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Importin, a family of proteins essential for nuclear transport, specifically regulates the translocation of DNA repair enzymes,
which execute a crucial process for maintaining genomic stability. KPNA2, a member of this family, is often overexpressed in
cancerous tissues, a phenomenon that seems paradoxical given its critical role in supporting genomic stability. This study aimed to
assess how missense mutations (SNPs) in the ARM domains of importin-α1 impact its structural integrity and cargo-binding
ability, particularly with the double-stranded DNA repair enzyme NBS1. SNPs across a set of domains were analyzed using
predictive scoring tools (e.g., CADD, PolyPhen), structural modelling (AlphaFold, PyMOL), and protein-protein docking tools
(ClusPro, HADDOCK), to assess both affected binding affinity and structural conformation. A cancer genome analysis was
also performed using GEPIA2. The majority of selected missense variants demonstrated high probabilities for severe structural
deformation and stark disruptions in binding affinity. The results from this study demonstrated specific SNP-induced structural
damages, as well as affected cargo docking abilities. These findings may reveal the nuanced relationship between SNP location
and severity of missense mutations, as well as the unreliability of predictive measures compared to comprehensive biochemical
and energetic analyses. These conclusions warrant and may later inspire deeper experimental studies on the mechanistic role of
importin mutations in DNA repair efficiency and impairment.
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Introduction

Importin, a type of karyopherin, is responsible for the trans-
portation of all NLS-bearing proteins from the cytoplasm to the
nucleus of a cell1. Importin protein complexes bind to their
cargo’s nuclear localization signal (NLS), a specific stretch of
amino acids that acts as a nuclear signal guideand escort the
cargo into the nucleus, facilitating their entry via the nuclear
pore complex (NPC). Importin proteins are divided into two
subclasses: importin-α and importin-β , which jointly form an
importin heterodimer2. Importin-α , the smaller of the two
karyopherins, is necessary for the direct binding of the importin
heterodimer to its protein cargo, and consequently, must main-
tain a stable structure and function3. Functioning synergistically,
importin-β facilitates the entry of the importin heterodimer into
the NPC and there, disengages from its cellular cargo2,4.Various
studies have shown instances where importin-β can act self-
sufficiently as a monomer, performing the roles of both importin
proteins without the need of importin-α , yet these are consid-
ered aberrant5; many of them occur when the cargo contains a
non-classical NLS (ncNLS). Regardless of their class, importin
transports a multitude of proteins with diverse characteristics,
yet among the most crucial are DNA repair enzymesenzymes
that specifically act as the catalysts of DNA repair pathways,

such as Base Excision Repair (BER) or Double-Stranded Break
Repair (DSBR).

In mammalian cells, there exist six subunits of the importin-α
protein class, each with distinct structural and functional charac-
teristics. Often considered the main cNLS-binding importin-α
protein is the importin-α1 protein, commonly referred to by its
gene name KPNA2 (karyopherin subunit-alpha 1). The importin-
α1 protein consists of three critical components: the importin-β
binding domain (IBB), located at the N-terminus end of the
protein, ten armadillo (ARM) domains, and the C-terminus end,
which is necessary for cNLS-mediated protein transportation6.
The IBB is the specific region of the protein where the importin-
β binds to form the importin heterodimer complex, measuring
approximately 58 amino acids in length (UniProt ID: P52292)7.
The ARM domains are specific regions of the protein, each
approximately 40 amino acids in length, which are repeating
sequence motifs. The importin-α1 protein specifically contains
ten ARM repeat regions, with ARM 1 beginning at residue 71
and ARM 10 ending at residue 496 (UniProt ID: P52292)7. In
importin-α proteins, the ARM domains are divided into two
regions classified by their cargo binding abilities: the major
binding domain and the minor binding domain. For KPNA2,
ARMS 2-4 are considered major binding sites, while ARMS
6-9 are classified as minor binding sites8. ARM 5, although not
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divided into a distinct binding domain, carries large structural
and indirect effects on the rest of the importin; ARMs 1 and 10
are considered irrelevant in the context of the other armadillo
domains.

Specific genetic mutations can be tracked across populations
in studies known as Genome-Wide Association Studies (GWAS).
GWAS measures the density and frequency of mutations known
as single-nucleotide polymorphisms, commonly referred to as
SNPs9. These mutations are particular, single-nucleotide mu-
tations (SNVs) that exist in at least one percent of a species
population. Although not all, many SNPs can also influence the
phenotype of an organism, in a possibly immoderate manner10.
Despite extensive study of importin pathways, the impact of
specific KPNA2 variants on cargo binding and nuclear transport
efficiency and functionality remains poorly understood. Our
study investigates the structural and functional consequences
of rare missense SNPs in the ARM domains, specifically the
major and minor binding regions, of KPNA2, particularly focus-
ing on their effects on DNA repair cargo docking11. Moreover,
several data have shown how KPNA2 is largely overexpressed
and dysregulated in many cancer tissue data sets, adding clinical
significance to this study as well12,13,14. It is hypothesized that
specific SNPs in key ARM regions will structurally and energet-
ically disrupt KPNA2s binding affinity with DNA repair cargo.
Here, we present peculiar and nuanced relationships between ge-
nomic and proteomic variants, as well as other factors that may
have an impact on mutation-induced structural and functional
damage. Each of our chosen SNP-induced KPNA2 proteins
underwent tests that intrinsically described the effects that their
respective SNP had on their stability. Subsequently, they were
analyzed to assess the possible severity of these effects on a
widespread impairment of the DNA repair system.

Materials and Methods

SNP Selection and Identification

Data specifying the genomic and protein-level locations of
KPNA2 SNPs were extracted from Ensembl (release 114) and
imported into the Numbers application for organization and
analysis15. For each ARM region (2 – 9), the SNP with the
highest PolyPhen score was initially selected to ensure that each
region was represented by a mutation with high predicted struc-
tural and/or functional disruption. This approach allowed us
to explore the structural impact of mutations across the entire
cargo-binding surface of KPNA2. These SNPs were then en-
tered into ProtVar (v1.4) using their respective genomic variant
IDs to obtain predicted values for AlphaMissense pathogenicity,
CADD (Combined Annotation Dependent Depletion), and ∆

∆G (change in Gibbs free energy)16,17. The aforementioned
criteria were used as they established a wide field of structural,
pathogenic, and energetic markers for our SNP selections. If a

given SNP received uniformly low scores across these predic-
tive measures, the SNP with the next-highest PolyPhen score
from that region was selected and evaluated. This iterative
process continued until seven distinct SNPs were identified,
each demonstrating relatively strong scores across structural and
pathogenicity prediction metrics. Final allele frequency data for
each SNP were retrieved from GnomAD (v4.1.0) and dbSNP
(Table 1)18,19. Note: although this study refers to these variants
as SNPs for simplicity, all seven selected variants exhibit allele
frequencies below 1%, and are therefore technically classified
as SNVs (single-nucleotide variants) rather than SNPs. The
number of SNPs within each ARM region (2 – 9), along with
the distribution of corresponding CADD and PolyPhen scores,
was individually graphed. Statistical significance for CADD
and PolyPhen score differences across regions was assessed
using Kruskal – Wallis testing (n=312/ARM; total n=2496). To
analyze the ∆ ∆G score distribution, one SNP was randomly se-
lected for approximately every 10 amino acids between residues
112 – 456the residues between ARMS 2 and 9. The ∆ ∆G values
of these randomly chosen SNPs were plotted alongside the ∆

∆G values of the hand-selected SNPs on the same graph for
comparison and added analysis. Statistical significance was
calculated using Spearman correlation (n=42).

Importin-α1 Modeling and SNP Mapping

The KPNA2 wild-type structure was obtained from the Al-
phaFold Protein Structure Database (v3)20,21. The models
pLDDT scores exceeded 90 for the majority of residues, with an
average pLDDT of 86.51, and alignment with RCSB PDB entry
3WPT showed a TM-score of 0.96 and RMSD of 1.48 , indicat-
ing high structural similarity. The AlphaFold-predicted structure
of KPNA2 was used in place of the experimental structure from
the RCSB PDB (PDB ID: 3WPT), as the AlphaFold model
included an additional 94 amino acids absent from the crystal
structure. The file was then uploaded to PyMOL (v3.1.6.1)22.
In ribbon format, each ARM region within the major and minor
binding domains, as well as ARM 5, was color-coded, and a
polished KPNA2 model was created. Two surface models of
KPNA2 were also generated, each distinctively highlighting
either the major or minor binding domain of the protein. Fol-
lowing, a sphere model of KPNA2 was created that highlighted
the residual locations of the seven chosen missense variants
from Figure 1, as well as the ARM domain in which they were
located. Finally, using the Wizard Mutagenesis tool on PyMOL,
the P244H SNP was chosen to be displayed using a ball-and-
stick model to highlight the structural change between the wild
and variant amino acids within the protein itself.
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Table 1 Summary of the seven selected rare missense variants, including RSID, reference and alternate nucleotides, affected protein residues,
and corresponding wild-type and mutant amino acids. Structural and pathogenicity predictions, ∆∆G (Gibbs free energy), CADD,
AlphaMissense, and PolyPhen, are reported for each SNP, along with individual allele frequencies.

# SNP ID Ref Nuc Alt Nuc AA Pos ARM # AA Change ∆∆G CADD Alpha-Missense Allele Freq. PolyPhen
1 rs1059558 G A 365 7-8 Gly/Ser 3.97 28.3 0.98 A=0.000021 0.950
2 rs11545989 C G 165 3 Pro/Arg 2.14 26.7 0.54 G=0.050257 0.987
3 rs2071267327 T G 116 2 Ile/Ser 2.91 28.8 1.00 G=0.000007 0.998
4 rs11545987 C A 244 4 Pro/His 13.58 27.9 0.98 A=0.00004 1.000
5 rs1200044026 C T 275 5 Ile/Thr 2.88 26.8 0.91 C=0.000001 0.981
6 rs1555705006 T C 320 6 Ile/Thr 3.36 28.4 0.91 C=0.000002 0.997
7 rs538665386 G A 446 9 Asn/Asp 3.72 27.2 0.94 G=0.000005 0.927

Protein-Protein Docking and KPNA2 Binding Affinity

Initial modeling aimed to evaluate the ARM repeat region of
the protein in isolation. The KPNA2 PDB file was uploaded to
PyMOL, where the PDB file was edited to only include ARM
regions 2-9 of the protein22. The new, cut KPNA2 protein was
uploaded to FoldX (v5.0), where it underwent computational
energy minimization and stability control23. The cut, energy-
minimized, and stabilized KPNA2 file was duplicated seven
times, and each file was uploaded separately to PyMOL22. Each
file was then mutated at a single, specific residue to mimic one of
the seven chosen missense variants from Figure 1, totalling eight
files: one wild-type (WT) KPNA2 and seven mutants22. Each
PDB file was uploaded to ClusPro (v2.0) to undergo a protein-
protein docking interaction between the importin-α1 and a DNA
repair enzyme24. ClusPro is a protein – protein docking algo-
rithm that generates and scores thousands of potential docking
conformations based on rigid-body docking, energy minimiza-
tion, and clustering of low-energy structures to predict the most
likely binding orientations. For the study, Nibrin (NBS1), an
essential repair enzyme in the DSBR pathway, which plays a
necessary role in repairing cancerous tissues, was selected as
the model DNA repair enzyme for our importin-cargo docking
tests25,26. The NBS1 protein file (PDB) was likewise obtained
from the AlphaFold Protein Structure Database (v3)20,21. Dock-
ing using ClusPro, however, yielded no results across all vari-
ants, including WT24. In response, we systematically tested
four structure preparation combinations:

1. Cut (ARM only) + FoldX

2. Uncut (full protein) + FoldX

3. Cut + No FoldX (raw)

4. Uncut + No FoldX (raw)

Each ClusPro docking method was performed thrice. Vari-
ants and wild-type files across all preparation combinations
were tested for quality assessments and structural integrity com-
parisons using MolProbity (v4.5.2) (Supplementary Table 2)27.
Across all 3 replicates, docking outcomes and scores for all

methods were parallel. Only method 4 (Uncut + No FoldX)
produced valid ClusPro docking outputs for the WT. These find-
ings (Supplementary Table 1) informed the decision to proceed
with uncut, non-FoldX-treated structures for all ClusPro dock-
ing runs. Notably, one FoldX-minimized uncut structure did
return valid results, though this was not consistent across all
variants (specifically WT) and thus excluded in further analyses
for uniformity.

Once method 4 was confirmed for pipeline use, full protein
preparation pipeline methodology was repeated using method 4
and ClusPro docking tests were performed thrice again. For each
mutant test, the returned cluster 0 was downloaded and loaded
into PyMOL, along with the WT-KPNA2 and NBS1 docking
file22. Central and lowest energy docking scores for cluster
0 were also downloaded from ClusPro and plotted; statistical
significance was determined using pairwise Welchs t-tests with
applied Bonferroni correction. Downloaded cluster 0 models
per variant were analyzed using MolProbity for post-docking
quality assessments and ClusPro result verifications (Supplemen-
tary Table 3)27. To visualize structural differences, an overlay
model was created, with each docking result shown in a different
color to highlight any deviations. RMSD and RMSD cur values
were calculated for each WT-KPNA2 vs. mutant-type (MT)
KPNA2 comparison. Each KPNA2 PDB file, attached with
the NBS1 PDB file, was also uploaded to HADDOCK (v2.4),
where it underwent a round of biochemical protein-protein dock-
ing28. HADDOCK is a protein – protein docking tool that
uses biochemical and biophysical informationsuch as interface
residues, mutational data, or NMR constraintsto guide the dock-
ing of biomolecular complexes. For all HADDOCK tests, active
residues defined for KPNA2 were provided using a true-interface
(TI) restraint file between WT-KPNA2 and NBS1, calculated
via the haddock-restraints Command Line tool; cutoff distance
for restraint generation was set at 5 in accordance with reported
optimal parameters28,29. NBS1 residues 401-520 were chosen
as active after locating an approximate location for the NLS on
the NBS1 using cNLS Mapper and PSORT II; passive residues
for both KPNA2 and NBS1 were self-defined based on active
residues. Surface area solvent accessibility (SASA) scorings
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per residue across all variants (WT and MT) were calculated
and plotted using FreeSASA (v2.1.2) to determine whether our
HADDOCK configuration should or should not exclude buried
residues from KPNA2-NBS1 docking tests (Supplementary Fig-
ure 1; cutoff SASA threshold for buried residue exclusion was
set at 20% in accordance with reported optical parameters30.

Each variant was tested in triplicate, with metrics correspond-
ing to the top 10 generated HADDOCK clusters (lowest Z-
scores) being extracted (30 total scores per variant); only 10,
rather than all, metrics were used for analysis and statistical
testing per replicate due to the variance of total cluster quantities
across variants. To ensure consistency, replicate-level means
were initially computed and assessed via one-way Kruskal-
Wallis; no significant intra-variant differences were found, so
individual replicate means were not reported. For final visual-
ization and statistical analysis, all 30 scores per variant were
aggregated. Mean and standard deviation were calculated and
visualized using bar plots. One-way Kruskall-Wallis followed
by pairwise testing (Mann-Whitney U with Bonferroni correc-
tion) was used to statistically compare variants. Protein stability
(∆∆G) was then calculated via FoldXs Stability command for
each replicate of each variant24; final scorings per variant were
calculated and graphed based on mean across replicates, and
standard deviation nor intra-variant statistical analysis was re-
ported due to negligible (<1.00) numeric differences across
replicates.

As controls, we included a benign KPNA2 variant
(p.Ser384=), docking with wild-type NBS1, and a scrambled
NLS cargo negative control, docking with wild-type KPNA2.
To generate the negative cargo control, the predicted NLS of the
NBS1 protein was randomly shuffled, and used as a reference
for manual amino acid rearrangement via PyMOL; the shuffled
NLS was used as the active residue region in HADDOCK for the
negative control docking. Each control was subject to the same
pipeline as the pathogenic variants, and each was performed
with equal replicates as described above. Numerical results,
however, were not reported due to the results being consistent
with standard expectations for positive and negative controls.

The complementary docking platforms ClusPro and HAD-
DOCK take radically different approaches to protein – protein
interactions. While HADDOCK incorporates user-defined re-
straints and evaluates models with energy terms and Root Mean
Square Deviation (RMSD), a measure of atomic-level positional
differences, ClusPro places more emphasis on large-scale sam-
pling and clustering, evaluating models primarily through the
Fraction of Common Contacts (FCC), which determines whether
binding contacts are preserved despite slight conformational
shifts. We ensured a more rigorous and balanced examination
by utilizing both platforms, with HADDOCK offering ener-
getic and structural validation and ClusPro emphasizing contact
integrity.

KPNA2 Transcriptomic Analysis

Following the suit of other importin-focused computational stud-
ies, the findings of our study were correlated with insights into
KPNA2 presence and function in cancerous tissues31. GEPIA2
was used to analyze KPNA2 gene expression across 33 human
tissue types, comparing cancerous and non-cancerous samples32.
GEPIA2, a large-scale gene expression analysis database for
both control and tumor samples, obtains data from tumor and
normal samples in both the TCGA and GTEx databases, respec-
tively. A gene expression profile was generated to visualize
quantitative differences between healthy and tumor tissues of
the same type32. Seven diverse tissues were then selected for
more detailed analysis using box-and-whisker plots32.

Cancerous KPNA2 expression levels were further used to
perform a Pearson correlation analysis with NBN (NBS1-coding
gene)32. Lastly, Kaplan – Meier overall survival (OS) curves
were generated to compare patient survival rates based on high
versus low KPNA2 expression across 33 cancer types, and a
Mantel-Cox test was conducted to determine individual p-values
and overall statistical significance32.

Statistical Analysis

All statistical analyses were performed using base R (v4.3.1)
and were either integrated within visualization scripts or de-
scribed in the corresponding figure captions. Both p-values and
effect sizes were reported where applicable. Power sizes (when
applicable) are reported in above sections of the methodology.
T-tests, either Students or Welchs, were applied to directly com-
pare pairwise WT and variant data, while Kruskal-Wallis testing
was used for dataset-wide statistical analysis, specifically for
datasets without WT/variant conditions; Bonferroni FDR cor-
rection was applied to all pairwise statistical tests. Usage of
Pearson vs Spearman testing was determined based on visual
analysis of data distributions; normality was assumed for all
datasets in our study. Statistical significance depicted as ns, non-
significant; *P < 0.05; **P < 0.005. All plots were generated
using ggplot2 (v4.0.0), and the majority of custom scripts are
provided in Supplementary Document 1.

Computational predictions of importin function have previ-
ously been shown to align with experimental validations. For
example, Riddick and Macara (2005) combined systems-level
simulations with real-time nuclear import assays to validate the
operation of computationally-modelled importin-α/β – medi-
ated transport, while Panagiotopoulos et al. (2025) used bioin-
formatic tools to identify a novel NLS motif for importin-8 that
was subsequently confirmed in vitro33,34. These notable studies
provide evidence of experimental validation and the generation
of similar findings to computational pipelines that investigate
structural insights of various importin proteins.

Although not directly replicating these studies, our compu-
tational procedure is derived from a combination of modeling
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and docking approaches, including ClusPro and HADDOCK,
similar to those employed in importin-focused or conceptually
related investigations31,35,36.

Comprehensive software details, custom (scripting) code, spe-
cific protein – protein docking parameters, and corresponding
random seeds are provided in Supplementary Document 1.

Results

Characterization of the KPNA2 pathway and SNP Expres-
sion on Functional Impact Across ARM Repeats

Figure 1 explores how SNP density and predictive impact scores
are distributed across the ARM domains of the KPNA2 protein.
In Figure 1A, the diagram depicting the classical importin-α
transport system accurately demonstrates the associated risks
with missense variants in KPNA2 and other importin-α cod-
ing genes. Although SNPs of any gene can cause a range of
catastrophic effects on an organisms phenotype, the diagram
emphasizes the direct correlation between SNPs in importin-
coding genes and an elevated risk of pathway-wide DNA repair
failure. SNPs, though, range in severity and biological signifi-
cance, indicating that an ARM domain-wide analysis of trends
in SNP characterization would be beneficial and can be used as
additional context in further modelling and docking tests.

In examining the distribution of missense SNP counts across
the ARM repeats (Figure 1B), an interesting pattern emerged:
most ARM repeats (2-9) displayed relatively consistent SNP
counts, ranging from 30 to 40. However, ARM 4 stood out,
displaying a notably higher count of 51 SNPs. This suggests
that ARM 4 may be more prone to variation compared to other
regions. On the other hand, ARM repeats 3 and 5 had the fewest
SNPs, each with just 35, indicating these regions may harbor
fewer variants overall.

These findings prompted a deeper analysis to understand
whether certain trends existed between SNP density, their sever-
ity, and their genomic locations. To investigate the potential
impact of these SNPs, CADD (Combined Annotation Depen-
dent Depletion) scoring was employed to model the average
deleteriousness of SNPs within each ARM domain. When look-
ing at the median CADD scores (Figure 1C), ARM 3 was an
unexpected outlier, peaking at a score of 25, despite its relatively
low SNP count. In contrast, ARM 5, with its similarly low SNP
count, exhibited the lowest median CADD score of 21. However,
it was notable that both ARM 3 and ARM 5 contained extreme
outliers in their CADD scores, which were significantly higher
than the median values. This indicates a clear inverse relation-
ship between SNP density and the predicted deleteriousness of
those variants across these regions.

PolyPhen scores (Figure 1D) reinforced this pattern. ARM 3,
with its relatively low SNP count, still had the highest structural
and functional disruption predictions, suggesting that the few

variants present in this region could have a disproportionately
high impact. ARM 5, conversely, showed lower predicted ef-
fects from the amino acid substitution despite its similarly low
SNP count. These results highlight the intricacies of SNP dis-
tributions and their varying computationally backed impacts on
protein function depending on the ARM repeat. Finally, when
examining the ∆∆G values for residues 112 to 456 (Figure 1E),
no clear trends emerged in terms of position or domain, suggest-
ing either an incompatibility between ∆∆G and other predictive
metrics or a nonlinear basis for ∆∆G distribution. Overall, the
analysis suggested important regional differences in SNP dis-
tributions, with ARM 3 and ARM 5 both presenting unique
patterns in terms of both their SNP counts and their associated
deleteriousness scores. These findings may imply that SNP den-
sity alone does not fully explain the functional consequences of
genetic variation in these regions; yet, an isolated analysis of
predictive metrics of a few SNPs also proves to be inaccurate
for assuming protein-wide trends.

Structural Organization and Disruption of KPNA2 by Mis-
sense SNPs

As previously discussed in Figure 1, clear relationships are
apparent between SNP density within ARMs and the median
structural and functional effects on KPNA2. However, these
genomic trends do not always align with proteomic location.
This acknowledgment prompted further exploration into the re-
lationship between the genomic positioning of each SNP and its
corresponding proteomic location. Domain-wide SNP analysis
was not conducted on protein models, primarily due to logistical
constraints and the assumption that significant findings would
be unlikely. Instead, we focused on targeted structural analy-
ses, providing a more detailed understanding of how specific
missense variants may impact the KPNA2 protein.

The ribbon model (Figure 2A) of the entire KPNA2 protein
illustrates the overall curvature and highlights the location of
each ARM repeat along the binding groove and structural con-
tour. This model offers a general overview of the protein, but
for a deeper focus on the ARM domains, Figure 2B provides a
surface-rendered model. This representation distinguishes be-
tween the major binding region (ARMs 2 – 4, Figure 2B(i)) and
the minor binding region (ARMs 6 – 9, Figure 2B(ii)). Accord-
ing to Table 1, variants I116S, P165R, and P244H are located
within the major binding region, whereas I320T, G365S, and
N446D reside in the minor region. Notably, despite the greater
functional relevance of the major domain, predictive scoring
suggests that SNPs in the minor region may exert comparable
functional and structural disruptions; this implies that both do-
mains are functionally significant and potentially vulnerable to
disruption. The models also show that these regions extend into
the proteins binding groove, reinforcing the idea that mutations
in either domain could impair the cargo transport capabilities of
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Fig. 1 A) Canonical nuclear import pathway involving importin-α1 and importin-β , along with the full effective translocation of an example
DNA repair enzyme: (1) KPNA2 protein idling in cytoplasm, (2) KPNA2 binding to NLS of DNA repair enzyme, (3) Importin-β protein binding
with KPNA2-enzyme complex at IBB, (4) importin-enzyme complex translocation through the NPC, (5) individual detachment from complex;
KPNA2 binds with CAS and importin-β binds with RAN-GTP, and both exit the nucleus while repair enzyme locates DNA, (6) DNA repair
initiates using imported enzyme. B) Bar graph of the number of missense SNVs per KPNA2 ARM (2-9) domain. C) Box plot of CADD score
distribution across all SNPs within each KPNA2 ARM (2-9) domain. Extremely significant group differences were detected
(p = 0.007, ε2 = 0.0402). D) Box plot of PolyPhen score distribution across all SNPs within each KPNA2 ARM (2-9) domain. Statistical
analysis revealed significance across group distributions (p = 0.03, ε2 = 0.0278). E) Scatter plot of ∆∆G scores of 35 randomly selected SNPs
across residues 112-456 (dark gray), along with ∆∆G scores of the seven hand-chosen SNPs (light gray). Spearman correlation coefficient was
calculated and statistical significance was reported (p = 0.87, p = 0.02)

KPNA2.
To further explore the structural and functional nuances of

this observation, we modelled the 7 missense variants on the
WT-KPNA2 protein (Figure 2C) for visual analysis. Among the
variants mapped, variant I116S is the only mutation embedded
within the central binding groove, while the remaining variants
reside on the proteins periphery or internal core. Aside from this
distinction, the model reveals few consistent structural trends;
yet, the structural distinctiveness of SNP I116S was recognized,
and it was used to better understand any further abnormalities it
might introduce into KPNA2s structure.

While each SNP was modeled on the protein for visual analy-
sis, we focused on performing a chemical visual analysis of one
specific SNP to predict and assess potential major residue-level
structural damage before conducting docking tests. Due to its
extreme scoring metrics (Table 1), SNP P244H was chosen to
be modelled. The histidine residue modelled (Figure 2D(i))

is noticeably bulkier, with 10 atoms and bonds compared to
prolines 7 (Figure 2D(ii)), and it extends further outward, poten-
tially clashing with the adjacent residues. Notably, the proline
points into the page while histidine projects outward, suggesting
a directional clash that could destabilize the proteins folding.
These details suggest the high possibility of steric hindrance in-
troduced by this SNP, explaining the high predictive scores from
Table 1, including the modelled SNPs extreme ∆∆G of 13.58
kcal/mol. Moreover, this visualization also supports the idea
that the most structurally damaging variants may involve two
structurally divergent amino acids. Before any dynamic testing,
we hypothesized that SNP P244H is the most structurally desta-
bilizing SNP in the KPNA2 ARM domains. However, dynamic
testing is essential to confirm or challenge our hypothesis, as it
will provide insights into the energetic and structural feasibility
of the P244H mutation in the context of KPNA2s function.
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Fig. 2 A) Ribbon model of KPNA2 with color-coded ARM (2-9) regions and a mildly transparent surrounding protein structure; the black
regions demonstrate residues not allocated to a specific ARM. B) Two surface KPNA2 ARM structures: (i) White surface-displayed KPNA2
ARM structure with a highlighted major binding region (purple); (ii) Grey surface-displayed KPNA2 ARM structure with a highlighted minor
binding region (orange). C) Sphere model of KPNA2 with color-coded ARM (2-9) regions and the seven hand-selected missense variants
modelled (black), annotated using HGVS protein notation. White spheres represent residues not allocated to a specific ARM. D) Close-up ribbon
models of ARM 4 showing the wild-type and mutant residue at position 244: i) wild-type proline (Pro244) in ball-and-stick, ii) mutant histidine
(His244) in ball-and-stick.

Structural and Biochemical Impact of KPNA2 SNP Variants
on Cargo Docking

Figure 3 compares modelling, scoring, and graphical analysis of
KPNA2s cargo docking abilities and binding affinity under dif-
ferent genomic contexts. Figures 3A, 3B, and 3C exclude data
from variants P165R and P244H, as those SNP-induced KPNA2
proteins failed to return any docking results from ClusPro; thus,
no models or docking scores were outputted. These results, in-
dependently, may indicate severe structural deformation caused
by both variants, which likely destabilized the protein structure
incredibly, inhibiting any form of plausible, structural docking
with the NBS1 enzyme. SNP 244H, based on Figure 2C, is
located in the core of KPNA2, suggesting that core-centered or
near missense variants could have larger structural effects on
the protein compared to others. Due to their complete docking
failures in ClusPro, our study considered P244H and P165R
as the most damage-inducing missense variants in the ARM
domains of KPNA2, as they originally had the highest PolyPhen
metrics from their respective ARM domain in Ensembl. As

a result, these tests are not used for the large majority of the
analyses completed in Figure 3, as docking structures or scores
could not be computed by ClusPro.

In order to quantify successful structural dockings from Clus-
Pro, we can analyze the relative trends between outputted dock-
ing scores that describe the overall predicted binding affinity
across many test runs. The graph depicting the central version
of these scores (Figure 3A) showed that all variant tests ex-
hibited analogous scoring (approx 1300), except I116S, which
resulted in a score of approximately -1275. Despite minor fluc-
tuations, I116S was the only variant to exhibit a central docking
score greater than the wild-type docking test, possibly signifying
weaker binding between the KPNA2 protein and NBS1 when
residue 116 contains an isoleucine-serine missense mutation.
The I116S test also showed a shorter range of docking scor-
ing (min -1575), whereas all other tests resulted in minimum
values of approximately -1750. Moreover, I116S displayed a
differing graphical structure than the other tests, with slightly
higher scoring density at two other instances (-1200 and -1450).
Statistical testing, however, revealed no major differences be-
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Fig. 3 A) Violin plot depicting the central weighted docking scores from KPNA2-NBS1 ClusPro docking tests. Statistical comparisons were
performed using Welchs t-test; all p-values > 0.05 (ns). B) Violin plot depicting the lowest weighted docking scores from KPNA2-NBS1
ClusPro docking tests. Statistical comparisons were performed using Welchs t-test; all p-values > 0.05 (ns). C) Docked MT-KPNA2 with NBS1
(blue) tests overlayed on WT-KPNA2 with NBS1 (red), with individual RMSD and RMSD cur values: i) Docking with a G-S mutation at
residue 365, ii) Docking with an I-S mutation at residue 116, iii) Docking with a N-D mutation at residue 446, iv) Docking with an I-T mutation
at residue 275, v) Docking with an I-T mutation at residue 320. A color key is provided on the right-hand side. D) Display of seven bar graphs,
each representing a distinct structural, biochemical, or energetic property of KPNA2. In all graphs, the wild-type KPNA2 variant is highlighted
in orange for comparison. Standard deviation (SD) bars were plotted to depict intra-variant replicate scoring divergences.

tween the scoring means across any of the variants, including
I116S. Alongside central docking scoreswhich depict the most
common and centralized docking predictionwe also assessed
the lowest docking score predictions (Figure 3B), which are
estimated based on the most energetically favorable (highest
binding affinity) docking test across all models. Similarly to
Figure 3A, variant I116S showed an elevated median (-1350),
while the other tests medians hovered around -1375. However,
the graphical structure and density of the I116S variant were
extremely similar to those of the other tests, contrasting the
results from Panel 3A. These results, coupled with the location
of I116S (Figure 2C), may imply that groove-localized variants
could be the largest destabilizers to the importins cargo binding
abilities. Overall, these biophysically derived scores indicated
a limited range of results, especially when aiming to answer
specific questions around the nuances of each individual dock-
ing test. Moreover, for the tests that did not generate plausible
docking structures (P244H and P165R), ClusPro similarly failed
to produce docking scores, indicating an incomplete scope of

results from these two figures alone. Nevertheless, Figures 3A
and 3B did indicate a peculiarity within the I116S-KPNA2 dock-
ing tests, which supports previous findings in the visual analysis
of SNP mapping on WT-KPNA2. Although docking scores
represent a summarized ranking of each docking test, further
analyses must be completed to fully understand the docking
relationships between each MT-KPNA2 and NBS1; such meth-
ods include the use of root mean square deviation (RMSD) to
measure the physical divergence between wild-type vs mutant-
type importin-α1 and NBS1 enzyme docking. The manually
overlaid docking structure configurations (Figure 3C) visually
appeared relatively similar across all tests, with a consistent
ratio of blue (MT-KPNA2) vs red (WT-KPNA2) structures. Yet
again, the outlier of this trend is SNP I116S (Figure 3Cii), which
appeared to visually display more of the blue structure overlaid
on the red structure. This distinction, although not quantitative
or extremely informative, does imply that the I116S-KPNA2
and NBS1 faced larger structural disruptions compared to the
other variants. This structural change, however, did not prevent
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docking, again suggesting that I116S primarily reduces binding
affinity rather than fully disrupting the docking interface, such
as missense variants P244H and P165R.

SNP N446D (Figure 3C(iii)) also displayed a slight increase
in blue appearance, yet not nearly as evident as the I116S-
KPNA2 docking model, and therefore, insignificant. For quanti-
tative analysis of the same structural differences, we used RMSD
to pinpoint the exact severity of the structural separations. The
RMSD (avg=0.039 ) and RMSD cur (avg=0.189 ) scores re-
mained low and consistent across all variant testing, with the
only slight outlier being SNP I116S, as expected, resulting in the
highest of both types of RMSD scoring. Mirroring Figures 3A,
3B, and 3C, the RMSD docking simulations indicated consis-
tent structural divergencies across all tests, except I116S, which
again showed higher deformations of some sort. It is important
to note that the conclusions that arise from the visual analyses
executed in Figure 3C are relative, as a control relationship
between blue and red cannot be accurately measured without
proper experimental testing and is solely based on comparisons
to a wild-type computational test.

Alongside the usage of structural docking predictions
from ClusPro, our study executed parallel biochemical and
energetically-focused docking tests in HADDOCK; this choice
aimed to identify key incongruities between varying docking
methods, especially two that use contrasting scientific pro-
cedures. To evaluate how each missense mutation impacted
KPNA2s interaction with NBS1, a range of biochemical and
structural metrics from HADDOCK were analyzed and visual-
ized (Figure 3D). Most variants weakened the interaction, as
indicated by higher HADDOCK scores reflecting less favor-
able binding energies compared to the wild-type. The most
extreme disruption came from N446D, which consistently pro-
duced the weakest performance across all key categories, in-
cluding HADDOCK score, Van der Waals energy, electrostatics,
restraint violation energy, and buried surface area. These results
could strongly suggest a broad and severe destabilizing effect of
N446D on the KPNA2-NBS1 complex, as well as the possibility
of it being classified as an allosteric destabilizer.

In contrast, the findings from the P165R and P244H were in-
credibly discernible. While all other variants resulted in weaker
biochemical interactions, these two were the only variants to
produce lower HADDOCK scores than the wild-type, suggest-
ing improved binding affinity of a moderate amount. Both
also showed lower restraint violation energy (RVE), indicating
fewer structural or energetic conflicts in the predicted dock-
ing. However, when compared alongside the ClusPro results,
where P165R and P244H were the only variants that failed to
bind to NBS1 at all, the conclusions become quite complex.
This contradiction enhanced biochemical scores in HADDOCK
but no physical binding observed in ClusProcould imply that
while these mutations may favorably alter the overall energy
of the docking interaction, they could simultaneously heavily

interfere with docking plausibility in three-dimensional space,
ultimately preventing a physical complex from being computed.
Otherwise, both variants still demonstrated reduced BSA, VDW,
protein stability, and electrostatic energy compared to the wild-
type, following the general trend of more solvent-exposed and
potentially destabilized mutations.

Specifically across other variants, these trends demonstrated
less variability. For instance, I320T uniquely exhibited improved
Van der Waals energy suggesting tighter atomic packingbut was
not distinguishable in any other metric. Meanwhile, FoldX-
predicted stabilities remained similar to the wild-type for most
variants, except P244H, which again deviated with a significant
decrease in folding energy, reinforcing the notion that its effects
are distinct from the other SNP tests; this finding is similar to
the predictive metrics that were obtained from ProtVar (Table 1).
Taken together, these results point toward a broader pattern of
weakened KPNA2-NBS1 interaction across most variants, with
most metrics having indicated specific missense variants that
markedly trump over others, in terms of severity and conforma-
tional impact. Moreover, when considered as a whole, Figure 3
highlights P165R and P244H as uniquely contradictory cases, as
they both exhibit signs of energetic favorability, yet ultimately
fail to bind in structural docking simulations. Contextualizing
these findings, these two variants are located nearby and in the
same binding region (Figures 1, 2), suggesting a possible loca-
tional linkage between the two variants and inherently providing
a reason for the similar effects they have on KPNA2.

To validate our docking pipeline, we included both a be-
nign KPNA2 variant and a scrambled NLS sequence as con-
trols. The benign variant yielded docking energies and structural
quality scores that closely paralleled wild-type across ClusPro,
MolProbity, and HADDOCK, consistent with its expected non-
pathogenic behavior. In contrast, the scrambled NLS produced
no stable complexes in ClusPro and returned non-physical or
unrealistic values in HADDOCK, confirming that the pipeline
does not generate plausible results from biologically meaning-
less inputs. Together, these controls support the specificity and
reliability of the docking analyses.

Transcriptomic Landscape of KPNA2 and Genomic Analysis
in Cancerous and Non-Cancerous Tissues

Although missense mutations in KPNA2 can be detrimental
regardless of the cargo used for binding, NBS1 was specifi-
cally chosen due to its critical role in double-stranded break
repair (DSBR). The usage of a DNA repair enzyme adds bio-
logical significance, as missense mutations in KPNA2 will have
a larger amplification consequence if the cargo being bound
is a repair enzyme. Furthermore, correlations could also be
created to link specific SNPs to possible cell-wide DNA repair
failure. Regardless of SNP mutations, however, KPNA2 ex-
pression, correlation, and impacts on survival levels in cancers
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Fig. 4 Gene expression of KPNA2 in cancerous and non-cancerous human tissues, with additional analysis of NBN expression and patient
survival data from GEPIA2. A) Gene expression profile across 33 tissue types, comparing cancerous (red) and non-cancerous (green) tissues
(matched TCGA and GTEx data). B) Box-and-whisker plot of KPNA2 expression in seven selected tissue types, comparing cancerous (red) and
non-cancerous (gray) samples. Significance of two-tailed t-test depicted as *P < 0.01. Bars lacking asterisks signify insignificance. C) Pearson
correlation plot between KPNA2 and NBN expression across 33 tissue types, with reported correlation coefficient (R) and P < 0.0001. D)
Kaplan – Meier overall survival (OS) curves comparing patients with high (red) vs. low (blue) KPNA2 expression across 33 cancer types, with
corresponding P < 0.0001. All plots were generated via GEPIA2.

can help identify oncogenic linkage between importin-α pro-
duction and cellular responses (Figure 4). Moreover, the genes
expression can help solidify the exact consequential effects that
damaging missense mutations will have on the cell. Across the
tissue profile (Figure 4A)which consists of 33 various tissue
and cancer typesKPNA2 gene expression in each tissue is el-
evated in the cancerous samples compared to their respective
non-cancerous tissues. Kidney chromophobe (KICH) and acute
myeloid leukemia (LAML) are the only instances, however,
where the median gene expression (TTM) of the non-cancerous
tissue (KICH = 15.37, LAML = 203.97) is greater than that of
the cancerous tissue (KICH = 6.22, LAML = 54.44), indicating
severe genetic downregulations. In comparing the median gene
expression scores, the cancerous tissue that ranked the highest
was TGCT (229.51), with the highest median for non-cancerous
tissue being the aforementioned LAML test (203.97). Spreads of
expression levels do vary across the KPNA2 profile; yet, BRCA
had the highest range, with its highest (cancerous) expression
value at approximately 690, indicating possible heterogeneity
within the collected data.

While the expression profile revealed broad overexpression
of KPNA2 across cancerous tissues, the box plot (Panel 4B)
offers a refined view of seven representative tissue types. In
stomach adenocarcinoma (STAD) and ovarian cancer (OV),
for instance, cancerous samples (STAD = 70.07, OV = 73.81)
showed markedly elevated KPNA2 levels compared to their
non-cancerous counterparts (STAD=11.47, OV=4.68), with rela-
tively tighter distributions, suggesting consistent overexpression.
In contrast, kidney renal clear cell carcinoma (KIRC) displayed
minimal differential expression (T=18.4, N=16.61), implying a
more scarce role of KPNA2 in this tissue. Despite the size of
their separations, all the randomly selected tissues in Figure 4B
showed higher expression levels in cancerous tissues, implying
that a consistent and predominant role of KPNA2 expression
exists in most cancerous tissues. This correlation exists (to our
knowledge) without the addition of majorly deforming SNPs in
KPNA2, signifying that the total linkage between the KPNA2
protein and DNA repair integrity is substantial.

Cross-expressionthe instance where two genes are co-
regulated in a way where their expressions are biologically
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correspondingcan also be analyzed between two genes expres-
sions in cancerous tissues. To further explore the biological
relationship between KPNA2 and NBN, beyond the fact that
they encode physically interacting proteins, a Pearson correla-
tion plot was used (Figure 4C) to display the genes relationships
within both cancerous and non-cancerous tissue variations. The
correlation coefficient (R) for the plot was 0.25, demonstrating
a positive yet mildly strong correlation between the two genes
expressions, regardless of the tested tissues malignancy. Despite
the relatively weak correlation, the p-value (< 0.0001) does sug-
gest an extreme likelihood of achieving the observed correlation
coefficient of 0.25 and indicates the relationship as statistically
significant; yet, the biological significance is insufficient to make
any formal conclusions.

As a final analysis of the genomic landscape of KPNA2, we
aimed to connect our study to clinical data and explore whether
any trends exist between KPNA2 expression and the overall
survival (OS) rates of patients with varying KPNA2 expressions
(Figure 4). Kaplan-Meier OS curves, which compare patients
with low (Group A) vs high (Group B) KPNA2 expression across
33 tumor types (based only on tumor expression levels), demon-
strated lower percent survival in Group A across the entire span
of the plot, with some minor fluctuations in differences between
the two groups. The identical p-value (< 0.0001) as Figure 4C
indicates strong statistical significance, supporting the associa-
tion between KPNA2 overexpression and poor cancer prognosis.
As previously found, KPNA2 appears to have clear biological
effects and connections to cancer development, regardless of
the SNPs expressed in the gene, as its expression skyrocketed
drastically, and patient survival in the high-expression group
declined exponentially over 400 months. Therefore, these SNP
mutations appear to induce biologically and clinically significant
disruptions in both in vitro and in vivo cellular environments.

Discussion

Domain-wide SNP analysis (Figures 1A, 1C) across the ARM
repeats of KPNA2 revealed intriguing patterns in the relation-
ship between SNP density and predicted impact. Although the
correlationwhere the most severe SNPs are located in the least
dense regions of the genedoes not follow a linear or easily mod-
eled pattern, it does reflect unique sensitivity. This insight could
form the basis of a broader hypothesis regarding ARM-specific
vulnerability to missense mutations, specifically the relationship
between density and severity, and supports further investigation
across larger SNP datasets. Furthermore, the lack of clustering
in the ∆∆G analysis (Figure 1E) suggests that SNPs across any
residue of the protein could cause high pathogenicity and struc-
tural damage, challenging the common assumption of extremely
preeminent vulnerability in only certain KPNA2 domains or
regions (e.g., the IBB domain). In prior studies, even a single
amino acid deletion within the IBB domain was shown to reduce

nuclear import efficiency by ∼50%, indicating domain-specific
sensitivity37. Our study emphasizes that this severe vulnerability
extends across numerous regions, especially ARM domains, of
KPNA2. These findings are based on a dataset of 35 SNPs; how-
ever, broader generalizations would require a full-domain-wide
analysis to be validated.

Structural modeling of KPNA2 in various formats (Figure 2)
revealed key nuances that may affect its function and binding
affinity. When comparing the proteomic location and predic-
tive metrics of each SNP (Figure 2C), our findings hinted that
residues closer to the center of the protein may have a higher
susceptibility to damaging missense mutations. Although the
dataset we analyzed lacks sufficient depth to fully validate this
hypothesis, an independent study should be conducted to deter-
mine whether SNPs in the center or embedded in the binding
groove have more multifaceted effects on the protein. Future
studies should also consider the biochemical divergence be-
tween wild-type and mutant amino acids known as a radical
replacementas a key predictor of structural impairment38.

The central and lowest energy docking scores obtained from
ClusProfor mutant KPNA2 proteins and NBS1 indicated a con-
sistent value across all tests (Figures 3A, 3B); however, it is
important to note that central docking scores are generally more
stable and representative of a larger range of data compared to
the lowest docking scores, which could often be outliers. No-
tably, two previous hypotheses were made (Figure 3): I116S is
predicted to be the most damaging to the proteins binding affin-
ity supporting the idea that groove-localized missense variants
are particularly disruptive while P244H is predicted to be the
most damaging to the proteins overall structure, highlighting the
potential impact of core-localized variants. These hypotheses
are based on distinct lines of evidence and are not mutually
exclusive.

The results from the RMSD alignment tests (Figure 3C) sug-
gest that missense-induced docking damages can vary in manner
(e.g., structural, functional) and severity (I116S vs P244H and
P165R). Additionally, the predicted RMSD values observed in
all of the tests could have arisen as early as KPNA2 folding or
as late as KPNA2-NBS1 docking; this could not be specified
through visual or statistical analysis. Wet-lab validation would
be required to specify and characterize the precise structural
mutation timeline of each missense variant.

The variants examined through HADDOCK metrics revealed
many vital insights into the relationship between location, pre-
dictability, and amino acid biochemistry. Interestingly, variants
P244H and P165R were the only variants to exhibit lower HAD-
DOCK and RVE scores than the wild-type test did, and yet, they
were the only ones to fail in ClusPro. These variants were also
the only ones located in the direct core of the major binding
region, suggesting a possible link between residual location and
structural vulnerability. Although the existence of this dual-
ity is plausible, a clear answer to why this is true is currently
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unknown, and future research into a clear breakdown between
missense variant-induced structural and biochemical damage
is necessary. Accordingly, the large trend of inconsistency be-
tween protein software is vivid, such as docking failures in Clus-
Pro but strong HADDOCK scores, or ProtVar-predicted ∆∆G
values being moderately distant from their FoldX-∆∆G values.
Interestingly, our original FoldX-based preprocessing pipeline
for ClusPro docking consistently failed. Further investigation
showed that MolProbity scoring revealed reduced structural in-
tegrity after energy minimization, an ironic outcome given that
FoldX is designed to improve stability. This consistent obser-
vation highlights an important caveat in computational biology
and underscores the broader lesson that careful, context-specific
software choices are critical. Moreover, we also visualized that
the missense variants with the greatest predictive metrics (∆∆G,
CADD, PolyPhen, AlphaMissense) were not the most struc-
turally, pathogenically, or functionally disruptive, indicating a
lack of consistency and validity in Ensembl- and ProtVar-based
scoring metrics. A deeper exploration and understanding of the
mathematical and computational tools used to predict those met-
rics should be undertaken to improve the reliability and accuracy
of these tools. Moreover, while our study used a TI-restraint file
for active residues in HADDOCK, further studies with similar
intentions should also explore the use of location-relevant ac-
tive residues per KPNA2 variant (ex. major binding residues
for major binding site variants); our study, however, prioritized
unbiased restraints to mimic biological accuracy to the highest
possible degree.

GEPIA2 was used to analyze KPNA2 gene expression across
a variety of cancer types, including non-cancerous tissue coun-
terparts. The profile generated from the data signifies a vast
trend of overexpression in cancerous tissues, with a wide ma-
jority of tests indicating severe overexpression (Figure 4A, 4B).
This conclusion alone indicates a deeper consequence of the
results outlined in Figures A-C, as KPNA2 missense variants
within cancers will have larger cellular effects compared to the
same mutations in non-cancerous tissues. Interestingly, two
issues showed the opposite: downregulation of the gene in cer-
tain cancers. These outliers may warrant a peculiar relationship
between KPNA2 in certain cancers and illustrate a possible fu-
ture research question in the overall mechanism of the genes
expression and consequent dysregulation. Due to the in silico
nature of this study, correlation studies are limited in detail, and
thus, a reason for our contradictory findings between biological
and statistical significance (Figure 4C); this calls for the need
for a nuanced wet-lab comparative analysis of the two genes
expression levels in varying tissues, as genetic co-regulation
could be apparent. Finally, since the datasets used for the high
vs low survival plots were of equal sample size (Figure 4D), it is
possible to imply that the group with higher KPNA2 expression
is the group with cancerous tissues rather than non-cancerous
alternatives, thus supporting our previous findings in Figure 4.

Besides minimal outliers, the multipurpose data from
GEPIA2 signifies a trend of KPNA2 being upregulated in pa-
tients with cancerous tissues, as well as a decrease in their
chances of survival over a profound period. Severe mutations,
such as P244H, P165R, and N446D, may not only inhibit the
DNA repair system but also may enhance cancer development or
exhibit other major effects on cellular functions. Moreover, the
direct link between importin-α and its exact effects on cancer de-
velopment and growth is currently underexplored by researchers
across all scientific fields. Based on the totality of conclusions
from this study, we believe that this mechanistic link is the
most vital, and further experimental and computational analy-
sis is highly encouraged to explore novel cancer insights and
hypothetical KPNA2-based treatments.

Conclusion

The purpose of this study was to model and evaluate the effect
of missense mutations in the KPNA2 gene on the structure and
function of the importin-α1 protein in cargo transportation. By
examining the proteins predicted ability to transport NBS1, or
any DNA repair enzyme, we aimed to see if single-nucleotide
mutations, dependent or independent of genomic location, could
affect KPNA2s role critically. The deeper goal of the study was
to explore the nuanced differences between effects on protein
binding affinity versus structural disruption, and how each de-
pends on a myriad of factors. Our results first indicated that a
direct correlation most likely does not exist between SNP den-
sity in an ARM region and mutational severity, as many SNPs
that were predicted to cause major structural and functional
damage were located in relatively unmutated ARM regions. Our
results also indicated that SNPs located in the binding groove
of the importin do not necessarily have a larger impact on the
protein structure, but possibly rather binding affinity, whereas
SNPs located closer to the core of the protein may have induced
higher structural deformation. This theory contradicts previous
claims of generally higher impact mutations being found in only
the binding groove and/or the major binding region. Synthesiz-
ing all results, a confident claim was concluded: all seven of
our chosen missense variants indicated some form of weakened
binding affinity or structural instability; however, the quanti-
tative severity of their disruptions was not proportional to the
predictive metrics used in Table 1, signifying an incompatibility
between energetic and structural bioinformatic metrics and vary-
ing protein-protein docking platforms. Additionally, peculiar
conclusions were developed involving results from HADDOCK
and ClusPro, demonstrating a complex but biological disconnect
between structural and biochemical bioinformatic tools. Finally,
analyzing KPNA2 expression in cancer datasets illustrated an
evident trend of genetic overexpression in almost 32 cancerous
tissues, which proves clinically significant in itself. Despite the
abundance of tissues with KPNA2 overexpression, however, two
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tissues displayed downregulation of the gene, an important and
rare nuance to further explore. On the contrary, the survival anal-
ysis graph supports the major trend of KPNA2 dysregulation
in cancers, as patients with higher KPNA2 expression faced a
consistently reduced survival compared to those with a relatively
lower expression rate. Moreover, the correlation plot between
KPNA2 and the gene producing one of its cargo DNA repair
enzymes, NBN, demonstrated low to moderate but statistically
significant correlation between the genes expressions, suggest-
ing possible co-regulation or functional linkage, supporting the
biological relevance of the NBS1 docking models.

Although this study primarily examined an isolated system
of genomic variants and their effects on protein stability, the in-
tentional inclusion of DNA repair enzymes as cargo in docking
simulations could not be understated. We originally hypoth-
esized that at least one chosen variant would lead to critical
effects in the importins overall stability, and thus, may lead to
impacts on the entire transportation system of cargo into the
nucleus. Mutations of adequate severity would exhibit a likely
chance of risking the stability of the DNA repair process, sur-
passing isolated effects within one protein, one enzyme, or even
a singular DNA repair pathway; the rippled effects would be
catastrophic. Based on the results mentioned above, at least 3-4
of the tested missense variants demonstrate extremely weakened
binding affinity and/or structural impairment to suggest it as a
possible systematic missense impairment. More specifically, the
DNA repair enzyme chosen to be docked with our tests, NBS1,
has been previously discovered to play a crucial role in DSBR,
which in turn, plays an even greater role in repairing DNA in
budding cancerous cells2,26. Coupled with the nuanced analysis
of KPNA2 overexpression and dysregulation in a wide majority
of cancer types, and a decently positive correlation with NBN,
incredibly destabilizing missense variants in KPNA2 may in-
evitably lead to an elevated, multifaceted risk in clinical tumor
development. We hope that researchers will use our research as
a basis for novel cancer prognosis, biomarkers, or therapeutic
targets in the future, aimed at exposing the pathogenic sever-
ity of importin-based mutations that compromise DNA repair
integrity and endanger cellular homeostasis.

Despite the important conclusions and revelations that this
study discusses, limitations did exist when designing and execut-
ing this experiment. By nature of the in silico and bioinformatic-
based methodology of this study, certain results and hypotheses
are strictly hypothetical and may be false due to errors in the
virtual tools that were used; these errors could stem from either
machine-based inaccuracies or implausible input parameters.
Additionally, this study solely employed seven missense vari-
ants for its principal tests, signifying that particular conclusions
may be inaccurate without a full understanding and analysis
of every missense variant located within the ARM regions of
the protein. Moreover, the usage of varying docking platforms
could result in conflicting results, which may be falsely inter-

preted and misunderstood if one platform is comparatively more
accurate than the other. For future research and experiments
within the same scientific field, a corresponding wet-lab vali-
dation is vital for confirmation of several results demonstrated
in this study, as well as further analyses that were unable to be
completed through in silico methodologies; such methods could
include: site-directed mutagenesis mediated by CRISPR-Cas9,
several binding assays between importin-α/β , and DNA repair
enzymes, or Western blotting with nuclear fractionation. Further
bioinformatic or experimental studies should use larger-scale
quantities for all methodologies, including a minimum of 100
tested missense variants and/or a multitude of varying DNA re-
pair enzymes. Finally, employing a higher quantity of nuanced
genomic and proteomic methods, such as molecular dynamics
(MD) simulations or patient-specific cancerous tissue datasets,
would prove to be useful and likely result in more robust and
translational conclusions. In all, our study successfully empha-
sizes the significance of KPNA2-associated mutations, which
can consequently lead to tumor development, and provides an
introductory stepping stone for exploration within this scientific
niche, experimentally and computationally.
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