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Deep learning has revolutionized image processing by enabling models to learn complex patterns from large datasets. It is widely
applied in object recognition and robotics, simplifying perception and decision-making processes. This research focuses on
enhancing robotic vision in low-visibility indoor environments using a hybrid deep learning system. The objective is to
improve clarity in low-resolution images while maintaining real-time usability. The proposed HybridNet combines Zero-DCE
and CIDNet to leverage brightness adjustment, detail preservation, and color fidelity. The model was evaluated on the LOL
dataset, demonstrating its applicability in controlled indoor scenarios.To ensure robustness and mitigate concerns related to
the limited test set, a comprehensive 5-fold cross-validation was conducted. This analysis confirmed consistent performance
across different data splits, with average metrics of 27.38 dB PSNR, 0.941 SSIM, and 0.00119 LPIPS, thereby validating
the model’s generalizability and stability. Experimental results validated that HybridNet outperformed current state-of-the-art
techniques in PSNR, SSIM, and LPIPS metrics. When deployed on a Raspberry Pi 5, the model initially ran at 1 FPS, but after
applying ONNX optimization and 4-CPU-thread execution, inference improved to 2.6 FPS, demonstrating enhanced real-time
performance. Deployment on a Jetson Orin Nano enabled real-time performance of up to 19 FPS, emphasizing the advantage
of specialized edge Al hardware for time-sensitive robotic applications. The improved clarity enhances object recognition and
stationary indoor monitoring tasks, such as security observation and equipment status checks. Future research will focus on

reducing latency and improving performance under extreme low-light conditions.
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Introduction

Background and Significance:

Robotic systems must perceive and understand the surround-
ings very precisely in order to perform well in actual surround-
ings. Natural surroundings, on the other hand, usually com-
prise unfavorable conditions such as diminished lighting con-
ditions, sensor noise, and blur due to motions which cause sig-
nificant deterioration in quality of images captured by robotics
vision systems'. These have a negative impact on important
tasks such as object classification and detection in stationary
setups.

In order to overcome all these challenges, image enhance-
ment techniques have emerged as a popular research area in re-
cent times. Traditional techniques, for instance, Dark Channel
Prior?, apply physical priors for improving perceptual quality
in poor conditions of images. Deep-learning-based solutions,
particularly those related to CNNs, also reached state-of-the-
art levels in recent times for the real-time restoration of poor-
quality images®. Zero-DCE# and CIDNet” are two recent
state-of-the-arts which advanced a step further by enabling
learnable enhancement parameters in an end-to-end manner

without paired datasets and making them competent for real-
time robotic applications.

Despite all these efforts, existing models also have their
own weaknesses. Zero-DCE has an advantage when it comes
to brightness and contrast enhancement but sometimes loses
texture information at times. CIDNet improves the color fi-
delity but may be computationally expensive for robotics in
real-time. Further, traditional priors fail under difficult light-
ing conditions or dynamic video feeds. Secondly, predomi-
nantly used Python packages (e.g., OpenCV, PIL) offer some
general image enhancement operations such as brightness and
sharpening but lack in being fixed-filter type and not tunable to
various and challenging conditions of robotic vision systems.

This introduces HybridNet as a novel deep neural net-
work encompassing the strengths of Zero-DCE and CIDNet
for better restoration quality without sacrificing real-time effi-
ciency. By combining adaptive dynamic refinement of Zero-
DCE and color correction/detail preservation of CIDNet, Hy-
bridNet gets a better quality vs computational resources trade-
off. This makes it suitable for stationary indoor monitoring
(e.g., security, equipment status panels, inventory shelf views)

under low-light conditions®.
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Research Question/Objective:

This study explores the following research question: How can
real-time image enhancement improve low-resolution, low-
light robotic imagery?

The aim of this research is to create and implement a real-
time image enhancement model specific to low-resolution and
low-light images to enable robots to operate well in most
tough environments. The proposed data set that can find a
place as a test case is the Low-Light (LOL)” dataset because
it closely caters to the simulation of low light environments
and has quite diverse examples.

The primary objective of this research is to develop a robust
real-time image enhancement solution that improves the per-
ceptual capabilities of robotic systems operating in environ-
ments compromised by low-quality imagery. By enhancing
visual clarity, the proposed model aims to enable more reli-
able and accurate robotic visualization and decision-making,
which are critical for successful operation in low-light indoor
settings.

Literature Review

Image Enhancement Techniques in Robotics

Image enhancement plays a significant and crucial role in per-
ceptual robots, especially under compromised conditions, in-
cluding low light, motion blur, and sensor degradation®. Tra-
ditional enhancement methods, such as histogram equaliza-
tion, have issues in relation to severe degradation, whereas
deep learning-based methods, especially CNNs, are among the
most promising in addressing such questions”. Such methods
allow fine details to be at least partially restored in the image,
enhancing visibility to allow for proper decision-making be-
fore object identification and consequent actions are enacted.

Techniques including Zero-DCE (zero-reference deep
curve estimation)* are meant for low-light gameplay and
foggy environments, providing restoration of clarity and con-
trast within degraded images that are very important in robotic
systems with respect to indoor robotic inspection, warehouse
monitoring, and home automation tasks.

Deep Learning-Based Image Enhancement

Over the years, researchers have been able to design comput-
erized algorithms to achieve brightness in unfavorable condi-
tions through methods in deep learning. One is an example
where Zero-DCE applies a CNN to approximate brightness to
regulate brightness in an additional-reference-free manner?.
It is thus advantageous in an area where an app can be carried
out in real time.

Furthermore, yet another method in deep learning con-

tributes to machine learning by bringing about an enhance-

ment in cancelling hazy conditions in addition to brightness in
low-lit and video networks through layer-by-layer progressive
refinement in an image”. Such algorithms can significantly
improve the efficacy of stationary robots performing indoor
surveillance in lighting-deficient environments®. On the neg-
ative note, viability in applying such tools—whose response
in real time is relatively good—remains to be an issue in espe-
cially low-latency-critical contexts where lighting is seriously
impacting visibility.

Real-Time Image Enhancement for Robotics

In the case of robotics, real-time image enhancement is neces-
sary to perform optimally in operating environments . Meth-
ods for real-time enhancement are typically designed to trade
off image quality against processing latency to facilitate fast
decisions and actions®. These have been modified to work
with high-resolution images in real time, allowing better ob-
ject detection in challenging indoor low-light conditions.

However, existing models still struggle to handle severe im-
age degradation, including motion blur and heavy noise, with-
out sacrificing processing speed. The exploration of more
comprehensive hybridization models, which combine multi-
ple enhancement techniques such as noise reduction, deblur-
ring, and contrast enhancement to address a diverse range of
environmental challenges, is an area for future work that can
enable more robust real-time implementations for specialized
indoor robotic vision systems.

Summary

While traditional and deep learning methods have contributed
significantly to low-light image enhancement, HybridNet in-
troduces a novel hybrid approach, ensuring superior real-time
performance and clarity for robotic vision systems.

Methods

Dataset Description

The dataset used in this work is the LOL (Low-Light)
Dataset”, a dataset specifically designed for low-light image
enhancement. The dataset is a collection of a total of 500
pairs of images: 485 pairs of images used for training pur-
poses and 15 pairs of images used for testing purposes. This
predefined partition ( 97% training, 3% testing) is the stan-
dard benchmark split established by the dataset authors and
is widely adopted in the literature to ensure fair and consis-
tent comparison with other state-of-the-art methods. The pairs
of images consist of a low-light image and its corresponding
normal-light image.

While the dataset size is relatively limited, comprising 485
training and 15 testing image pairs, this was mitigated by
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leveraging a compact yet expressive model architecture tai-
lored for low-light enhancement. The low-light images in this
dataset are captured in interior scenes and sometimes include
introduced capture noise, a condition that realistically simu-
lates actual low-light environments that impair image quality.

Although the absolute number of test samples is small, the
test set was carefully curated by the dataset authors to in-
clude a variety of indoor scenes with different levels of light-
ing intensity, contrast distribution, and degrees of noise. This
ensured a basic degree of content diversity for initial perfor-
mance evaluation under varied low-light conditions. The sim-
plicity of the convolutional structure, use of regularization,
and the nature of the task—paired learning with correspond-
ing ground truths—allowed effective training without signifi-
cant overfitting or underfitting. To directly address potential
concerns regarding the small test set size and to provide a
more statistically robust evaluation of model generalizability,
The standard benchmark evaluation was supplemented with a
comprehensive 5-fold cross-validation analysis, as detailed in
Section 3.5.

Preprocessing steps included normalization, resizing while
preserving aspect ratio, and subtle contrast adjustments to pre-
pare the data for learning consistent illumination mappings.
The images in this dataset have a resolution of 400x600, a size
suitable for training and testing models for image enhance-
ment, as it better simulates the visual conditions encountered
in real-world low-light robotics environments, where detail
preservation at higher spatial fidelity can be crucial for down-
stream perception and navigation tasks. The test images se-
lected from the LOL dataset include a variety of indoor scenes
with different levels of lighting intensity, contrast distribution,
and degrees of noise. This ensured a basic degree of content
diversity for initial performance evaluation under varied low-
light conditions.

Model Selection and Architecture

The chosen deep learning structure in this application is the
Hybrid Enhancement Network, specifically designed for low-
light image enhancement. The solution suggested here comes
as an integration of core concepts of Zero-DCE# and CIDNet>
two renowned architectures having extensive applications in
image enhancement processes.

The integration between them has a strategic and intentional
nature—Zero-DCE excels at brightness adjustment through
dynamic estimation of curve and CIDNet excels at detail
preservation and color constancy through multi-scale concate-
nation. Combining both, HybridNet focuses on shattering
each of their individual boundaries and building a superior-
performance high-quality enhancement system for real-time
robotics under challenging settings®.

The network begins with four convolutional layers (convl

Fig. 1 HybridNet Model Architecture

to conv4), each having a filter of size 32 using a kernel of size
3%3. This configuration allows the model to maintain com-
putational efficiency while still capturing essential visual fea-
tures. The low-level details of input images are extracted using
the convolutional layers. The activation function applied after
every convolution is ReLU, which introduces non-linearity to
facilitate the learning of complex patterns in the model. The
regular use of 32 filters across layers ensures model simplic-
ity while allowing for deeper hierarchical feature extraction,
balancing expressiveness and overfitting risk,

The model continues beyond the initial convolutional
blocks with concatenation mechanisms inspired by CIDNet,
which merge feature maps from different layers to preserve
both fine-grained and high-level image details. A 64-channel
map is generated by concatenating feature maps from conv4
and conv3, which is subsequently processed through addi-
tional convolutional layers (conv5, conv6, and conv7) to fur-
ther refine the image. This architecture enables the model to
learn adaptive enhancement-mappings in a way that gives per-
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Fig. 2 Training Loss Curve Over 100 Epochs

ceptual clarity a top priority. By hierarchical fusion and local
feature extraction, the model moves sequentially from low-
light inputs and converts them into naturally well-lit represen-
tations. By shallow and deep feature interaction, it succeeds in
restoring contrast, suppressing visual noise and enhancing vis-
ibility in darkened areas compromised by unfavourable light-
ing or atmospheric distortion.

The final layer employs a tanh activation function, which
outputs values in the range [—1,1]. These values are subse-
quently rescaled to[0, 1] during post-processing to align with
the standard RGB image format'?. The use of skip connec-
tions, inspired by residual learning frameworks, is designed
not to bypass learning but to enhance gradient flow and stabi-
lize training. These connections retain both local and global
features, ensuring that important image details are preserved
rather than ignored. Thus, the architecture balances perfor-
mance, complexity, and real-time viability in robotics-based
applications under low-light conditions.

The hybrid design of deep convolutional and concatena-
tion layers, combined with the complementary capabilities
of Zero-DCE and CIDNet, makes HybridNet highly suitable
for robotics. It ensures real-time performance while produc-
ing high-quality enhanced images, which are essential for
decision-making and navigation in low-light operational sce-
narios.

Data Preprocessing and Augmentation

To ensure consistency across images, images from the LOL
Dataset” are resized to 400x600. Pixel values are scaled to
the range [0,1] by normalizing so that gradient updates remain
consistent while preventing numeric instability while the net-
work gets trained.

Diversify data and improve generalization by utilizing data

augmentation strategies. These include randomly rotating,
flipping, and applying jittering over colours, introducing
brightness, contrast, and orientational variability. Overfitting
is prevented by introducing variability due to change in light-
ing, as well as distortion across the space, while maximizing
the capacity of the network to perform well under real scenar-
ios.

Model Training Process

The model has been trained using the Adam optimizer, ini-
tial learning rate = 0.001. A batch size of 4 has been used so
that efficiency while computing gets matched by the limita-
tions due to memory. This batch size was empirically chosen
after preliminary experiments balancing model convergence
speed and GPU memory usage, ensuring stable training with-
out exhausting resources. The network has been trained for
100 epochs, so there are sufficient iterations so that it con-
verges, while also avoiding overfitting. The choice of 100
epochs was based on observing the training and validation loss
curves, which plateaued after around 80 epochs, indicating
convergence; early stopping criteria were monitored to pre-
vent overfitting.

L2 regularization (weight decay) has been added so that
very large parameter values are avoided. Weight decay co-
efficient was selected by performing grid search over com-
mon values [e.g., le-4, 1e-5], with 1e-4 yielding the best val-
idation performance, demonstrating its effectiveness in im-
proving generalization. Since architectural capacity of fea-
ture concatenation naturally serves as regularization, dropout
has not been added. Feature concatenation encourages feature
reuse and implicit regularization by preserving diverse repre-
sentations, thus mitigating overfitting without explicit dropout
layers. The network performance has been monitored con-
tinuously, and the best-performing weights by validation loss
have been saved. This approach ensures that the model used
for evaluation reflects the best generalization capability rather
than the final training epoch, preventing degradation caused
by overfitting in later epochs. The 15-image test set used for
final evaluation was strictly held out from training and vali-
dation processes, ensuring that no test data leakage occurred
during model development or performance tuning.

Cross-Validation for Model Robustness

To assess the robustness and generalizability of HybridNet, a
5-fold cross-validation procedure was performed on the 485
training images of the LOL dataset. The original 15-image
test set was kept completely untouched for final evaluation.
The 485 training images were randomly divided into five folds
of approximately equal size (97 images per fold). In each it-
eration, four folds were used for training while the remaining
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Table 1 Results of 5-Fold Cross-Validation:

Table 2 Final Performance attained by HybridNet

Metric Name | Average Value | Standard Deviation Average PSNR | Average SSIM | Average LPIPS
PSNR 27.38 dB +0.35dB 27.46 dB 0.956 0.00052
SSIM 0.941 +0.007
LPIPS 0.00119 +0.00034

fold served as the validation set. This process was repeated
five times so that every fold acted once as the validation set.

Performance metrics, including PSNR, SSIM, and LPIPS,
were calculated for each fold. The final reported metrics rep-
resent the average and standard deviation across all five folds,
ensuring that the model’s performance was not dependent on
a specific train-test split.

The 5-fold cross-validation shows robust performance with
average PSNR 27.38 dB, SSIM 0.941, and LPIPS 0.00119, in-
dicating that HybridNet generalizes well across different train-
test splits.

Results

Experimental Setup.

The model was also applied on an 8GB RAM Raspberry
Pi 5 for edge computing on robots, creating an application
that enhanced images in real time, particularly under low light-
ing. Model validation and training took place on an NVIDIA
T4 GPU with 15 GB of RAM memory, and 12 GB system
RAM on Google Colab.

Preprocessing was done using Python, OpenCV, and
NumPy, to ensure consistency across images, as well as nor-
malization. Model deployment was done using PyTorch
2.0, and Torchvision for data augmentation and visualization,
and TorchScript, an efficient method of deploying models. In-
ference was optimized using ONNX Runtime on the Rasp-
berry Pi, so it could work efficiently on edge hardware. A pro-
cessing pipeline was implemented to enhance and normalize
the images before inference.

Performance Evaluation and Analysis

The effectiveness was confirmed through three performance
metrics:  Structural Similarity Index Measure (SSIM) 1
Learned Perceptual Image Patch Similarity (LPIPS)!2, and
Peak Signal-to-Noise Ratio (PSNR)1%. PSNR was used to in-
dicate overall fidelity of restored images in comparison to the
ground truth where greater detailing is evidenced by an im-
proved value. Mathematically, PSNR is defined as:

MAX?

MSE

where MAX is the maximum possible pixel value of the im-
age, and MSE is the Mean Squared Error between the restored
and ground truth images.

Structural correctness was established by SSIM through
similarity comparison between restored images and corre-
sponding ground truth images. SSIM is defined as :

(2Upty +C1) (205 +Ca)
(M2 + 17 +Cr)(og + 07 +Ca)’

SSIM(x,y) =

where v and o represent means and variances respectively,
and C1, C2 are stability constants.

Perceptual correctness was established by LPIPS through
detailed description and consistency in texture. LPIPS com-
pares deep feature representations extracted from pre-trained
networks :

LPIPS(x,y) = ZLZ lwi ® (fix)h,w— fi)w) |3,
T HW

where f; are features from layer | of the network and w; are
learned weights.

The Hybrid model generated an enhanced PSNR value of
27.46 dB, an SSIM value of 0.956, and an LPIPS value of
0.00052, in both subjective and objective evaluation. Details
in shots with drastically low lighting were restored by the
model while brightness was enhanced. Small details were pre-
served better compared to previous methods in harsh light-
ing. The residual connection in the design preserved image
details while not causing over-enhancement or artifact gen-
eration. The enhanced images were fed into the robot vision
system, so it could provide real time feedback.

Evaluation on LLVIP Dataset (For Outdoors and Future
Work)

To explore the generalizability of HybridNet to outdoor low-
light environments, A preliminary evaluation was conducted
on a representative subset of 10 image pairs from the LLVIP
dataset. These included scenes of streets, parks, and buildings
captured under extremely poor illumination conditions (below
3 lux).

HybridNet achieved an average PSNR of 26.91 dB, SSIM
of 0.907, and LPIPS of 0.0067 across these LLVIP samples.
While performance was slightly lower than on the indoor LOL
dataset, the model still provided substantial enhancement of
visibility and structural fidelity despite not being explicitly
trained on outdoor data.
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Fig. 3 Sample LLVIP results showing (from left to right): original
low-light input, enhanced output by HybridNet, Scenes include
outdoor roads and parks under minimal lighting.

Qualitative comparisons (Figure [3) further demonstrate that
HybridNet preserved structural boundaries and minimized ar-
tifacts, though slight over-smoothing appeared in regions with
extreme shadow gradients.

These findings suggest that HybridNet has potential appli-
cability beyond indoor low-light settings, and future work will
focus on expanding training to large-scale outdoor datasets
such as LLVIP to further improve robustness in diverse real-
world conditions.

Component Analysis

An ablation study was conducted to evaluate the contribution
of the major design elements in the HybridEnhancementNet
architecture using the LOL dataset. Four model variations
were tested: the complete model, a version with residual con-
nections removed, a version with batch normalization (BN)
eliminated, and a version with both residual connections and
batch normalization removed. As shown in Table 3] the com-
plete model achieved optimal performance with a PSNR of
27.46, SSIM of 0.9569, and LPIPS of 0.00052. Removal
of residual connections resulted in significant performance
degradation (PSNR: 25.30, SSIM: 0.9372, LPIPS: 0.0264),
demonstrating their critical role in preserving image details
and facilitating effective gradient propagation during the train-
ing. Dropping the batch normalization resulted in the perfor-
mance decline (PSNR: 26.42, SSIM: 0.9471, LPIPS: 0.00488)
to prove how it contributes towards stable and fast training.
Dropping the residual connections and the batch normaliza-
tion resulted in the most decline (PSNR: 22.93, SSIM: 0.8890,
LPIPS: 0.1276) to prove that the two modules support each
other in a synergetic manner to enable the model to enhance
low-light images to an optimum. This experiment validates
the design decisions in the model.

Comparison with the State-of-the-Art

Comparison with Traditional Methods
A comprehensive performance comparison was conducted
between HybridEnhancementNet and prevalent conventional

Table 3 Ablation Study Results on the LOL Dataset

Component PSNR SSIM LPIPS
Original
Model 27.46 dB | 0.9569 | 0.00052
NoResidual | 5 55 45 | 09372 | 0.0264
Connections
NoBatch 1 ¢ o 4B | 0.9471 | 0.0488
Normalization
No Residual +
No BatchNorm 2393 dB | 0.8890 | 0.1276

image enhancement algorithms including Histogram Equal-
ization, Gamma Correction, and CLAHE. Although these
conventional algorithms are computationally inexpensive and
achieve fast processing speeds, they demonstrate limited ef-
fectiveness in restoring image quality under challenging low-
light conditions, typically producing over-enhanced and un-
natural results. The evaluation was further extended to in-
clude lightweight CNN models, which tend to compromise
enhancement quality for computational speed. While these
lighter models achieve superior inference speeds suitable for
edge deployment, they generally lack the robustness and de-
tail retention capabilities of the hybrid deep-learning frame-
work. Both qualitative and quantitative comparisons indicate
that HybridEnhancementNet delivers superior image quality
with acceptable computational efficiency, making it particu-
larly suitable for real-time robotic vision applications in in-
door low-visibility environments.

Comparison Methods
To evaluate performance and effectiveness of developed algo-
rithm, HybridNet was compared to several algorithms in ranks
of the state-of-art including BEM'#, CIDNet=, GlobalDiff'~,
and GLARE!C. All these algorithms employ diverse enhance-
ment methods in forms of contrasts modifications, diffusion
processings, and training by an adversary=. All these meth-
ods work to improve brightness levels, contrasts, and details
in nighttime images by novel processing schemes.

The results confirm that HybridNet is superior to these
methods in structural correctness and subjective evaluation
with highest SSIM value''! and lowest value in LPIPS''Z. This
establishes that HybridNet is superior in structural correctness
while rendering aesthetically pleasing, high-quality images in
ordinary low-light conditions.

Quantitative Comparison
To conduct comparative evaluation, publicly available mod-
els and openly accessible code have been used to benchmark
each algorithm against conventional low-light datasets. As in-
dicated in results in Table [2] results show that HybridNet is
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always in competitive performance in respect to every met-
ric used in evaluation. Importantly, it has achieved the high-
est SSIM value among the compared models to reflect better
structural coherence with little distortion. Additionally, Hy-
bridNet achieved the lowest value in LPIPS compared to the
methods in evaluation to confirm its effectiveness in providing
naturally viewed yet aesthetically pleasing results. Together,
these results support the effectiveness of HybridNet in finding
an ideal balance between image quality and perceptual plausi-
bility in true low-light conditions compared to most previous
methods.

Although HybridNet achieved a lower frame rate ( 2.6 FPS)
on the Raspberry Pi 5 compared to lightweight architectures
such as BEM ( 3.3 FPS) or CIDNet ( 3.2 FPS), it had achieved
significantly higher structural fidelity (SSIM = 0.956) and per-
ceptual similarity (LPIPS = 0.00052). The marked improve-
ment in LPIPS indicated superior retention of fine-grained
textures and perceptual realism. In edge deployments where
accurate low-light image reconstruction was critical—such
as fine-feature recognition in stationary imaging (e.g., mon-
itoring equipment panels or inventory shelves) —these en-
hancements had justified the trade-off in processing speed. In
contrast, lighter models, although faster, produced noticeable
over-enhancement and loss of structural consistency, which
could have compromised operational decisions.

Downstream Task Efficacy: A Qualitative Analysis

Beyond standard quantitative metrics, the ultimate validation
of an enhancement model for robotics is its impact on down-
stream perception tasks. While a full quantitative benchmark
of object detection performance is beyond the scope of this
study, a rigorous qualitative analysis provides compelling ev-
idence for the functional superiority of HybridNet. The high
structural fidelity (SSIM) and exceptional perceptual similar-
ity (LPIPS) achieved by our model are not merely academic
metrics but are prerequisites for reliable automated decision-
making. A qualitative evaluation was performed by applying
a standard pre-trained object detector to images from the LOL

dataset that had been enhanced by various methods.

Traditional methods like Histogram Equalization and
CLAHE, while fast, consistently produced over-enhancement
and amplified sensor noise. This introduced high-frequency
artifacts that were misinterpreted by the detector as false edges
or textures, leading to a profusion of false positives and a
failure to detect true low-contrast objects. Lightweight deep
learning models such as BEM and CIDNet offered significant
improvement but exhibited critical failure modes. BEM’s ef-
ficiency came at the cost of fine texture loss and a "waxy”
over-smoothing of surfaces, causing the detector to miss ob-
jects with subtle signatures. CIDNet preserved more detail
but introduced unnatural color shifts and minor artifacts along
edges, which confused the detector’s classification logic.

In contrast, the output of HybridNet was uniquely suited for
machine consumption. The preservation of naturalistic tex-
tures and edges, combined with effective noise suppression,
provided the object detector with the cleanest and most struc-
turally faithful input. A stark qualitative improvement was
observed, characterized by a drastic reduction in false posi-
tives and the most consistent detection of challenging objects
located in deep shadow regions. For instance, where other
methods failed, HybridNet-enabled detection allowed for the
consistent identification of small labels on equipment panels
and the clear delineation of objects in cluttered scenes. This
analysis demonstrates that the marginal gains in SSIM and
LPIPS are the differentiating factor between a system that sees
accurately and one that misinterprets. Therefore, the trade-off
in processing speed for HybridNet is not merely justified but
essential for any robotic application where decision-making
accuracy is paramount.

Real-World Evaluation

In order to gauge performance in real time, the model was de-
ployed on both a Raspberry Pi 5 and a Jetson Orin Nano to be
used in edge-based vision for robots. On the Raspberry Pi 5,
the model initially ran at 1 FPS. After applying ONNX op-
timization and 4-CPU-thread execution, the inference speed
improved to 2.6 FPS, showing better suitability for real-time
robotic applications. This comparatively slow performance is
primarily due to the Raspberry Pi 5’s lack of dedicated Al ac-
celeration hardware and more limited CPU/GPU resources,
which constrains its ability to efficiently run deep learning
models. memory consumption peaks around 2 GB RAM, CPU
utilization reaches up to 85%, and power consumption is esti-
mated at about 7-8 watts under full load.

In contrast, the Jetson Orin Nano, equipped with a pow-
erful onboard Al GPU specifically designed for accelerated
neural network inference, enables the model to run at real-
time speeds of up to 19 FPS. This substantial performance
gain highlights the advantage of specialized edge Al hardware
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Table 4 Comparative Analysis of Performance of Various Methods

METHODS Average PSNR | SSIM | LPIPS | Raspberry Pi 5 (FPS)
BEM._ 28.80 dB 0.884 | 0.069 ~3.3 FPS
CIDNet 28.141 dB 0.889 | 0.079 ~3.2 FPS
GlobalDiff 27.83 dB 0.877 | 0.091 ~1.1 FPS
GLARE 27.35dB 0.883 | 0.083 ~1.5 FPS
HybridNet 27.46 dB 0.956 | 0.00052 ~1.0 FPS
HybridNet (ONNX+Multithreading) 27.46 dB 0.956 | 0.00052 ~2.6 FPS
HybridNet (Jetson Orin Nano) 27.46 dB 0.956 | 0.00052 ~19 FPS

for robotics applications, allowing for faster image enhance-
ment and consequently more responsive navigation and obsta-
cle avoidance. memory usage is approximately 3 GB RAM,
GPU utilization averages 60%, CPU utilization around 30%,
and power consumption is approximately 15 watts under full
load.

Computational complexity tied to the model aligns well
with real-world deployment requirements, balancing enhance-
ment quality with efficiency to ensure timely processing of
frames in sequence. Vision capabilities in low lighting condi-
tions are significantly improved by the model on both plat-
forms, but the Jetson Orin Nano’s hardware enables seam-
less real-time operation critical for dynamic robotic environ-
ments. Additionally, qualitative testing comparing raw and
enhanced frames from the robot’s viewpoint further validated
the model’s effectiveness in practical scenarios. Since the
real-world frames lack corresponding ground truth references,
quantitative metrics such as SSIM or LPIPS could not be com-
puted for them. Future deployment with paired low-light and
ground-truth images will enable detailed numerical evalua-
tion.

Discussion of Findings

Summary of Findings

The findings indicate that this process significantly enhances
images in darkness both in pixel-wise correctness and overall
perceptual correctness in high ground truth similarity. PSNR,
SSIM, and LPIPS measurements validate distortion minimiza-
tion with intact structural contents by the model. Low faith-
fulness loss is verified by the high value in PSNR while low
value in LPIPS indicates improved images have aesthetically
pleasing visuals naturally.

Although these results guarantee a reduction in perfor-
mance limitations, future research could focus on minimizing
errors in extreme low-light conditions, where pixel-by-pixel
inaccuracies persist. Further adjustments could enhance im-
age quality in such unfavorable conditions while ensuring co-

herence in perceptions-.

Enhanced

Robot Input

Robot Input

Fig. 5 Enhanced real-world frame captured by the robot using a
Raspberry Pi camera, demonstrating HybridNet’s effectiveness in
low-light scenes.

This research successfully developed a HybridNet model
that integrates Zero-DCE and CIDNet for low-light image en-
hancement, optimized for real-time deployment on a Rasp-
berry Pi-powered robot. The model enhances visibility
in challenging lighting conditions by dynamically adjusting
brightness while preserving structural details. The results val-
idate HybridNet’s effectiveness for embedded Al applications,
bridging the gap between computational efficiency and high-
quality image restoration.

Although the quantitative gains of the proposed HybridNet
appear modest (e.g., +0.15 SSIM, 0.07 LPIPS, +2 PSNR),
these improvements directly affect decision-making in robotic
vision tasks where fine structural cues determine system re-
sponses. For example, (1) in intrusion detection at night,
Over-enhancement by BEM can blur facial features, making
it difficult to recognize a person. HybridNet preserves facial
contour fidelity, ensuring accurate identification and detection.
(2) In warehouse automation, PSNR improvements help sep-
arate true barcode lines from lighting-induced noise, ensuring
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accurate inventory scanning. (3) In healthcare robotics, subtle
LPIPS reductions preserve vein visibility in low-light imag-
ing, enabling more precise robotic-assisted injections. (4) In
indoor cleaning robots, the model enhances low-light floor
textures and small object edges, preventing collisions and im-
proving navigation efficiency. (5) In daily home use, such
as smart fridges or pantry monitoring, HybridNet preserves
small labels and indicator lights, enabling accurate inventory
and status detection even in dimly lit kitchens.

Although HybridNet is slightly slower, FPS converges with
lightweight models on high-end GPUs. Despite similar FPS,
its superior perceptual quality and structural fidelity preserve
subtle but critical details, enabling more accurate downstream
decision-making and situational awareness, highlighting the
practical significance of these numerical gains.

Fig. 6 Image of the autonomous robot prototype used for real-time
testing

Implications and Applications

The integration of HybridNet on a Raspberry Pi-powered
robot highlights its potential for real-world applications in
embedded systems. By improving vision in low-light envi-
ronments, the model enhances the capabilities of autonomous
robotics, allowing for better navigation and object detection.
In surveillance and security applications, the enhanced image
clarity improves the processing of dark or unclear footage in
real time. The model can also be applied to medical imag-
ing, where adaptive brightness correction allows for clearer
analysis in resource-limited settings. Furthermore, its ability
to improve visibility could be adapted for other specialized
stationary imaging domains requiring adaptive enhancement.
The successful deployment on a Raspberry Pi proves that deep
learning-based enhancement models can function effectively
on edge devices without relying on high-performance GPUs.
While external light sources could theoretically be used to
improve visibility, they come with several drawbacks. Contin-
uous lighting increases energy consumption, which is critical
for battery-powered systems. In stealth-sensitive operations
such as surveillance or indoor monitoring, visible or infrared
lighting can reveal the robot’s presence. Additionally, strong
lighting can cause sensor washout, glare, or shadows, degrad-
ing image quality. Thus, a software-based solution like Hy-

bridNet offers a more power-efficient and operationally flex-
ible alternative, especially for embedded and edge-deployed
systems.

Robot Input Enhanced

300 400 500

Fig. 7 A comparative visualization of raw low-light images and
their enhanced outputs, showcasing the effectiveness of HybridNet.

Limitations and Future Work

While the model significantly improves image clarity, certain
limitations remain. Running the model on a Raspberry Pi in-
troduces higher latency compared to GPU-based execution,
affecting real-time performance. In extreme low-light condi-
tions, some fine-grained textures may still be lost, limiting the
level of detail restoration. The constraints of the Raspberry
Pi’s power and memory resources also present challenges in
processing high-resolution images efficiently.

Future work will focus on optimizing the model for faster
inference by implementing quantization and pruning tech-
niques to reduce computational load. Expanding testing across
diverse datasets will improve the model’s adaptability, while
integrating transformer-based enhancements could further re-
fine image restoration. Additionally, developing a version ca-
pable of processing high-resolution images in real time would
increase its usability across various applications.

Conclusion

Robotic low-light image enhancement with the hybrid deep-
learning method combining the Zero-DCE and CIDNet archi-
tectures is realized in this paper, HybridNet. With the PSNR
of 27.46 dB, SSIM of 0.956, and LPIPS of 0.00052, the model
has established its efficacy vis-a-vis various existing state-of-
the-art methods in terms of both perceptual quality and struc-
tural accuracy. Hence, it stands as a visual performance in-
dicator showing the ability of the model to manufacture high
fidelity and pleasing images in Low lighting, a task critical to
robotic vision.

The HybridNet approach is efficiently deployable on an
8GB Raspberry Pi 5. Initially, it ran at 1 FPS, but after ONNX
optimization and 4-thread CPU execution, inference improved
to 2.6 FPS, making real-time edge deployment practical. On
a Jetson Orin Nano, the model achieves 19 FPS, highlighting
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the advantage of specialized Al hardware for dynamic robotic
environments. This demonstrates that HybridNet provides a
scalable solution for real-time image enhancement across dif-
ferent edge platforms. Autonomous robotic systems leverage
this enhancement in visibility for benefits in navigation, object
detection, and environmental sensing under difficult lighting
conditions.

While HybridNet has demonstrated strong performance
across multiple metrics and real-world applications, future en-
hancements aim to further improve its efficiency and adapt-
ability. Planned advancements include the integration of
model compression techniques such as quantization and prun-
ing to optimize computational performance, and the incorpo-
ration of transformer-based modules to capture richer contex-
tual information. Additionally, expanding the training dataset
with more diverse and variable conditions will contribute to in-
creased generalization and robustness across a broader range
of scenarios.

In summary, HybridNet represents a scalable and practi-
cal solution for real-time image enhancement in embedded
robotics, offering a robust balance between computational ef-
ficiency and image restoration quality. Its successful edge de-
ployment paves the way for more intelligent, vision-capable
robotic systems operating reliably in low-light environments.
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