. However, the preprocessing used in this study has
limitations that may have affected the models overall perfor-
mance. The complete removal of punctuation and capitalization,
while effective for standardizing the data, may have uninten-
tionally removed important context clues for detecting subtle
forms of toxicity. Future iterations could address this limitation
by looking at preprocessing strategies that keep punctuation
while still reducing noise. These hybrid preprocessing methods
could keep important context needed to detect hidden threats
and sarcasm, which may help improve the models accuracy why
flagging content that relies on tone and emphasis instead of just
words.
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Model Architecture

The classification model used in this study is a Bidirectional
Long Short-Term Memory (BiLSTM) network built on pre-
trained GloVe embeddings. Each input into the model in-
cludes tokenized and padded sequences of length 200, which
are mapped into 100-dimensional vector representations using
a non-trainable embedding layer pre-installed with GloVe em-
beddings (vocabulary size = 20,000). A SpatialDropout1D layer
with a rate of 0.2 comes after the embeddings to reduce feature
co-adaptation. The core of the network is a Bidirectional LSTM
with 128 units in each direction (forward and backward), pro-
ducing an interconnected output of 256 dimensions. Dropout
regularization (rate = 0.3) is applied after the BILSTM and again
after the fully connected hidden layer to help prevent overfitting.
The hidden dense layer is made up of 64 units with a ReLU
activation, followed by the final output layer consisting of one
neuron with a sigmoid activation that produces the probability
of a toxic versus non-toxic classification. The network was
trained using the Adam optimizer and binary cross-entropy loss.
To ensure the results are robust and not dependent on a single
initialization, the BiLSTM model was trained five times with
different random seeds (42, 7, 21, 100, 123). A quick summary
of the model architecture is shown below in Table 2.

Table 2 Summary of the architecture with GloVe embeddings, showing
layer types, output dimensions, and parameter counts.

This architecture highlights the balance between the layers
that capture word context and with layers that convert them into
a binary classification output. The embedding and BiLSTM
layers capture semantic relationships in the text, while the dense
layers clean these representations into a binary classification
output. With just over 2.25 million trainable and non-trainable
parameters, the model can remain lightweight when compared
to transformer-based alternatives, such as BERT, which can have
hundreds of millions of parameters. In addition to its manage-
able size, the BILSTM network also demonstrates efficiency
advantages in the training and test phases. Training the model
on the full dataset required approximately ~ 3 hours on a single
NVIDIA RTX 3060 GPU, while inference time averaged under
5 milliseconds per comment. Memory usage during training re-
mained below 8 GB, significantly lower than typical transformer
models. These metrics show that the BILSTM with GloVe em-
beddings offers a strong trade-off between performance and
resource requirements, providing a flexible option for experi-
mentation while still capturing complex contextual relationships
in user-generated text .

Model Architecture and Training

The model architecture is a BILSTM network, which combines
the power of LSTM (Long Short-Term Memory) with the ability
to process text in both forward and backward directions. This
bidirectional processing allows the model to gather context from
past and future tokens, which greatly outperforms more tradi-
tional methods used in similar experiments. It can understand
sentence structure and contextualize context-dependent words
much better. The use of an LSTM helps it avoid the problem of
vanishing gradients common in traditional RNNs and thereby
retain important long-range dependencies across sentences or
even paragraphs.

The first layer in the model is an Embedding layer. It takes
an input consisting of the padded and tokenized sequences and
converts them into dense vectors using pre-trained GloVe em-
beddings. These embeddings map each token (word) in the input
sequence to a fixed-dimensional vector representation, shown
as x; for the token at time step 7. This representation captures
semantic meaning, allowing the model to generalize better even
if exact words have not been seen during training.

The embedded vectors are then fed into the BiLSTM layer,
which processes sequences in both forward and backward direc-
tions. At each time step ¢, the BILSTM computes a hidden state
h, based on the input vector X, and the previous hidden state
ht —1-

h[ == BiLSTM(h171 ) X[)

Here, h; represents the hidden state at time step ¢, h,_; is the
previous hidden state, and X, is the input vector for the token at

Layer Output Parameters | Notes
Shape
Input  (to- | (None, 200) | O Tokenized,
kens) padded
sequences
Embedding (None, 200, | 2,000,000 Pre-trained
(GloVe, 100) embeddings,
frozen) not trainable
Spatial (None, 200, | O Rate = 0.2
Dropout1D 100)
Bidirectional | (None, 256) | 234,496 128  units,
LSTM dropout =
0.2
Dropout (None, 256) | O Rate = 0.3
Dense (hid- | (None, 64) 16,448 Activation =
den) RelLU
Dropout (None, 64) 0 Rate = 0.3
Output (None, 1) 65 Activation =
Dense Sigmoid
Total Pa-| — 2,251,009 —
rameters
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step ¢. The hidden state h; encodes contextual information from
both past and future tokens.

The output is then passed through a dense layer with a sigmoid
activation function to produce the predicted probability for each
comment being toxic. The predicted probability y; for a given
sample i is computed as:

yi=0o(W;-h,+b;)

In this formula, W; represents the weight vector for the output
neuron corresponding to sample i, b; is the bias term, and h; is
the final hidden state from the BiLSTM layer and o represents
the sigmoid activation, which maps the output to the range
[0,1]. The value y; represents the predicted probability that
the comment is toxic. To prevent overfitting, a dropout layer
was added, which randomly sets a fraction of input units to zero
during training. This helps the model to generalize better instead
of just memorizing the training data.

The model is trained using the Adam optimizer, which dy-
namically adjusts the learning rate for efficient convergence, and
the binary cross-entropy loss function:

N
L= Y [ielou(p() + (1~ ) log (1 ~ p(x)
i=1

Where N is the number of samples in the training set, y; is the
true label for sample i (1 if toxic, O if non-toxic), and p(y;) is
the predicted probability from the model for that sample. The
binary cross-entropy loss penalizes incorrect predictions more
heavily, thereby focusing the training process on minimizing

C€ITOorS.

Evaluation metrics

In the case of the trained model, it is evaluated based on several
key evaluation metrics. These allowed me to identify how well
the model generalizes and to what extent it can classify toxic
comments accurately. These metrics are explained as follows.
Accuracy: This metric gives the overall proportion of correct
predictions over all categories. It is calculated as follows:

Accuracy: This metric gives the overall proportion of correct
predictions over all categories. It is calculated as follows:

TP+TN
TP+TN+FP+FN

Where TP represents true positives, TN is true negatives, FP
is false positives, and FN means false negatives. While high
accuracy indicates good performance, it can sometimes be mis-
leading because in imbalanced datasets the model’s outputs may
be biased toward the majority class.

Precision and Recall: Precision and recall are used to measure
the model ability to classify comments as toxic correctly. Pre-
cision describes what fraction of comments predicted as toxic

Accuracy =

are toxic. Recall, on the other hand, measures what fraction of
all toxic comments are correctly identified by the model, with a
greater look on reducing false negatives; in this case a non-toxic
comment predicted as toxic.

TP

- Recall = i
TP+FP

Precision = =
TP+ FN

F1-Score: The F1-score combines precision and recall into a
single number. It gives a balanced view of the model perfor-
mance, which helps when the datasets are imbalanced, just like
the one we are using. The F1-score is defined as:

_ 2 - Precision - Recall

Precision + Recall

A high Fl-score means that the model is good at accurately
identifying toxic comments.

Confusion Matrix: This is a visual way to look at the models
predictions, it shows the output in a neat and easy to analyze
format. This allows us to pinpoint areas where the model strug-
gles, in this case it would be if the model is unable to accurately
classify toxic or nontoxic comments accurately. The detailed
confusion matrix results are presented in the Results section
(Figure 5).

When looking at all the metrics they help to paint a clear
picture of how the model is doing. Accuracy provides infor-
mation on how often the model gets it right overall. The F1-
score combines the precision and recall into a single number
that shows the model’s performance on a balanced scale even in
class-imbalanced data. All performance metrics (accuracy, preci-
sion, recall, F1-score) are reported as mean =+ standard deviation
over multiple runs with different random seeds to account for
variability in model initialization and training. The confusion
matrix breaks down the results by showing where the model
does well and where it needs improvement. These give a view
of how the model has performed, thereby giving an idea of how
generalizable it is.

Ethical Considerations

This study aims to help solve important ethical issues related
to toxic comment classification. The dataset includes harmful
content such as offensive language and discriminatory remarks,
so I handled it carefully throughout the research. During data
processing and analysis, steps were taken to reduce exposure
to harmful material while keeping the research accurate. Mul-
tiple privacy protections strategies were used to safeguard user
identities since the dataset contains user-generated content from
public sources. Although the comments in the Kaggle dataset
were already anonymized, I took further care to make sure no
personal information could be identified from the text during
analysis. The dataset also has a class imbalance, with about
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90% non-toxic comments and 10% toxic comments, which can
lead to algorithmic bias in predictions. Additionally, certain
types of language, slang, or underrepresented groups could be
misclassified more often, introducing further bias. Recent stud-
ies have specifically examined how biases in NLP models can
unfairly impact hate speech detection performance across dif-
ferent demographic groups#3, emphasizing the critical need
for fairness-aware model development!®. Using a simple binary
classification (toxic or not) helps focus on detecting harmful
content while reducing the complexity. I also manually looked
at misclassified examples to identify patterns of potential bias
and to inform future improvements. Still, the possibility of
algorithmic bias is acknowledged and should be addressed in
future model use. This research follows responsible Al practices
by being open about the methods and recognizing the limits of
automated content moderation. The results goal is to improve
understanding of toxic comment detection, and not to replace
human moderators. Any future use of this model should in-
clude human review and significant improvements for fairness
to ensure the desired outcomes.

Software and Environment

The code was created in Python 3.10.4. The main libraries and
their versions were: TensorFlow 2.15.0, NumPy 1.26.4, Pandas
2.2.1, scikit-learn 1.4.1, and Matplotlib 3.8.3. Pre-trained GloVe
embeddings (100-dimensional, 6B tokens, released 2014) were
used. Random seeds were 42, 7, 21, 100 and 123 across NumPy
and TensorFlow to ensure reproducibility. The dataset was
downloaded from Kaggle in March 2025 (competition close
version). Model training used a batch size of 128, learning rate
of 0.001, and 12 training epochs. All experiments were run on a
single NVIDIA RTX 3060 GPU with 16 GB VRAM.

Results

Data Summary

In the dataset, approximately 15,000 comments (9.4%) were
labeled as toxic across multiple categories, while the remain-
ing 144,000 (90.6%) were non-toxic. To better understand the
linguistic characteristics of both types of comments, I first exam-
ined the overall word frequency distributions across the dataset.
Common vocabulary across all comments included neutral terms
such as the, and, and you. However, when separated by class,
toxic comments have a much larger emphasis on slurs, profan-
ity, and aggressive language, while non-toxic comments more
often reflected neutral or positive tones. Figures 1-3 show these
frequency patterns, highlighting both shared vocabulary and
category-specific keywords. These analyses provided insight
into the linguistic markers most associated with toxicity, helping
to contextualize the models learning.

10 Most Common Words in the Entire Dataset

500000 -

400000 A

300000 A

Frequency

200000 -

S G L R PO P L

@ ¥

100000 -

Words

Fig. 1 A graph of the top ten most common words appearing in all
comments in the data set.

5 Most Common Words in Toxic Comments

10000 4
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6000 -

Frequency

4000 -

2000 -

Words

Fig. 2 This plot shows the five most common words which appear only
in toxic comments, after filtering out simple stop-words as well as the
top 10 most common words in the data.

Figures 1-3 show the top keywords across all comments
(Figure 1), toxic-only comments (Figure 2), and non-toxic com-
ments (Figure 3). As expected, toxic comments contained high
frequencies of explicit terms such as fuck, shit, and other slurs,
whereas non-toxic comments often included words associated
with a neutral sense, such as article and talk. Interestingly, cer-
tain ambiguous words (e.g. kill) appeared in both classes when
looking further down the bar graph, showing how important
the role of context is in determining whether a comment should
be considered as toxic. Beyond word frequencys, the length
of the comment also revealed important trends. The dataset
ranged from single-word comments to over 200 words, with
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5 Most Common Words in Non-Toxic Comments
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Fig. 3 This plot represents the top five most frequently occurring
words for non-toxic comments, again removing stop-words and the top

10 most frequent words.

the majority (about 68%) falling between 5-30 words. Toxic
comments were slightly shorter on average (~ 18 words) than
non-toxic comments (~ 24 words), and contained direct insults
or short, aggressive phrases. Very short comments (< 10 words)
were disproportionately toxic (12.7% toxic vs. 7.8% non-toxic),
suggesting that shortness is often associated with toxic remarks.
On the other hand, longer comments (> 50 words) were more
likely to be non-toxic but were one of the biggest causes of false
negatives during classification, as they sometimes buried toxic
language within the otherwise neutral content. These obser-
vations highlight how both word choices and comment length
directly influence classification and provide valuable context for
evaluating the models performance in future iterations.

Model Performance

Evaluating the performance of the BILSTM model requires care-
ful consideration of the right metrics, particularly because of the
dataset’s class imbalance where non-toxic comments make up
90% of the data and toxic comments only 10%. In such signifi-
cantly imbalanced scenarios, traditional accuracy metrics can
be misleading and fail to capture the model’s true effectiveness
in classifying toxic comments. Before examining the model’s
performance, it is important to understand why accuracy is not
the best metric for this classification task. In a dataset where
90% of comments are non-toxic, a naive classifier that simply
predicts “non-toxic” for every single comment, without learn-
ing any patterns about toxic language whatsoever. This model
would still achieve 90% accuracy. This demonstrates why accu-
racy alone provides such a little insight into a model’s ability to
detect the minority class (toxic comments), which is the biggest
goal for any content moderation systems.

Given these considerations, the model’s performance is best
evaluated through metrics specifically designed for imbalanced
classification problems like the one we are dealing with:
F1-Score (63.6%): The F1-score provides the most meaningful
single performance indicator for this task, as it harmonically
balances precision and recall into a single metric. The achieved
F1-score of 63.6% demonstrates that the model maintains rea-
sonable balanced performance in identifying toxic content while
accounting for both false positives and false negatives. This
metric is particularly valuable because it penalizes models that
achieve high recall at the expense of precision, or vice versa.
Recall/True Positive Rate (77.7%): The model successfully
identified 11,883 out of 15,294 total toxic comments present in
the test set, achieving a recall of 77.7%. This high recall rate
is particularly critical for content moderation applications, as it
indicates the model successfully catches approximately 4 out of
every 5 toxic comments that users post. From a harm prevention
perspective, this recall rate represents substantial protection for
online communities, as most of the harmful content would be
flagged for review or removal.

Precision (54.1%): When the model flags a comment as toxic,
it makes the correct classification 54.1% of the time. While this
precision presents notable challenges for real-world deployment
due to the significant number of false positives it generates,
it still represents meaningful pattern recognition that goes far
beyond random classification. The precision indicates that the
model has learned to identify linguistic patterns associated with
toxicity, though it tends to be overly sensitive to certain features.

Figure 4 gives the detailed breakdown of model predictions
across all categories, providing insight into the specific types
of errors the model makes: The confusion matrix reveals the
following patterns: True Positives (11,883) represent comments
correctly identified as toxic, showing successful detection of
harmful content. False Negatives (3,411) are toxic comments
that the model failed to identify, representing missed opportu-
nities to flag harmful content. True Negatives (134,155) show
non-toxic comments correctly classified as benign, indicating
the model’s ability to avoid flagging appropriate content. False
Positives (10,112) are non-toxic comments incorrectly flagged
as toxic, representing over-moderation. The model achieved
an overall accuracy of 70.3%, but this metric requires careful
interpretation given the severe class imbalance in the dataset.
When carefully examining the accuracy of 70.3%, it comes
out that this number reflects the models sophisticated ability
to detect toxic patterns in the minority class, but at the cost of
some classification errors on the majority class. This illustrates
accuracy alone is not only insufficient but can be actively mis-
leading when evaluating classifier performance on imbalanced
datasets. While the model shows promise, several limitations
must be acknowledged for transparent evaluation. However, the
precision score of 54.1% indicates a significant limitation for
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Confusion Matrix
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Fig. 4 Confusion matrix showing the distribution of true positives,
false negatives, true negatives, and false positives for toxic vs.
non-toxic classifications

real-world deployment. This low precision means that approxi-
mately 46% of comments flagged as toxic are non-toxic, which
could result in a great number of false positives in practical
applications. Additionally, the model’s false negative rate of
22.3% means it missed 3,411 toxic comments out of 15,294
total toxic instances, representing harmful content that could
continue to cause harassment and create unsafe environments
for users if left unaddressed.

To better understand how the binary model performed across
the original six toxicity categories, I conducted a post hoc anal-
ysis of true positives and false negatives within each class label
(toxic, severe_toxic, obscene, threat, insult, and identity_hate).
Although the model was trained only to tell toxic apart from non-
toxic comments, this breakdown helps to clearly show which
types of toxicity were more likely to be correctly identified and
which were more overlooked the most. A visual representation
of the post hoc analysis for each category is shown in Figure 5.
As Figure 5 shows, the model has a strong detection on the gen-
eral toxic class, with most of those comments correctly flagged.
However, when we look at the individual categories such as
insult, obscene, and identity_hate, the model has showed a pro-
portionally higher false negative rate. This analysis indicates
that the binary classifier frequently misclassified these more
specific or context-dependent forms of toxicity as non-toxic,
proving that identity-related biases can affect detection accuracy
across different demographic groups'?. The threat category,

True Positives and False Negatives by Original Class
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Fig. 5 True positives (green) and false negatives (red) across the
original categories.

which was rare in the dataset, also has notable errors due to lim-
ited representation during training. This analysis underscores
a limitation of binarization: collapsing multiple distinct toxic
categories into a single class can hide performance imbalance
across subcategories and implying the need for future work in
multi-label classification to more effectively capture the nuances
of harmful online discourse.

Traditional Approach vs BILSTM/RNN Approach

This study identified toxic comments using a Bidirectional
Long Short-Term Memory (BiLSTM) Recurrent Neural Net-
work (RNN). To evaluate the effectiveness of this approach, I
also implemented a comparison with traditional methods by cre-
ating a baseline model using Term Frequency-Inverse Document
Frequency (TF-IDF) vectorization combined with a Multinomial
Nave Bayes classifier on the same preprocessed dataset. The
baseline model used identical text preprocessing steps (cleaning
and tokenization) as the BiLSTM model, and a TF-IDF vec-
torization with a maximum of 10,000 features. Both models
were trained and evaluated on the same train-test split to achieve
a fair comparison. The biggest difference between these ap-
proaches is how they process and understand the text they are
given. Traditional text processing methods like Bag-of-Words
(BoW) and TF-IDF handle text by focusing on word frequency
without considering word order or context. Thus, these methods
often fail to capture the gentler versions of toxic language, such
as sarcasm or implicit threats, and require much more manual
interruptions to maintain accuracy. They also perform poorly
on longer texts, missing the bigger contextual picture and mis-
classifying the comments. In contrast, the BILSTM model’s
ability to understand long-range dependencies is key for accu-
rately identifying toxic language in longer comments. Unlike
regular RNNs, which can be very forgetful, LSTMs have special
gatesinput, forget, and outputthat keep track of the information
to retain over time. The BiLSTM architecture processes text in
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both forward and backward directions, capturing context from
past and future tokens simultaneously. Additionally, the model
uses pre-trained GloVe word embeddings to represent words
with vectors carrying semantic meaning, allowing it to start with
useful word representations that capture the deeper relationships
between words. This comparison is shown in Table 3.

Table 3 Performance comparison between BiLSTM + GloVe and
TF-IDF + Naive Bayes models.

Model Accuracy | Precision | Recall F1-
Score

TF-IDF 65.4% 51.7% 52.2% 56.6%

+ Naive

Bayes

BiLSTM | 703% =+ | 54.1% + | 77.7% =+ | 63.6%

+ GloVe 1.2% 2.0% 1.5% +
1.7%

The comparison shows the advantages of the deep learning
approach. The BiLSTM model achieved a true positive rate of
approximately 78%, a precision of about 54%, and an F1-score
of 64% (calculated from TP=11,883; FP=10,112; FN=3,411).
The direct comparison on identical data demonstrates that the
BiLSTM model achieved better performance across all key met-
rics, with a 4.9 percentage point improvement in accuracy and
a 25.5 percentage point improvement in recall compared to
the traditional TF-IDF approach. The F1-score improvement
of 7.0 percentage points means the model has a better overall
balanced performance. These results confirm the advantages
of deep learning approaches over traditional methods for toxic
comment classification, looking at earlier studies that reported
true positive rates around 60%"2 and 65%"4 using traditional
approaches. Other hybrid models, such as convolutional and
GRU-based architectures'®, show promise and further support
the effectiveness of BILSTM models for toxic comment classifi-
cation across different languages and contexts”.,

Discussion

The results of this study show that using BiLSTM networks
combined with GloVe embeddings greatly improves the clas-
sification of toxic comments compared to traditional machine
learning methods. The model achieved about 70% accuracy and
a true positive rate of 78%, which is better than earlier methods
that usually reached true positive rates between 60 and 65 per-
cent. This shows that deep learning is powerful in capturing the
complex and subtle features of toxic language. The BiILSTMs
ability to read text in both forward and backward directions help
it understand the context around each word, unlike simpler meth-
ods such as bag-of-words that ignore word order and meaning.
Using pre-trained GloVe embeddings also helps the model gen-

eralize better by representing the meaning of words, allowing
it to detect toxic comments even when offensive language is
hidden with synonyms or different phrasing. The analysis of
word frequencies confirmed that toxic comments often contain
more rude and insulting words, which supports how the model
focuses on these patterns.

The dataset had a class imbalance, with about 90% non-toxic
and 10% toxic comments, reflecting real social media content.
Simplifying the problem to a binary classification helped the
model focus on the main task of finding harmful content. While
an Fl-score of 63.6% gives a balanced view of performance
given the class imbalance, this score is relatively low and shows
significant limitations that would need to be addressed before
any practical implementation. More importantly, the precision
of only 54.1% presents substantial challenges that make the cur-
rent model unsuitable for real-world deployment without further
improvements. This low precision means that nearly half of all
comments flagged as toxic would be non-toxic, creating vital
over-moderation issues that could upset users trust and platform
usability in any production environment. To address these pre-
cision limitations in future versions, several strategies could be
explored: (1) adjusting the classification threshold to improve
the precision-recall trade-off based on specific requirements,
(2) investigating alternative loss functions such as focal loss to
better handle class imbalance while improving precision, (3) or
using ensemble methods or post-processing techniques to re-
duce false positives. These improvements would be essential for
getting from a research prototype to a production-ready system.

Additionally, the model still missed 3,411 toxic comments,
which is an important limitation because those harmful com-
ments could still cause damage if not caught. Also, cleaning
steps that removed punctuation and capitalization may have re-
duced the models ability to detect tone or sarcasm. The choice
to use only two classes may also oversimplify the range of toxic
language, missing some important differences in severity or
type'¥. These issues highlight why human review and further
improvements are needed to make detection more reliable. An-
other limitation of this study arises from part where I simplified
the original six toxicity categories into a single binary label
(toxic vs. non-toxic)'®. While this made training more com-
putationally practical, it also removed the differences between
qualitatively different forms of harm, such as threats, insults,
or identity-based hate speech. Removing these categories can
weaken the language patterns the model needs to tell different
types of toxic comments apart from each other. For example,
missing a direct threat is far more serious than missing a generic
insult, yet the model treats them both as equally toxic due to the
binary framework. Future work should therefore evaluate errors
with respect to the original categories to better understand per-
class weaknesses and guide improvements toward multi-label
or hierarchical classification approaches<".

The imbalanced distribution of toxic vs. non-toxic comments
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was a strong influencer when it comes to model behavior L3 con-

tributing to the relatively high recall but lower precision. Future
iterations could explore strategies such as class weighting or
oversampling methods! (e.g., SMOTE) to address the issue that
arises due to this imbalance. Implementing these approaches
may reduce the observed number false positives and improve
overall precision without sacrificing the recall reported by the
model 1.

Compared to newer, more complex transformer models, the
BiLSTM model offers a good balance between accuracy and
efficiency. This efficiency could potentially make BiLSTM
approaches worth looking into for environments with limited
recourses, though additional development would be needed for
any practical use. Although transformer models might reach
higher accuracy, BILSTM models need less computing power
and are easier to run. Future work could explore combining
BiLSTM with transformer models to improve understanding of
context and robustness**. Developing better ways to measure
real-world impact of errors and using techniques that capture
emotional tone and story structure could also help improve re-
sults. Besides technical results, automatic toxic comment detec-
tion raises important ethical questions. These include concerns
about bias, fairness, freedom of speech, and understanding cul-
tural differences. It is important to develop these models openly,
regularly check for bias, and always include human moderators
to make sure decisions are fair and reasonable, particularly when
dealing with identity-related terms that may introduce system-
atic biases%. Future automated systems could potentially help
classify large amounts of content quickly, but they would still
require human oversight for final decisions in complex cases**.

Overall, this study aims to provide insights toward developing
tools that could eventually support safer and more respectful
online communities. The results show that the BILSTM model
improves classification when compared to traditional methods,
achieving about 70% accuracy and a true positive rate of 78%.
However, a notable limitation of the model is that it missed
3,411 toxic comments (false negatives). If ever the model were
to be used in a real-world application this is an issue that should
be placed at the highest priority. This shows that while the BiL.-
STM model does shows promise, it cannot fully replace human
moderation or guarantee complete safety. I believe that keeping
the internet, a positive place is a responsibility that goes further
that this research and should be a priority for everyone involved
in an online environment. Future versions should aim to reduce
both false positives and false negatives while maintaining model
efficiency for the best results.
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