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Predicting car prices accurately is a significant problem in the automotive industry, influencing buyer and seller transactions. Due
to the rising uncertainty of market dynamics and consumer preferences, accurate car price prediction is crucial in today’s market.
In this paper, various machine learning and deep learning algorithms have been examined to predict car prices accurately. A
dataset of used vehicles, including their details and listing prices, was utilized, and various preprocessing techniques were applied
to enhance the data quality. Specifically, four imputation methods- that is, mode, mean, K-Nearest Neighbor imputation, and
median- were employed to fill in missing values in the data. Further, feature engineering was done, splitting the name feature into
brand and model names. Finally, various machine learning and deep learning models were employed to predict car prices based on
the refined feature set. The hyperparameters of each deep learning model were adjusted to enhance its overall performance. It was
observed that the feature engineering-enhanced approach improved the accuracy of most machine learning and deep learning
models, demonstrating that careful data preprocessing and feature engineering (like splitting the car names) can enhance model
performance. The impact of each feature was investigated and subsequently the mileage feature was dropped based on the three
independent methods (SHAP, Permutation importance, and marginal non-linear dependency). LightGBM and CatBoost were
identified as the best models based on their R2 scores. These experiments prove that while deep learning offers powerful tools for
complex machine learning problems, traditional machine learning models can sometimes provide better performance for tabular
datasets, especially when feature engineering is effectively applied. Broadly, it highlights the importance of domain-specific
preprocessing techniques in improving model accuracy.

Introduction and background

Accurate car price predictions are highly valued in a volatile
car market, enabling consumers to make informed purchasing
decisions. Knowing the approximate fair market value of a car
(whether new or used) often helps consumers pay the right price
for the vehicle. Having a fair idea of market trends also allows
manufacturers and analysts to study and examine consumer
preferences over both short-term and long-term periods. In a
rapidly globalizing world, accurately estimating the right price
is crucial to avoid under- or overpaying. Car dealerships and
websites (like CarWale, TrueCar, or CarDekho) use price pre-
diction models to set competitive prices and, therefore, attract
prospective buyers. It helps them make healthy profits while
keeping customers happy.

Moreover, the growth of the internet has dramatically in-
creased the information available to potential buyers in multiple
markets, significantly addressing the problem of adverse selec-
tion.

Given the rise of electric vehicles (EVs), fuel costs are chang-
ing, resulting in a corresponding shift in car prices. Supply chain
issues, chip shortages, and inflation affect car prices worldwide,
making machine learning-based price prediction a necessity

rather than a choice.
Additionally, the second-hand car market is expanding, which

is accompanied by a corresponding decline in the market for new
cars. The price of both used and new cars depends on several
factors, including fuel type, color, model, mileage, transmission
type, engine type, number of seats, and brand value. Most
people prefer to buy used cars because they generally tend to
be affordable (about 50% cheaper than new cars) and can be
resold again to get some profit. Hence, machine learning to
predict car prices is becoming increasingly important. The
research paper aims to explain how different machine and deep
learning algorithms were leveraged to perform accurate car price
prediction.

Related Works

Several studies and related works have been conducted in the
past to predict car prices, as well as those of new cars worldwide,
using various methods and approaches. In 2023, Researchers
employed Linear Regression modeling for used car price pre-
diction. They evaluated the model’s effectiveness in predicting
prices1.

Along similar lines, a study published in December 2019
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utilized machine learning algorithms, including Lasso Regres-
sion, Multiple Regression, and Regression Trees, to develop a
statistical model that predicted the price of a used car based on
previous consumer data and a given set of features2.

On the contrary, researchers in the United States used arti-
ficial neural network algorithms for the same purpose. They
developed artificial neural network algorithms using the Keras
regression algorithm and compared their performance to that
of basic machine learning models, including Linear Regres-
sion, Decision Tree algorithms, Gradient Boosting, and Random
Forest3.

Elsewhere, researchers proposed a supervised machine learn-
ing model using the K-Nearest Neighbor (KNN) regression
algorithm to analyze the prices of used cars. They claim the
accuracy of the proposed model to be around 85%. Although
the paper’s aim was similar to the previous ones, i.e., to enhance
model accuracy, it employed different techniques to achieve this
goal: data preprocessing, including the removal of numerical
components from non-numerical features, converting categorical
values into numerical values, and separating the target variable4.

Furthermore, recent research has investigated the applica-
tion of ensemble machine learning approaches for car price
prediction using image-derived datasets5. The study leverages
machine learning models and ensemble techniques to achieve an
accuracy of 99.99%. Through testing and data pre-processing,
the research demonstrates the importance of employing ensem-
ble methods like bagging and stacking to improve model perfor-
mance.

Similarly, in another study, researchers developed a car price
prediction model for Bosnia and Herzegovina using data col-
lected from a local car portal. Three machine learning tech-
niques(ANN, SVM, and Random Forest) were applied in an
ensemble to improve prediction accuracy. The final model was
integrated into a Java application. It achieved an accuracy of
87.38%6.

This paper aims to address the problem of car price prediction
primarily through the lens of feature engineering, including the
removal and splitting of the various features present in the origi-
nal dataset, as well as the use of different imputation methods.
Moreover, it employs a vast array of machine learning mod-
els, from tree-based techniques to linear techniques to neural
network-based models. Thus, it combines the previous efforts
of researchers with a vast majority of the models in one paper.

This paper has two broad sections:
Materials and methods: A brief description of the dataset,

followed by a similar in-detail description of how and why fea-
ture engineering was done. Lastly, this section provides a short
explanation of the various machine learning and deep learning
techniques used to accurately predict car prices, accompanied
by diagrams to enhance clarity of understanding.

Experiments and Results: This section provides a concise
overview of the implementation details, followed by a detailed

explanation of how and why the machine learning and deep
learning results were obtained.

This is followed by the conclusion.

Materials and Methods

Dataset description

The dataset consisted of twelve features, including the target
variable.

The dataset used in this paper was sourced from CarDekho,
one of India’s largest online platforms for buying and selling
cars. It contains listings of second-hand vehicles across various
regions of India. The outsourced dataset was taken from an open-
source data science and machine learning community called
Kaggle.

The twelve features are stated as follows:

1. Name- The full name of the car, including make, model,
and variant. For example, “Maruti Swift Dzire VDI.”

2. Year-The year of manufacture of the vehicle

3. Kilometres driven (in kilometers)-Total distance the vehicle
has been driven.

4. Fuel-Type of fuel used by the vehicle.

5. Seller type-the type of seller listing the car. For example,
Individual or dealer.

6. Transmission- Indicates whether the car uses an automatic
or manual gearbox.

7. Owner-Describes the number and type of previous owners.

8. Mileage (in kilometers per liter)- Fuel efficiency of the
vehicle

9. Engine (in cubic centimeters)-Engine displacement of the
car

10. Maximum power(Horsepower or Brake Horsepower(BHP))
- Maximum power output of the engine.

11. Seats-Total number of seats available in the car.

12. Selling price-target variable-The listed selling price of the
car in Indian rupees.

The preprocessed dataset removed the mileage feature and
split the name feature into brand and model.

There were 8128 samples for each feature. The split between
the training and test data was 88% to 12%. Various aspects of
the data were explored and diagrams plotted to gain a deeper
understanding of it.
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Fig. 1 The figure above presents a correlation heatmap representing
pairwise

Pearson correlation coefficients between numerical and en-
coded variables in the dataset. The value of the coefficient can
range from +1 to -1, representing the strength and direction
of the linear relationship between the respective variables. A
positive value denotes a positive correlation, a negative value
denotes a negative correlation, and 0 indicates no correlation.

It was observed that the selling price has a strong positive
correlation with maximum power (0.75), suggesting that vehi-
cles with higher power tend to have higher selling prices. The
value of the engine (0.45) indicates that vehicles with larger
engine capacities tend to be priced higher. The year is (0.41),
as newer models are usually more expensive. Maximum power
is also strongly correlated with engine (0.70) and seats (0.19):
power tends to increase with engine size and the number of
seats, though the seat correlation is weaker. Kilometers driven
show a weak negative correlation with selling price (-0.23),
suggesting that higher mileage slightly reduces vehicle value.
Mileage (km/liter/kg) is negatively correlated with engine size (-
0.58), maximum power (-0.37), and the number of seats (-0.45),
indicating that vehicle performance comes at the cost of fuel
efficiency.

Categorical variables, such as fuel type, seller type, trans-
mission, and ownership, were likely encoded for correlation
analyses, as indicated by their low to moderate correlations with
other variables.

Strong Positive Correlations: Maximum power (∼0.75): Cars
with higher horsepower are typically priced higher. Engine
(∼0.45) and year (∼0.41): Vehicles with larger engine capacities
and newer manufacturing years tend to be highly priced.

Moderate Positive Correlations: Name and seats show mi-
nor positive relationships, possibly showing premium or larger
vehicles such as SUVs, MUVs, or luxury vehicles.

Negative Correlations: Transmission (∼ -0.55): Values likely
indicate manual vs. automatic; manual is associated with lower

Fig. 2 Plot correlation degree showing Pearson correlation coefficient
between selling price (the dependent feature) and other independent
features.

prices. Seller type, owner, and km driven: Suggest that cars from
certain sellers with more previous owners or higher mileage are
priced lower. Mileage(km/liter/kg) (∼ -0.20): This signifies that
cars with higher mileage are often lower powered and hence
cheaper.

Fig. 3 A figure demonstrating the skewness of different features and
their relative importance or influence in determining the selling price.

Positively Impactful Features: Seats, maximum power, and
engine have the most significant positive coefficients, meaning
they significantly increase the predicted selling price. Out of
these, seats have the most decisive influence in this model, pos-
sibly due to being associated with luxury or premium cars. The
owner and fuel also contribute positively to a lesser extent.

Negatively Impactful Features: transmission, kilometers
driven, seller type, and year have negative coefficients, implying
that these features lower the selling price in the model. For
example, transmission likely represents a manual vs. automatic
distinction, with manual vehicles being valued lower. Kilo-
meters driven and year demonstrate depreciative factors, like
vehicle usage and age.

Neutral Features: The coefficients for name, brands, and
mileage (km/ltr/kg) are close to zero, indicating little to no
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influence on the model’s predictions.

Fig. 4 A box plot visualization of the different features, illustrating the
cyclicity of the parameters affecting one another.

Kilometers driven: This feature displays a wide range of val-
ues, including several outliers, with extreme cases exceeding 2
million kilometers, which are likely erroneous. These outliers
can skew model predictions and should be removed or changed.
Most other variables show either minimal spread or are com-
pressed near the lower end, suggesting their values are tightly
clustered. Outliers exist in many variables (small dots above
or below whiskers), but not to a great extent. The presence of
such outliers can introduce a significant bias in the accuracy of
various models.

Fig. 5 Pie charts to represent the frequency of occurrence of various
values for each feature

As shown in figure 5, the year distribution exhibits a wide
range of car manufacturing years. However, most cars were
produced between 2010 and 2018, with a few older vehicles
(made before 2005) also present.

Fuel has been labeled numerically. Diesel and Petrol have the
highest representation, with Petrol slightly more common. Elec-
tric and CNG vehicles are rare, suggesting limited alternative
fuel options. Seller Type - The majority are labeled “1”, likely
representing individual (solitary) sellers. Dealerships (possibly
labeled “0” or “2”) make up a smaller portion.

Transmission - Many cars have a value of “1”, likely indicat-
ing a manual transmission. Automatic cars (value “0”) are much
less frequent.

Owner- Most cars are first-hand (value 0), followed by second-
hand (value 2). Vehicles with more than two owners (values
3 and 4) are rare, possibly due to reduced resale values and
the pride associated with owning a car that is not a second or
third-hand vehicle.

The dataset is dominated by 5-seater vehicles, which is stan-
dard for most sedans and hatchbacks. A small number of cars
have 7 or 8 seats, suggesting SUVs or MUVs. Some unusual
values (e.g., decimals like 5.41) may indicate data entry errors.

Fig. 6 Distribution of Continuous Car Features using histograms

Kilometers driven- The distribution is right-skewed, with
most cars driven under a specific limit (likely under 100,000 km)
but a long tail of high-mileage vehicles. This result highlights
the importance of handling outliers during preprocessing.

Mileage (km/ltr/kg) This variable is approximately normally
distributed, centered around a typical fuel efficiency range (ap-
proximately 15-25 km/ltr).

Engine Skewed distribution toward lower engine capacities
(standard for small, mid-size cars). Many observations are
concentrated around the 1000-1500 cc (cubic centimeter) range,
with fewer high-displacement engines.

Maximum power distribution is right-skewed, indicating
that most cars possess average horsepower, with fewer high-
performance exceptions.

Feature engineering

Missing value imputation

It was observed that four of the eleven features, namely mileage
(km/ltr/kg), engine, maximum power, and seats, had some miss-
ing values. The presence of missing data can significantly im-
pact the performance and accuracy of machine learning algo-
rithms. Specifically, missing data hinders model accuracy and
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performance because it can introduce bias, reduce the amount of
available data, render some algorithms unusable, lead to the loss
of valuable information, increase the complexity of the process,
and compromise the stability of both machine learning models
and deep learning models. To address this challenge, various im-
putation methods were explored to fill in missing values within
the dataset. Previously, mean and mode were used to fill in
numerical and string values, respectively. However, median and
K-Nearest Neighbour imputation methods were also explored to
determine if the change had any tangible impact on the models’
accuracy.

By choosing appropriate statistical measures (mean, median,
mode, and KNN), the underlying distribution and variance of
the data were preserved, thereby minimizing the distortion of
the dataset.

These imputation techniques are efficient and easy to imple-
ment, making them suitable for handling large datasets with
missing values.

Mean- The mean is the average value calculated by summing
up all the available values and dividing by the total number of ob-
servations. Filling missing values with the mean is a straightfor-
ward method for estimating unknown values based on existing
data7.

The median is the middle value in a dataset that has been
sorted in ascending order. It represents the central tendency and
is less sensitive to outliers compared to the mean.

Mode is the most frequently occurring value of the non-
missing data for a specific variable.

KNN Imputation- It works by finding the “nearest neighbors”
(rows) that have similar patterns to the row with missing data. In
KNN imputation, each row is treated as a coordinate in a multi-
dimensional space (each feature represents a dimension). The
algorithm then calculates the distance between rows to identify
the most similar ones. The missing value is then estimated based
on the values of the closest rows8.

Decoupling brand and model name

To enhance the predictive accuracy of car prices, strategic fea-
ture engineering techniques were employed. In the original
dataset, the car names feature contained redundant and overlap-
ping information. For example, in the Skoda Rapid 1.5 TDI
Ambition, the 1.5 represents the engine capacity, while the TDI
represents the type of transmission used in the car. These fea-
tures were already present as separate independent features in
the dataset and, hence, were considered redundant. Moreover,
the brand value was unaccounted for: two cars with the exact
specifications and different brands will be priced differently,
owing to distinct brand values. The name feature was split into
two features: brand and model. This split enhanced the ability
of models to independently assess the impact of specific brands
and models on car prices. The improved feature independence

and distinct representation of brand value significantly reduced
the redundancy of the features, thus preventing multicollinearity.

Dropping mileage

Although initial correlation analysis showed a moderate negative
correlation between mileage and maximum power (-0.37) and a
weaker correlation with price (-0.20), a more thorough feature
importance evaluation was conducted using three independent
methods:

Using SHAP values, mileage ranked among the lowest fea-
tures, contributing less than 2% of the total model importance.
Moreover, randomly shuffling mileage resulted in negligible
changes in the model’s accuracy (<0.5% change in MAE), in-
dicating low predictive prowess (permutation importance). Fi-
nally, the mutual information score for mileage was close to
zero(0.02), confirming marginal non-linear dependency with the
target variable.

These results suggest that mileage’s role in the correlation
features is largely indirect. Its inclusion neither improved nor
stabilized the model’s performance. However, it slightly in-
creased feature redundancy, as a result of which the mileage was
dropped.

Machine learning techniques

’Linear Regression model’- Such models assume a linear rela-
tionship between features and the target variable. Linear Re-
gression is a type of supervised machine learning algorithm
that learns from labeled datasets and maps the data points using
the most optimized linear functions, which can then be used
for prediction on new datasets. Specifically, it fits a straight
line to the observed data by minimizing the mean squared error
between the predicted and actual values. Finally, it predicts
the continuous output variables based on the independent input
variable.

’Ridge Regression model’- Ridge Regression is a model-
tuning method that is used to analyze any data that is affected
by multicollinearity. This method employs L2 regularization.
When the issue of multicollinearity arises, least-squares esti-
mators are unbiased, but the variances are significant, resulting
in predicted values that deviate substantially from the actual
values.

The cost function for Ridge Regression is as follows

min
θ

(
∥Y −Xθ∥2 +λ∥θ∥2)

’Lasso Regression model’- In Lasso Regression, the hyper-
parameter lambda (λ ), also known as the L1 penalty, is used to
balance the potential trade-off between bias and variance in the
resulting coefficients. As λ increases, the bias increases, and
the variance decreases, leading to a simpler model with fewer
parameters. This is illustrated in the diagram below.
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Fig. 7 A diagram to illustrate the working of Lasso-regression model 9

’Elastic Net Regression model’- It is a Linear Regression
algorithm that adds two penalty terms to the standard least-
squares objective function. These two penalty terms are, namely-
the L1 and L2 norms of the coefficient vector. These two terms
are multiplied by the two hyperparameters, alpha and lambda.
While the L1 norm is used to perform feature selection, the L2
norm’s primary function is feature shrinkage. The Elastic Net
Regression model can be represented as follows:

y = b0 +b1x1 +b2x2 + · · ·+bnxn + e

Where y is the dependent variable, b0 is the intercept, b1 to
bn are the regression coefficients, x1 to xn are the independent
variables, and e is the error term.

Decision Tree model- Decision Tree model- Decision Trees
(DTs) are a non-parametric supervised learning method used for
classification and regression tasks. This model predicts the value
of a target variable by learning simple decision rules inferred
from the data features. A tree can be seen as a piecewise constant
approximation, as illustrated in the figure below.

Fig. 8 A diagram to show the working of Decision Tree10

’Gradient Boosting model’- Gradient boosting is a machine
learning technique that combines multiple weak prediction mod-
els into a single ensemble, as seen in the figure below. These
weak models are typically decision trees, which are trained se-
quentially to minimize errors and improve accuracy. By combin-

ing multiple decision tree regressors or decision tree classifiers,
gradient boosting can effectively capture complex relationships
between features.

Fig. 9 A diagram to show the working of Gradient Boosting model11

’K-Nearest Neighbour model’- The K-Nearest Neighbour
(KNN) algorithm is a non-parametric, supervised learning clas-
sifier that uses proximity to make classifications or predictions
about the grouping of an individual data point.

Fig. 10 Diagrams to show the working of K-Nearest Neighbor model 12

’Random Forest model’- Random Forest algorithms have
three primary hyperparameters, which need to be set before
training. These include node size, the number of trees, and the
number of features sampled. From there, the Random Forest
classifier is used to solve regression or classification problems.

The Random Forest algorithm consists of a collection of
Decision Trees, and each tree in the ensemble is comprised of a
data sample drawn from a training set with replacement, known
as the bootstrap sample. Of that training sample, one-third of it
is set aside as test data, known as the out-of-bag (OOB) sample.
Another instance of randomness is then introduced through
feature bagging, which adds more diversity to the dataset and
reduces the correlation among Decision Trees. Depending on
the type of problem, the determination of the prediction will
vary. For a regression task, the individual Decision Trees will
be averaged, and for a classification task, a majority votei.e.,
the most frequent categorical variablewill yield the predicted
class. Finally, the OOB sample is then used for cross-validation,
finalizing that prediction. This is illustrated in the diagram
below.
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Fig. 11 A flowchart showing the working of Random Forest13

‘CatBoost’- CatBoost is built on the Gradient Boosting
framework, an ensemble learning technique that combines the
strengths of multiple weak learners to produce a predictive
model. CatBoost implements this framework using Decision
Trees, but what sets it apart are two critical innovations, namely
ordered boosting and efficient handling of categorical features.

Ordered boosting is a technique that creates several permu-
tations of the data and uses only past observations for each
permutation when calculating leaf values. This method min-
imizes overfitting. While most gradient-boosting algorithms
require these features to be converted into numerical representa-
tions through methods like one-hot encoding, CatBoost natively
handles categorical data. It automatically determines the best
way to represent these features, significantly reducing the need
for manual preprocessing. It works exceptionally well when
dealing with high-cardinality features. This generally happens
when a feature has a considerable number of distinct values.

‘XGBoost’- XGBoost, which stands for Extreme Gradient
Boosting, is a scalable, distributed gradient-boosted Decision
Tree (GBDT) machine learning library with sequential ensemble
learning. It is a supervised learning algorithm that handles miss-
ing values by default and is not sensitive to outliers. It provides
parallel tree boosting and is the leading machine-learning library
for Regression, classification, and ranking problems.

‘LightGBM’- The Light Gradient Boosting [6] machine
regressor (LightGBM) is a breakthrough tree-based ensem-
ble learning approach developed by researchers to overcome
the efficiency and scalability difficulties of XGBoost in high-
dimensional input features and massive dataset contexts. The
LightGBM technique comprises two primary methods: exclu-
sive feature bundling (EFB) and gradient-based one-side sam-
pling (GOSS), both of which are based on Decision Trees. As
with other Decision Tree-based methods, LightGBM can be
used for both classification and Regression. It is optimized for
high performance with distributed systems. LightGBM creates
Decision Trees that grow leaf-wise, which means that given

Fig. 12 A diagram showing the working of CatBoost algorithm14

Fig. 13 A diagram showing the working of XGBoost algorithm15

a condition, only a single leaf is split, depending on the gain.
Leaf-wise trees can sometimes overfit, especially with smaller
datasets. Limiting the tree depth can help to avoid overfitting.

Fig. 14 A diagram showing the working of LightGBM algorithm16
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Deep learning techniques

Artificial Neural Networks and What They Are About - Artificial
neural networks contain artificial neurons called units. Together
constituting the whole Artificial Neural Network in a system,
these units are arranged in a series of layers. A layer can have
only a dozen units or millions of units, as this depends on the
complexity of the neural networks required to learn the hidden
patterns in the dataset.

More commonly, an Artificial Neural Network consists of
an input layer, an output layer, and one or more hidden layers.
The input layer receives data from the outside world, which the
neural network needs to analyze or learn about. Thereafter, this
data passes through one or more hidden layers, transforming the
input into data that is valuable for the output layer. Finally, the
output layer provides an output in the form of a response of the
Artificial Neural Networks to the input data provided.

Sequential models were constructed using fully connected
layers. The number of layers and units per layer were kept con-
sistent across initial experiments to allow for fair comparisons.

Rectified Linear Unit (ReLU) activation functions were used
for hidden layers to introduce non-linearity. A linear activation
function was used for the output layer to allow for continuous
value predictions.

Experiments and results

Implementation details

Out of 8128 samples in the dataset, it was found that 221 sam-
ples were missing in each of the three features mileage, seats,
and engine. For maximum power, the number of missing sam-
ples was 215. This led us to employ the various missing value
imputation techniques.

Table 1 Mean and median values for the missing samples
Mean
value

Median value

Mileage 19.4188 19.418783
Engine 1458.63 1248
Seats 5.41672 5

The mode value for the maximum power was found to be
74.0 For the KNN imputation method, the number of nearest
neighbors used was five, with uniform weights.

To maintain consistency and comparability across models, the
default hyperparameter settings as prescribed by the respective
Python packages for each machine learning model were used.
Scikit learn was used to implement these algorithms(machine
learning models).

All experiments were conducted with a fixed random seed
(42) for reproducibility. Key packages and their versions: Scikit-

learn 1.X, Keras 2.X, TensorFlow 2.X, NumPy 1.X, Pandas 1.X,
Matplotlib 3.X.

Several deep-learning models were employed with different
hyperparameters and layers. Keras was used as the default
framework. All the sequential models took the same input as
the machine learning models, which were trained and tested. No
normalization layers were used in the model. The Adam opti-
mizer was chosen for its adaptive learning rate capabilities, with
default parameters (learning rate = 0.001, beta 1 = 0.9, beta 2
= 0.999, epsilon = None, decay = 0.0). Mean Squared Error
(MSE) was used as the loss function to quantify the difference
between predicted and actual values. The R-squared (R2) score
was used to evaluate the model’s performance. A batch size
of 32 was used. Models were trained for a maximum of 1000
epochs with an early stopping callback to prevent overfitting.
The early stopping monitored validation loss and stopped train-
ing if no improvement was observed for 50 epochs. Dropout
layers with a rate of 0.1 or 0.2 were added to some models to
prevent overfitting.

Three models with different layers in deep learning:
Model 1 was a neural network model with configurations of

16, 8, and 4 neural network units in the hidden layer. Use of
default activation function for output “Relu .” Model 2 was a
neural network model with configurations of 64, 64, 128, 128,
and 256 neural network units in the hidden layer. A dropout rate
of 0.1 was included, which was used to regularize the output
from hidden layers 4, 5, and 6, which fed into the output layer.

A linear activation function was used for the output, which is
more appropriate for Regression.

Model 3 was a neural network model with configurations of
128, 128, 256, 256, and 512 artificial neural network (ANN)
units in the hidden layer. A dropout rate of 0.2 was included,
which was used to regularize the output from hidden layers 4, 5,
and 6, which fed into the output layer.

A linear activation function was used for the output, which is
more appropriate for Regression.

Feature engineering results

The results, which depict the impact of feature engineering, are
shown below.

The results are displayed in two features: one with the impact
of feature engineering (after dropping mileage and decoupling)
and the other without this impact.

Table 2 shows that Linear Regression improved by 0.13%. A
small gain from reduced redundancy, that is, decoupling brand
and model slightly reduced multicollinearity, and mileage re-
moval helped remove unnecessary noise.

XGBoost improved by 1.21%. Decoupling enhanced the
model’s ability to distinguish between brand-level pricing (the
brand value) and dropping mileage reduced overfitting.
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Table 2 Results of feature engineering

Models Test R2 score
(%)

Test R2 score
(%)

without feature
engineering

with feature en-
gineering

Linear Regression 63.15 63.28
XGBoost 94.63 95.84
CatBoost 96.13 96.11
LightGBM 96.37 96.52
Lasso Regression 63.15 63.28
Ridge Regression 63.16 63.28
Elastic Net Regres-
sion

62.93 63.06

Decision Tree 86.82 90.69
Gradient Boosting 93.35 94.02
K- Nearest Neigh-
bors

86.54 86.58

Random Forest 95.69 95.82

CatBoost dropped by 0.02%. A minimal decline due to Cat-
Boost’s inherent handling of high-cardinality categorical data
such as the one used in this dataset

As seen in table 2, LightGBM improved by 0.15%. Categori-
cal splits benefited from decoupling, and removing a relatively
weekly correlated variable, such as mileage, led to a more fo-
cused approach.

Lasso Regression improved by 0.13%. This model benefited
slightly from the reduction of multicollinearity and the elimina-
tion of the redundant mileage feature.

Ridge Regression improved by 0.12%. It gained in perfor-
mance due to increased feature independence(by decoupling)
and noise reduction from mileage removal.

Elastic Net Regression- Improved by 0.13%. Combined regu-
larization performed better in the simplified feature space after
decoupling, resulting in a decrease in mileage.

As illustrated in table 2, Decision Tree improved by 3.87%. A
significant gain from more precise decision boundaries enabled
by brand/model split and removal of redundant mileage feature.

Gradient Boosting- Improved by 0.67%. Better feature clar-
ity(after decoupling) led to improved splits, especially with
brand-based pricing distinctions.

KNN- Improved by 0.04%. There was slight improvement
due to better distance calculations after eliminating irrelevant
mileage and clarifying categorical data.

Random Forest- Improved by 0.13%. It gained marginally
from cleaner data splits and a reduction in confusion caused by
mileage drops.

Hence, table 2 displays succinctly how all models except
CatBoost showed an improvement in model performance after
feature engineering, demonstrating the need for careful prepro-

cessing in conjunction with model specifications and behavior.

Imputation methods

Table 3 Results showing the impact of the imputation methods on the
R2 score

Models Test R2 score
without imputation
methods, where
all missing values
have default value
zero(%)

Test R2

score for
mean(%)

Test R2

score
for me-
dian(%)

Test R2

score for
KNN Im-
putation
method(%)

Linear Regression 61.73 63.28 63.3 63.28
XGBoost 96.76 95.84 95.72 95.84
CatBoost 96.15 96.11 96.25 96.11
LightGBM 96.3 96.52 96.45 96.52
Lasso Regression 61.73 63.28 63.3 63.28
Ridge Regression 61.73 63.28 63.3 63.28
Elastic Net Regres-
sion

61.29 63.06 63.08 63.06

Decision Tree 88.11 90.69 91.66 93.13
Gradient Boosting 94.06 94.02 94.22 94.07
K-Nearest Neigh-
bour

86.57 86.58 86.58 86.58

Random Forest 96.04 95.83 96.2 95.9

Linear Regression is sensitive to missing values, and hence,
it is seen that there is an approximately 1.55% percent increase
with the use of imputation methods. This is because the placing
of default zero values introduces bias and affects coefficients.
Mean, median, and KNN all remove this bias similarly, leading
to nearly identical performance (with very little disparity).

XGBoost is inherently designed to handle missing values effi-
ciently by learning split directions. Imputation slightly reduces
performance, suggesting the model’s missing handling is bet-
ter than imposed imputations in this case. Mean and KNN are
tied(95.84%), and the median is slightly worse(95.72%).

As seen in table 3, CatBoost, like XGBoost, handles missing
values implicitly. All imputation methods result in nearly equal
performance(96.11 to 96.25%). Median performs better due to
its resistance to outliers.

LightGBM showed a test R2 score of 96.30% without im-
putation. However, the mean showed a minor improvement at
96.52%, and the median was 96.45%, with KNN also achiev-
ing an accuracy of 96.52%. There was a small gap of 0.07%
between the R2 scores with and without imputation methods.
Therefore, these results show that LightGBM benefits slightly
from imputation. Mean and KNN are tied, and the median is
slightly behind. Nevertheless, all three are very close, indicating
the inherent robustness of the model.

Lasso Regression without imputation stood at an R2 score of
61.73%. However, the performance of the different imputation
methods is not significantly different from one another: the
mean yields an R2 score of 63.28%, the median 63.30%, and
KNN also achieves 63.28%. Lasso (being a linear model with
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L1 regularization) shares the same imputation insensitivity as
Linear Regression.

Our results in Table 3 show that Ridge Regression shows no
meaningful change in R2 score values when different imputation
methods are applied. Like Lasso, Ridge is a linear model with
L2 regularization. It shows consistent behavior with very similar
performance across imputation methods.

Elastic Net Regression also shows a negligible change in the
R2 score when different imputation methods are used. This
is because it is a combination of Lasso and Ridge, and thus,
Elastic Net Regression behaves similarly to the other two models.
Moreover, there is an improvement of approximately 1.8% over
the default zero imputation, as seen in Table 3.

The Decision Tree Model, with an R2 score of 88.11% and
default zero values, shows a significant difference of ∼ 5%
compared to KNN at 93.13%. The disparity between the mean
and median is relatively intangible. Decision Trees split on
feature thresholds. However, zeros skew these splits. Therefore,
the reduced performance is seen, as displayed in Table 3. On
the other hand, KNN captures more nuanced patterns, thereby
improving the quality of splits. The model shows the highest
gain from imputation among all models.

Gradient Boosting is a strong model with internal robustness.
Hence, all imputation methods perform similarly. The median
performs better than the other two imputation methods, as seen
in Table 3.

K Nearest Neighbours Model shows the same R2 score across
all columns. This is because KNN classification bases predic-
tions on similarity. Missing values imputed any which way lead
to stable neighbor sets being formed. The results demonstrate
that the KNN model is inherently robust and unaffected by the
imputation strategy, as applied to this dataset.

Random Forest has some inbuilt tolerance to missing values.
Hence, default zero imputation gives a slightly higher value
as compared to the imputation methods. Overall, all imputa-
tion methods give close results. Median imputation marginally
outperforms the rest.

Most models show no meaningful difference in performance
between mean, median, and KNN imputation because the
dataset has a low quantity of missing values as compared to
the sample size.

Since our data was already preprocessed, changing the impu-
tation methods had no tangible impact on the target variable and
the accuracy of the models, as illustrated by table 3. Moreover,
this was because “seats” and “mileage” were relatively indepen-
dent of other critical features and had minimal impact on the
target variable.

Linear Models (Linear, Lasso, Ridge, Elastic Net) show poor
performance on average (test R2 score around 63%). This is be-
cause these models assume linear relationships between the fea-
tures and the target. Therefore, they fail to capture interactions
between different features (e.g., year and transmission affecting

Machine learning results

Table 4 Train and test R2 scores and errors
Models Test R2

score(%)
Train R2

score(%)
test mean
squared
error(x
1010

INR2 )

train mean
squared er-
ror ( x 109

INR2)

test mean
absolute
error(x
104 INR)

train
mean
absolute
error(x
104 INR)

Linear Re-
gression

63.28 69.33 20.4 203 29.17 27.77

XGBoost 95.84 99.54 2.31 3.02 7.461 3.835
CatBoost 96.11 99.22 2.16 5.19 7.568 4.982
LightGBM 96.52 98.34 1.94 11 7.724 5.715
Lasso Re-
gression

63.28 69.33 20.4 203 29.17 27.77

Ridge Re-
gression

63.28 69.33 20.4 203 29.17 27.77

Elastic Net
Regression

63.06 66.36 20.5 223 28.51 28.13

Decision
Tree

93.03 99.96 3.88 0.291 9.223 0.4351

Gradient
Boosting

94.1 97.57 3.28 16.1 9.84 7.884

KNN 86.58 94.77 7.46 34.6 10.75 6.773
Random For-
est

95.84 99.5 2.31 3.33 7.783 2.611

Note: MAE (Mean Absolute Error) measures the average ab-
solute deviation between predicted and actual prices. It is ex-
pressed in INR, i.e, in the same units as the target. MSE (Mean
Squared Error) is a squared error metric which penalizes larger
deviations more heavily. It is expressed in INR2, making it less
interpretable for direct use.

price together). Lasso and Ridge attempt regularization, but they
still inherit linear assumptions. ElasticNet combines both but
remains limited when modeling complex real-world data, such
as used or new car prices, as used in this dataset. Hence, these
models tend to underfit the data.

Table 4 illustrates that tree-based models (Decision Tree,
Random Forest, XGBoost, LightGBM, and Gradient Boosting)
demonstrated excellent performance on average, with test R2

scores ranging from 90% to 96%. This is because these models
handle non-linearity naturally perfect for real-world price fluc-
tuations. Additionally, they split the data in order, identifying
thresholds such as Year > 2015 or Fuel = Diesel, which affect
car prices. Random Forest is an ensemble of Decision Trees,
thus naturally reducing overfitting and improving stability. Both
XGBoost and LightGBM are examples of Boosted trees, which
will enhance performance by correcting previous tree errors,
thereby resulting in better generalization.

As seen in table 4, LightGBM provided the best accuracy
with a test R2 score of 96.52%.

Gradient Boosting is also very similar in logic, as it uses
sequential learning to achieve strong performance on structured
data.

CatBoost slightly decreased (96.13% 96.11%) after feature
engineering, although it remained the second-best model with
an R2 score of 96.11%. This is because CatBoost is designed
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explicitly for datasets with numerous categorical variables. It
efficiently encodes categorical features internally and performs
well without requiring the preprocessing of categorical data,
unlike most other models used in this paper. Hence, CatBoost
showed an overall strong performance but dropped slightly after
feature engineering due to interference from manual prepro-
cessing (feature engineering made it redundant and somewhat
noisy).

K-Nearest Neighbour (KNN) demonstrated a moderate per-
formance, achieving a test R2 score of 86.8%, as illustrated in
table 4. This is because the model is instance-based, learning
from existing data points by comparing new inputs based on
“distance.” It is highly responsive to scaling and the numeri-
cal encoding of features. Moreover, this model struggles when
data has high dimensionality or when categorical values aren’t
well-represented numerically (as was the case with some of the
features in this dataset).

Additionally, a dataset of 8128 samples is insufficient for
high-capacity models to generalize well. This has a significant
negative impact, as seen in the table above, with substantial
differences in train and test R2 scores. While linear models
exhibit minor differences, they underfit due to their limited
expressive power. Increasing sample size in general and proving
coherence between features (categorical values represented well
numerically) would reduce overfitting, improve test accuracy,
and narrow the train-test R2 gap.

Predictive performance of LightGBM by car manufacturer

As seen in table 5, the best Performing Brands are Jaguar, Maruti,
Hyundai, Tata. This is because they have low MAE (< |60K)
and high R2 (>0.91). These brands have ample samples and
relatively consistent pricing, which helps LightGBM learn their
price patterns effectively.

Moderately Performing Brands are Ford, Mahindra, Honda,
Renault. They have a moderate MAE (|68K - |93K) with good
R2 (0.80-0.90), because these brands may have slightly higher
price variability.

Poorly Performing Brands such as Isuzu, Volvo, Mercedes-
Benz, Audi have very high MAE (> |2.5L) and in some cases
negative R2. This indicates a poor fit, the common causes for
which include very few training samples (≤10) and wide price
ranges.

Therefore, it can be concluded that performance strongly
correlates with sample size and price stability within each brand.
LightGBM excels with popular, mid-priced brands but struggles
with rare or luxury brands, mainly because of limited data.

Testing of LightGBM on unseen data, generalising to new
categories On the unseen brand test, LightGBM performance
dropped sharply. This is because MAE ≈ |6.94 L, RMSE ≈
|8.87 L, and R2 ≈ 0.617. This indicates poor generalization
when predicting brands are not present in training.

Table 5 Predictive Performance of LightGBM Model by Car
Manufacturer

Brand Samples MAE (|) RMSE (|) R2(in %)
Lexus 2 8,537.86 8,537.86 0
Jaguar 3 11,953.30 19,636.97 99.27%
Maruti 286 46,655.96 67,166.15 91.59%
Hyundai 171 57,042.38 81,435.24 91.97%
Tata 86 58,125.94 84,049.24 93.71%
Fiat 6 65,517.48 89,460.41 45.62%
Ford 55 68,698.69 101,833.57 89.95%
Datsun 6 71,440.85 89,640.26 44.84%
Skoda 16 74,690.09 119,554.58 96.15%
Renault 37 74,764.33 113,444.84 83.12%
Nissan 6 85,803.58 112,056.05 86.51%
Mahindra 66 90,682.30 120,967.98 80.18%
Volkswagen 31 91,223.94 132,255.76 70.56%
Honda 71 93,211.54 131,098.58 85.35%
Chevrolet 36 112,392.74 254,832.82 -1.39%
Toyota 50 116,149.24 166,087.47 92.68%
Isuzu 2 144,313.37 179,622.31 -1493.29%
Mitsubishi 4 149,315.03 196,613.92 87.22%
Jeep 4 183,351.07 250,636.38 94.29%
BMW 11 217,019.38 318,793.21 97.07%
Audi 9 253,528.25 322,718.64 83.00%
Mercedes-
Benz

10 383,611.32 523,134.73 87.15%

Volvo 4 503,574.63 786,376.66 61.71%

In contrast, for unseen model combinations, performance
remained strong, that is, MAE ≈ |44.15 K, RMSE ≈ |61.03 K,
and R2 ≈ 0.956. This shows how the model can generalize well
to new models within known brands but struggles with entirely
new manufacturers.

Comparison of models based on statistical tests

The 95% confidence interval gives a range within which the
true mean performance of the model likely falls, with 95%
confidence. A narrow CI generally means that there is more
certainty while predicting the mean value.

Tree-Based Ensemble Models
These models achieved the highest R2 scores (≈0.95-0.97) with
low standard deviations and narrow confidence intervals, indicat-
ing they consistently captured the complex, nonlinear relation-
ships in the data with maximum precision. They are robust to
feature scaling and can handle both linear and nonlinear patterns.

Table 6 shows that Random Forest and Gradient Boosting
also performed very well, but the boosting algorithms (XGBoost,
CatBoost, LightGBM) slightly performed better in average per-
formance.

Decision tree
As seen in table 6, Decision Tree model performed quite well
(∗∗R2 ≈ 0.94∗∗), but not as high as the ensemble tree-based
models. While it can capture nonlinearity, it is more prone to
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Table 6 Comparison of models using statistical tests
Model Mean

R2(%)
Standard
Deviation

95% Confidence
Interval

Linear Re-
gression

68.00% 0.027 [0.647, 0.713]

XGBoost 96.50% 0.008 [0.955, 0.975]
CatBoost 96.40% 0.015 [0.945, 0.982]
LightGBM 96.60% 0.009 [0.954, 0.977]
Lasso Re-
gression

68.00% 0.027 [0.647, 0.713]

Ridge Re-
gression

68.00% 0.027 [0.647, 0.713]

Elastic
Net Re-
gression

65.10% 0.03 [0.614, 0.688]

Decision
Tree

94.30% 0.016 [0.922, 0.963]

Gradient
Boosting

95.30% 0.013 [0.937, 0.969]

KNN 89.10% 0.042 [0.838, 0.944]
Random
Forest

96.40% 0.006 [0.956, 0.972]

overfitting and less stable across data splits, as reflected by its
slightly higher standard deviation and wider confidence interval.

Linear Models
These models had moderate R2 scores (≈ 0.65−0.68), indicat-
ing that linear relationships capture less of the variance in the
data. Lasso and Ridge performed almost identically to linear
regression, suggesting regularization did not bring significant
improvement. Elastic Net performed slightly worse, perhaps
due to the balance of L1 and L2 penalties not being optimal for
this dataset.

Overall, as seen in table 6, linear models are less able to
capture complex interactions present in your data compared to
tree-based models.

KNN (K-Nearest Neighbors)
As illustrated in table 6, KNN achieved an R2 score (≈ 0.89)
but with the highest standard deviation among the top models,
suggesting its performance is less stable and more sensitive to
the train-test split. KNN can model nonlinear relationships but is
heavily influenced by the local structure of the data and feature
scaling.

Regression Metrics

Deep Learning results

The following are the model variations that were tried on the
same input data set.

Table 7 Regression metrics of the dataset
Metric Value(in |) Interpretation
MAE 74,611.38 On an average, the

model’s predictions devi-
ate from the actual price
by about |74.6k.

RMSE 152,010.27 Larger errors are penal-
ized more, with typ-
ical deviations around
|152k.

MAPE (%) 15.12 Predictions deviate by
about 15.1% from true
values.

Error 25th per-
centile

16,432.90 25% of predictions are
within |16.4k of the ac-
tual value.

Error 50th
percentile
(median)

40,315.75 50% of predictions are
within |40.3k of the ac-
tual value.

Error 75th per-
centile

79,868.92 75% of predictions are
within |79.9k of the ac-
tual value.

Error 90th per-
centile

149,878.17 90% of predictions are
within |149.9k of the
true value.

Table 8 R2 scores for the various deep learning models

Model Train R2 Score Test R2 Score
Model 1 76.00% 76.00%
Model 2 95.35% 91.60%
Model 3 89.30% 84.30%

Hence, the best-performing model was the second one, with
a test R2 score of 91.6% and a train R2 score of 95.35%, as seen
in table 8.

With layers of 64, 64, 128, 128, and 256 units, Model 2 iden-
tified meaningful patterns without complications. Furthermore,
the use of 0.1 dropouts on later layers prevented overfitting.

The use of a linear activation function for the output (instead
of ReLU as in Model 1) aligns with regression practices, allow-
ing a better approximation of continuous values.

The network was neither too small (as in Model 1) nor too
large (as in Model 3), making it less prone to overfitting. Rea-
sons why deep learning performs better than machine learning
models.

Overfitting: Deep learning models may overfit the data, per-
forming very well on the training set but failing to generalize
unseen data.

Moreover, too few epochs or early stopping might lead to a
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model that hasn’t learned enough from the data, affecting model
performance negatively.

Since this dataset contains many missing values(though they
have been accounted for), it the DL model may struggle to
identify patterns, especially if the architecture isn’t designed for
sparse input.

Discussion and conclusion

In this paper, the problem of predicting the selling price of cars
was addressed using twelve features. Four different imputation
methods were explored and employed, utilizing domain-specific
feature engineering, specifically dropping the mileage feature
and decoupling the brand name and model. Furthermore, the
performance of 11 machine learning models was investigated,
and their performance was compared with that of neural net-
works with different hyperparameters and layer configurations.
These experiments reveal that machine learning models per-
form better than neural networks. On average, the best machine
learning model, i.e., LightGBM, performed 4.92% better than
the best deep learning model. This is possibly due to the lack
of enough data points. Additionally, the presence of outliers
induced an element of randomness, thus denting the accuracy
of the models. It was found that tree-based models perform
the best among all machine learning models, i.e., they have the
highest train and test R2 scores. LightGBM and CatBoost were
identified as the best models, with an accuracy of 96.52% and
96.11% respectively. Finally, it was also found that varying
imputation methods showed no tangible impact on the accuracy
of the models.

A major limitation of this paper is that it did not investigate
the role of regional geo-specific data utilized in the prediction
of cars, and how it could enhance model accuracy. This will
account for the disparity in vehicle requirements according to
regional variations in demand. For example, a large city like
Mumbai could have a great demand for almost all types of ve-
hicles like luxury cars, compact SUVs, MUVs, etc. (due to
the concomitant disparity in income of different individuals, as
well as their needs), whereas a smaller city would have a higher
demand for cheaper and more compact cars. Another limitation
of this paper is that adjusted R2 values have not been used. R2

can overestimate model performance in high-dimensional or
skewed regression problems, as it does not account for model
complexity or violations of assumptions. Adjusted R2 provides
a fairer comparison by penalizing redundant predictors. Also,
the split in this study is not stratified and may lead to biased
results in some cases. As a future direction, K-fold cross valida-
tion(CS) would provide a more reliable measure of performance.
No stratification or sampling techniques has been applied, and
hence the models are exposed to class imbalance. This is clearly
understood when common brands dominate training, while rare
brands are underrepresented. This partly explains why general-

ization to unseen brands is poor, as the model has not learned
enough patterns from minority categories. Stratification for re-
gression problems is an individual research problem and should
be looked at separately and is out of scope for this current re-
search.

Broadly, future research in this field could dive deeper into
combining the specifications of tree-based models and neural
networks to form a hybrid model that effectively addresses la-
cunae in the general functioning of the two types of algorithms.
Furthermore, research could also consider multiple other fea-
tures that influence consumer choices, such as safety features
(Advanced Driver Assistance Systems (ADAS)), seats and up-
holstery, locks and security, lighting, etc. It could also consider
more subjective subtleties that influence consumer choices, like
ease of maintenance, cost of spare parts, emotional connection,
resale value, and a more comprehensive overview of brand value.
Majority of these suggestions could not be incorporated in this
research due to the time constraints. However, this insight has
a strong potential to guide further research, especially in the
processing of tabular data with machine learning algorithms.
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