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Globally, 19% of annual food production is wasted before consumption. The vast majority of this food waste occurs in
households, dining facilities, and retail food businesses such as grocery stores. A significant contributor to the waste is produce
spoilage, both before and after its purchase. Manual inspection methods are often tedious and error-prone. Given these
limitations, artificial intelligence may be able to help consumers and produce sellers better detect produce spoilage and improve
purchasing decisions while also decreasing reliance on manual inspection. Previous research has focused on transfer learning
models and has been somewhat limited regarding which types of produce artificial intelligence models can classify. This
research investigates the accuracy of an original Convolutional Neural Network model in classifying fresh and rotten produce.
Additionally, it compares this model’s performance with two widely used transfer learning computer vision models. A binary
classification model was trained on a preprocessed and augmented dataset of images of produce. After hyperparameter tuning, it
achieved an accuracy score of 96.93%, outperforming the two transfer learning models. The original model’s high performance
underscores its ability to classify fresh and rotten produce effectively and efficiently. Future research could explore similar
models’ integration into mobile applications or retail inventory systems to provide real-time produce spoilage detection.
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Introduction

Food waste is a prevalent issue around the world, making it
increasingly difficult to sustainably feed the world’s growing
population. According to the United Nations Environment
Programme, 19% of all food produced worldwide is wasted1.
Food waste is an even more critical issue given that 8% of
the global population faces hunger daily2. This waste leads
to broader environmental and economic consequences: green-
house gases such as carbon dioxide and methane are emitted
through the transportation and decomposition of wasted food,
contributing to climate change, while economic resources are
squandered on food that ultimately goes uneaten1.

Much of this waste comes from the later stages of the supply
chain. Households and food retail businesses, such as grocery
stores and supermarkets, account for a combined 73% of total
waste1. Within these sectors, spoilage is a major contributor.
In retail settings, spoilage can occur due to over-ordering, poor
storage conditions, or under-purchasing by consumers. Within
households, spoilage can occur when individuals overesti-
mate their produce needs or prematurely discard food3. The
primary method of assessing spoilage is manual inspection,
which is labor-intensive, prone to human error, and costly, es-
pecially for businesses managing large volumes of produce.

Given these challenges, artificial intelligence (AI) offers an
automated approach to the spoilage detection process. Recent
advances in computer vision, and particularly Convolutional
Neural Networks (CNNs), have allowed for automated food
quality detection, such as fruit and vegetable freshness or rot-
tenness. Most prior research on the use of AI for spoilage de-
tection has used large pre-trained or transfer learning models
(such as ResNet50). However, these models are computation-
ally large and require high memory4. Thus, there remains a
need for smaller models that are tailored specifically to pro-
duce freshness classification tasks due to their possible ability
to provide increases in efficiency and training flexibility. As
a result, this research investigates the capabilities of an origi-
nal CNN to determine whether fruits and vegetables are fresh
or rotten. Additionally, it explores whether the original model
can compete with state-of-the-art transfer learning models.

Literature Review

There have been multiple previous studies focusing on the use
of AI to mitigate food waste through produce quality detec-
tion. However, these studies vary in their specific objectives
and their contributions to the topic for further research, allow-
ing them to guide multiple aspects of our research. One such
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study was conducted by Ulucan et al5. This study focused on
the accuracy of produce freshness classification produced as a
result of using different image feature extractors, such as the
gray level co-occurrence matrix, bag of features, and CNN.
The researchers utilized a dataset with images of three dif-
ferent types of fruits (and no vegetables) to train AI models.
Each model conducted the classifying process using the same
classifiers, so the only difference in each model’s structure
was the image feature extractor used. Models were trained
and tested for several different tasks, such as binary classifica-
tion and multi-class classification, and the models with CNN
feature extractors achieved more consistently high accuracy
scores than the models with other feature extractors. The suc-
cess of CNN feature extraction in produce image classification
demonstrates its possible applicability for similar computer vi-
sion tasks.

Another similar study was conducted by Sofian et al.6, who
were prompted to conduct the study due to the major im-
pacts of food waste on the country of Indonesia specifically.
The dataset the researchers used contained 18 classes of im-
ages of fresh and rotten fruits and vegetables, with a total of
around 30,000 images. Using this dataset, Sofian et al. trained
three transfer learning models: MobileNetV2, VGG19, and
EfficientNetV2S. Of the three CNNs in this study, Efficient-
NetV2S was the most accurate, with an accuracy score of
97.61%. However, the dataset used in the study was limited to
only 9 different types of produce for training and 7 different
types of produce for testing, which somewhat limits the most
effective model’s applicability in real-world settings despite
its strong accuracy, as the model’s accuracy for two types of
produce (bitter gourd and capsicum) was untested. In addition,
images of fruits were more prevalent than those of vegetables
in the dataset, which caused the model to perform worse on
vegetable images compared to fruit images.

A third study, conducted by Mukhiddinov et al.7, presented
a somewhat different approach to the task of produce fresh-
ness classification. These researchers maintained a strong fo-
cus on the quality and applicability of their dataset, rather
than mostly on model training. In the study, they created a
dataset of fruit and vegetable images sourced from different
online providers. The dataset contained 10 different types
of fruits and vegetables in total and was also generally bal-
anced in each class. In addition, the researchers augmented
the dataset to allow for better model preparation for various
real-world produce images. Although transfer learning al-
gorithms (such as YOLOv4) were used for comparison, the
main model the researchers tested was what they hypothe-
sized as a more optimized YOLOv4 model for their specific
task. Model testing proved the researchers’ hypothesis cor-
rect, as their improved YOLOv4 model achieved greater test-
ing precision (73.5%) and less training time (92 hours) com-
pared to the original YOLOv4 model (72.6% and 97 hours,

respectively). Data augmentation also significantly increased
both models’ performance. One limitation of this research is
that, while transfer learning (and adapted transfer learning)
models have proven to achieve relatively high performance,
no entirely original model was tested with the possibility of
further optimizing performance. Original models may be able
to better specialize for the specific task of produce freshness
classification, while also increasing efficiency by being less
computationally large than commonly used transfer learning
baselines.

Researchers Yang et al. conducted a review of the effective-
ness of hyperspectral imaging in conjunction with deep learn-
ing for fruit quality detection and classification8. Hyperspec-
tral imaging was used to discern detailed spectral information
from fruits and vegetables, and deep learning was used to an-
alyze this data and make final classifications of internal and
external quality. The researchers found that the use of hyper-
spectral imaging (rather than conventional red, green, and blue
imaging) allows for deeper analysis of both internal and exter-
nal quality of fruits and vegetables, achieving high accuracy
(90% or higher) in most experiments. However, the authors
also noted that in order for real-world use of hyperspectral
imaging, the cost and complexity of its associated hardware
would have to be reduced, and the running time and efficiency
of deep learning models used in conjunction with the hyper-
spectral imaging would also have to decrease.

Another study, conducted by Liu et al., examined the ef-
fectiveness of the use of multimodal data in tomato plants
to gauge their maturity9. Using color images, spectrometer
data, and tactile information (firmness), the researchers tested
each data type’s effectiveness (when used with a deep learning
model) separately and when data features were fused into one
combined dataset. They found that the model trained with the
combined multimodal dataset had significantly higher accu-
racy in maturity detection (99.4%) than the separated datasets
(maximum of 94.2%). The researchers explained multiple
limitations to the multimodal approach, including its expen-
siveness and limitation to only one type of produce (tomato).
An additional limitation is that the data collection for this mul-
timodal approach appears to be largely unfeasible for common
use in retail stores and other places of produce evaluation.

Due to the conclusions of the research presented in the pre-
vious studies, we can direct our research in a variety of ways
so as to expand on their gaps or limitations. First, due to D.
Ulucan et al.’s findings (demonstrating the success of CNN
feature extraction), we will use a CNN model to perform our
task of produce freshness classification. In addition, the re-
search of Sofian et al. guides us to choose a dataset that is
balanced over all classes and contains testing data for all train-
ing classes. Furthermore, the work of Yang et al. and Liu et
al. motivates us to investigate an RGB-based model that may
provide a more accessible and scalable solution for produce
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(a) “FreshMango” image (b) “RottenOkra” image

Fig. 1

quality inspection than one with more intensive data collection
measures, such as hyperspectral imaging or tactile information
acquisition. Finally, to expand on the research of Mukhidin-
nov et al., we will create an original (less computationally
large) machine learning model to classify produce freshness
and rottenness, rather than a transfer learning model.

Methodology Overview

First, an image dataset from Kaggle was selected and pre-
processed to optimize it for the model’s binary classification.
Then, it was augmented and split into training and testing data.
After that, the original CNN model was created using Tensor-
Flow Keras, and two pre-trained transfer learning models were
imported (ResNet50 and MobileNetV2). Finally, each model
was compiled and trained using Keras random search, with
the accuracy, precision, recall, and F1 score being measured
to gauge model performance. Various performance visualiza-
tions were also created to provide insight into the model’s an-
alytical process.

Methods

Data Collection and Preprocessing

This research used the Fruits and Vegetables dataset from
Kaggle10, compiled by Mukhiddinov et al. The dataset con-
tains images of ten types of produce, five fruits (apple, ba-
nana, mango, orange, and strawberry) and five vegetables (bell
pepper, carrot, cucumber, potato, and tomato). Each type has
2 classes: fresh and rotten, resulting in 20 total categories.
A sample fresh mango and rotten okra dataset image are de-
picted in Fig. 1a and 1b. Images were collected from multiple
sources, including other Kaggle datasets such as Fruits-36011

and Fruits Fresh and Rotten for Classification12, as well as
public image repositories and search engines. Because the im-
age sources vary, the original dataset contained images with

inconsistent dimensions and formats (e.g., JPEG and PNG
files). Each image’s folder name acts as its label (e.g., “Fresh-
Mango”).

The dataset includes approximately 600 images per class,
totaling 12,000 images, and is well balanced across all 20
classes, as seen with the class sizes all being approximately
600 images in Table 1 Several preprocessing steps were ap-

Table 1 Fruits and Vegetables dataset class distribution

Class Name Number of Images
FreshApple 612
FreshBanana 624
FreshMango 605
FreshOrange 609
FreshStrawberry 603
FreshBellpepper 611
FreshCarrot 620
FreshCucumber 608
FreshPotato 615
FreshTomato 604
RottenApple 588
RottenBanana 576
RottenMango 593
RottenOrange 591
RottenStrawberry 596
RottenBellpepper 591
RottenCarrot 580
RottenCucumber 593
RottenPotato 585
RottenTomato 596

plied to the data, starting with pixel normalization. Each im-
age’s RGB pixel values were rescaled from 0-255 to 0-1 us-
ing Keras’ ImageDataGenerator. This normalization prevents
any one color channel from disproportionately influencing the
model13. All images were then resized to 128 x 128 pixels.
This size preserved important visual features while maintain-
ing manageable model input dimensions.

Since the project goal was binary classification, predicting
whether produce is fresh or rotten, a new, clean dataset was
created. A Python script was used to iterate through the 20
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Fig. 2 Image augmentation results for random dataset training
image

classes, copying each image into either a “fresh” or “rotten”
folder, depending on the label prefix. The result was a dataset
labeled by freshness status rather than specific fruit or veg-
etable type.

Data Augmentation and Dataset Splitting

Data augmentation was applied to improve model generaliz-
ability and simulate a range of real-world scenarios. Each im-
age was augmented using seven techniques:

• 90 degree rotation

• 270 degree rotation

• Horizontal flip

• Vertical flip

• Random brightness (between 30% darker and 30%
brighter) and contrast (between 30% less contrast and
30% more contrast) adjustment

• Added Gaussian noise (change of up to 25 intensity units
per pixel)

• Cropping (80% of original height and width) and resizing
back to the original size

This process generated up to seven images per original im-
age file, as shown with a sample image of a fresh banana in
Fig. 2. A small number of images could not be processed due
to formatting issues. Before the images were resized when
inputted to the model, the mean image dimensions in the aug-
mented dataset were 350px × 300px. In addition, 88% of
the images were of the JPEG file type, while the remaining
12% were PNG images. The final augmented dataset con-
tained 95,888 images, achieving a 99.88% augmentation suc-
cess rate. The 0.12% augmentation failure rate may have been

Fig. 3 Original model layers, number of filters, and kernel sizes (if
applicable)

caused by image quality issues such as being partially unread-
able (through being saved incorrectly) or having an unsup-
ported color mode for the augmentation procedures, such as
CMYK.

The augmented dataset was then randomly split into train-
ing, validation, and testing sets, using a 70/15/15 split ratio.
This resulted in 67,120 training images and 14,384 validation
and testing images. Additionally, all augmentations of a given
image remained within a single set to prevent data leakage.
The training and validation sets were used consistently across
all model training and tuning processes, with the testing set
used only for final model evaluation.

Model Structure

The model used in this research is a CNN model. We chose to
use this type of model and neural network due to the known
success of CNN models in the past when dealing with com-
puter vision, and specifically in classification from images, as
they extract important features from each image in their many
layers14.

The model consists of 12 total layers, made up of: 4 two-
dimensional (2D) convolutional layers, 4 max pooling layers,
1 flattening layer, 1 dense hidden layer, 1 dropout layer, and 1
dense output layer. Fig. 3 demonstrates the basic architecture
of the model, with all 12 layers. We built the model using Ten-
sorFlow Keras. This 12-layer architecture was selected to bal-
ance between overfitting and underfitting, as shallower archi-
tectures (e.g., 8 layers) are more prone to underfitting, while
deeper architectures (e.g., 16 layers) are more prone to over-
fitting and increase computational cost without a guaranteed
proportional increase in model accuracy15, especially given
the size of the dataset used.

When an image is passed into the model, it is represented
as an array of pixel values. This array is according to the nor-
malized image size, as each image is 128 pixels high, 128 pix-
els wide, and has 3 color channels (Red, Green, and Blue).
In each convolutional layer, the image is analyzed for fea-
tures that contribute to the model’s final prediction, and the
layer returns a feature map. The max pooling layers after each
convolutional layer serve to increase the overall efficiency of
the model through decreasing the size of feature maps while
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still retaining the most important information contained within
them. These layers become even more important after convo-
lutional layers, as the later the convolutional layer is, the more
complex the features (and thus the feature maps) become. Af-
ter the final set of feature maps is returned, the flattening layer
converts it from 2D form to a 1D vector so that it is usable
in the dense layer, which allows the model to make sense of
all the features together and make one final prediction as to
whether the given image depicts fresh or rotten produce; a
portion of the neurons (the specified dropout rate) are not used
in making this prediction, which helps prevent model overfit-
ting16. The exact output shapes and number of parameters for
each layer are shown in Fig. 4 below.

Fig. 4 Original model summary (generated using Keras)

Preliminary Testing

Before beginning official model training and tuning, it was im-
portant to choose a consistent image resolution to be used with
all versions of the model. To do this, we tested and evaluated
a baseline model’s performance with five different image res-
olutions (in px by px): 96 × 96, 112 × 112, 128 × 128, 150
× 150, and 224 × 224. The structure of the model used to
test these varying resolutions was the same as the structure in
Fig. 4, but it had the following key parametric differences: 32,
64, 128, and 256 filters in the convolutional layers; 128 units
in the hidden dense layer; and a dropout rate of 0.5. Each
model was compiled using the Adam optimizer (learning rate
= 0.001), the binary cross-entropy loss function, and a batch
size of 64. Each model was trained for 20 epochs with the im-
plementation of early stopping with a patience of 5 epochs on
validation accuracy. Rationale for optimizer and loss function
choice as well as training length and early stopping choice
is explained further in “Model Training and Tuning.” Based
on the results of these models, the image size used with the

best performing model (as judged by validation accuracy) was
used to train, validate, and test the original model and transfer
learning models discussed later.

Model Training and Tuning

To compile the model, we used the Adam optimizer and the
binary cross-entropy loss function. We selected the Adam op-
timizer due to its consistent high performance across a variety
of tasks17. Binary cross-entropy served as the loss function
due to its specialization for binary classification with neural
networks similar to our CNN model18.

Additionally, training, validation, and testing data genera-
tors were created with certain parameters to define the manner
in which the model would be trained and tuned. First, the
batch size of all the data was set to 64, meaning that the model
would process 64 images at a time, then adjust its internal
weighting to optimize its accuracy. Also, the class mode for
all data was set to binary, directing the data generator to pro-
vide binary labels with each image during training (depending
on which folder within the dataset contained the image). Fi-
nally, the training data generator was instructed to shuffle the
order of the images it obtained from the training dataset to cre-
ate more randomness in the images and reduce the possibility
of overfitting; however, the validation data generator was not
instructed to do so, so that the model would be evaluated on its
accuracy and loss in the same way in each training epoch. The
testing generator was created in the same manner as the vali-
dation generator; only the images within each were different.
None of these parameters was adjusted throughout the training
and tuning process.

Each version of the model was trained over 20 epochs (per
search trial), and the accuracy metric was used to measure
model performance. A training length of 20 epochs was cho-
sen because preliminary runs indicated that performance was
maximized well before the last epoch. Early stopping was also
implemented with a patience of 5 epochs (based on validation
accuracy). The combination of 20 epochs and early stopping
mitigated unnecessary computation and run time while still
allowing the model to converge. The seven major hyperpa-
rameters tuned during the model executions were the number
of filters in of the four each convolutional layers, optimizer
learning rate, dropout rate, and dense units in the hidden dense
layer. The model was tuned using random search with 50 dif-
ferent hyperparameter combinations (trials) and one model ex-
ecution per trial. In the first convolutional layer, the number of
filters as choices for the model were 32 and 64; in the second,
they were 64 and 128; in the third, they were 128 and 256; and
in the fourth, they were 256 and 512. Optimizer learning rate
choices were 0.0005, 0.0001, 0.001, and 0.01. Dropout rate
choices were intervals of 0.1 from 0.2 to 0.6, and dense unit
choices were 64, 128, 256, and 512.
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Saliency Map

A saliency map is a representation of a given image that
shows the varying importance of individual pixels to an AI
model’s final classification19. The importance of each pixel
(also known as its “gradient”) is represented by the color of
the pixel on the saliency map. These maps provide helpful
information as to the model’s analytical process.

Gradients were calculated using TensorFlow’s Gradient-
Tape API. Additionally, the map color was set so that brighter
pixels signified stronger gradient while darker pixels signified
weaker or no gradient. A random image was selected from
the validation data and input into the model for classification.
Subsequently, its saliency map was generated.

Transfer Learning Model Training and Tuning

To provide direct comparison with the original model pro-
posed in this research, we also trained and tuned two promi-
nent transfer learning CNN architectures: ResNet50 and Mo-
bileNetV220. Both architectures were pre-trained using Ima-
geNet weights and tuned using random search with 20 differ-
ent hyperparameter combinations (trials) and one model exe-
cution per trial. The hyperparameters manipulated were: op-
timizer learning rate (0.0005, 0.0001, 0.001, and 0.01) and
dropout rate (intervals of 0.1 from 0.2 to 0.6). All other train-
ing and tuning components were kept the same as in the ex-
periment with the original model, including the optimizer, loss
function, batch size, training data generator, validation data
generator, training length, and early stopping protocols.

Results

Table 2 Baseline model performance with different image resolution
inputs

Image Resolution (px × px) Validation Accuracy
96 × 96 94.67%
112 × 112 95.31%
128 × 128 95.70%
150 × 150 95.32%
224 × 224 95.17%

Table 2 summarizes the results of the baseline model with
different image resolutions in terms of validation accuracy
(see definition under Table 3). As seen, the image resolu-
tion that corresponded to the best baseline model performance
was 128px × 128px. Thus, this resolution was used for the
remainder of the training, tuning, and testing process. This
resolution may have had the highest performance as it pro-
vides a balance between visual detail and model complexity,

maintaining the most important parts of many images for the
model to classify while omitting unnecessary portions. Ta-

Table 3 Original and transfer learning models’ performance after
tuning

Model Name Test Accuracy Accuracy MOE Precision Recall F1 Score
Tuned Original Model 96.93% ±0.81% 96.86% 97.10% 96.98%
ResNet50 95.75% ±0.30% 95.34% 96.29% 96.82%
MobileNetV2 86.83% ±0.54% 89.74% 83.66% 86.59%

ble 3 summarizes the results of the tuned original CNN model
and the transfer learning models in terms of accuracy (with
their margin of error), precision, recall, and F1 score. Accu-
racy is simply the number of correct predictions each version
of the model made divided by the total number of predictions
it made. Precision is calculated similarly; however, instead
of considering all correct predictions and total predictions, it
only considers predictions made for a certain class. In other
words, it is the accuracy when predicting each class individu-
ally. Recall, on the other hand, measures correct predictions
of a certain class divided by the total number of instances of
the class in the testing data. The precision and recall values
in the table are averages of their respective model versions’
precision and recall for each target class (fresh and rotten).
Finally, the F1 score balances these two metrics as it is the
harmonic mean of the two21. Additionally, the margin of er-
ror (MOE) for test accuracy with 95% confidence was com-
puted using non-parametric bootstrap resampling22 with re-
placement 1,000 times.

The tuned original model performed the best out of the three
models over all metrics, with a statistically significant im-
provement in test accuracy compared to the two transfer learn-
ing models. Of the two transfer learning models, ResNet50
performed noticeably better than MobileNetV2, having an av-
erage of 9.35% greater performance over all the metrics. In
terms of precision, recall, and F1 score, the tuned original
model’s values were high and mostly balanced, indicating that
it performed consistently in identifying fresh versus rotten im-
ages (with minimal bias toward either class). ResNet50 had
slightly lower but comparable values, indicating that it was
also mostly consistent and minimally biased toward certain
classes. However, MobileNetV2 had significantly lower recall
(83.66%) compared to its precision (89.74%), which reveals
that it likely misclassified a higher portion of the rotten im-
ages than the fresh images. This bias toward wrongly classi-
fying a significant amount of images as fresh may be due to its
failure to recognize certain fine texture patterns during feature
extraction, such as minor bruising or discoloration.

Training Curves

Training curves for all three models were generated for the
three different final model versions after training and tuning
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(a) (b) (c)

Fig. 5 Training curves for tuned original model, ResNet50, and MobileNetV2, respectively

Fig. 6 Confusion matrix for tuned original model

(i.e., using their final best weights). Fig. 5a and 5b indicate
that the tuned original model and ResNet50 show general con-
vergence between their training accuracy and validation ac-
curacy, as the curves appear to plateau around their maxi-
mal values. Fig. 5c reveals that MobileNetV2, on the other
hand, shows significant overfitting. This is because its training
accuracy continues to increase while its validation accuracy
plateaus at a significantly lower value23. These results under-
score the success of the tuned original model and ResNet50, as
these models were able to successfully generalize their train-
ing to the validation data.

Confusion Matrix

The confusion matrix for the tuned original model in Fig. 6
compares the true data labels (the labels of the actual testing
data) and the predicted labels (the labels the model predicted
on the same data). Of the 7,312 images of fresh produce given

to the model, it classified 7,100 images correctly and 212 im-
ages incorrectly. Of the 7,072 images of rotten produce given
to the model, it classified 6,842 images correctly and 230 im-
ages incorrectly.

The confusion matrix reveals that the model makes a
slightly higher percentage of errors on rotten produce (3.25%)
than on fresh produce (2.90%). This may be due to there being
slightly more training images for the fresh class than the rot-
ten class. Closer examination revealed that the variability of
the error percentages can also be attributed to the rotten class
having greater classification difficulty than the fresh class in
specific cases. Many of the rotten images that the model failed
to recognize were with fruits in uneven lighting, such as with
shadows or glare, which distorted the color patterns the model
was trained to recognize. The lighting conditions in these im-
ages dampened or brightened discolored/decayed areas of the
fruit, making them appear similar to their appearance for fresh
produce. The model’s failure to recognize the color patterns
in the misclassified rotten images is likely a result of there not
being a significant amount of similar images in the training
images.

The ROC and Precision-Recall curves with AUC for the
tuned original model (on the test images) are shown. Fig. 7a
compares the true positive rate (the rate at which the model
correctly predicted that an image was fresh) with the false pos-
itive rate (the rate at which the model incorrectly predicted that
an image was fresh)24. On the other hand, Fig. 7b compares
the model’s precision and recall. Both curves use different
probability threshold values to obtain the values shown; by
default (for true model prediction) the threshold is 0.5, but it
is manipulated to gauge model confidence in order to gener-
ate ROC and Precision-Recall curves. AUC is simply the area
under each curve, with a higher AUC (i.e., closer to 1) corre-
sponding to better general classification success25.

The ROC curve lies close to the upper-left corner of Fig. 7a,
with an AUC of 0.988, indicating that it is largely able to
distinguish between fresh and rotten produce with high con-
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Fig. 7 Receiver Operating Characteristic (ROC) and Precision-Recall curves for tuned original model, respectively.

fidence. The curve remains far above the orange dashed line,
which represents the model’s ROC curve if it were classify-
ing the images purely based on random chance. Similarly,
the Precision-Recall curve demonstrates great class discrim-
ination with great confidence, as the curve lies close to the
upper-right corner of Fig. 7b and has an AUC of 0.989.

Saliency Maps

The saliency maps demonstrate the model’s ability to identify
distinguishing features that make produce appear fresh or rot-
ten. In Fig. 8a, most of the bright pixels (i.e., the ones that are
not black) are in the same area of the saliency map as the red,
glossy, uniform surface near the top of the original strawberry.
In contrast, in Fig. 8b, most of the bright pixels correspond to
the most severely bruised or darkened region of the original
rotten strawberry. This is similar to how a human freshness
inspector would have gauged whether the fruit is fresh or rot-
ten, as the portion of the fresh strawberry that best indicates
its freshness is the area with consistent, deep red color, while
the portion of the rotten strawberry that best indicates its rot-
tenness is the discolored area.

Discussion and Conclusion

The notable changes from the baseline model to the tuned
original model were that the number of filters in the four con-
volutional layers increased from 32, 64, 128, and 256 origi-
nally to 64, 128, 256, and 512; the dense units in the hidden

layer decreased from 128 to 64; and the learning rate for the
Adam optimizer decreased from 0.001 to 0.0005. The dropout
rate remained the same as the rate for the baseline model, 0.5.
Increasing the number of filters in all the convolutional lay-
ers likely increased model performance because it allowed the
model to recognize more complex feature patterns in the im-
ages. For example, fine texture patterns may have not been
recognized to as great an extent with the original number of
convolutional filters in each layer. On the other hand, de-
creasing the number of dense units in the hidden dense layer
helped to mitigate model overfitting by decreasing the num-
ber of parameters involved in decision-making20. Addition-
ally, decreasing the optimizer learning rate allowed for finer
internal model weight adjustments, helping to avoid overad-
justment and oscillation in accuracy and loss.

The high performance of the tuned CNN model used in
this research indicates that it is able to effectively compare
various features of fruits and vegetables as a basis for their
freshness/rottenness classification. It can also achieve com-
petitive accuracy with other state-of-the-art transfer learning
models such as ResNet50 and MobileNetV2. Thus, our hy-
pothesis that an original, non-transfer learning CNN model
can accurately classify fresh and rotten produce (and compete
with transfer learning architectures for the same task) was con-
firmed. The dataset used and its augmentation may have been
largely responsible for the model’s success, as it was balanced
and captured many different conditions of produce, such as
varying orientation and lighting.

Despite its high performance, the research has some limi-
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Fig. 8 Saliency maps for randomly selected fresh and rotten strawberry image from testing data, respectively.

tations that must be considered. First, the dataset is limited
to 10 different types of produce, not accounting for the many
other different types, which could be expanded on. In addi-
tion, the fact that the model only classifies produce as fresh
or rotten may oversimplify quality classification, considering
the existence of other classifications such as ripe and overripe.
Finally, the model was tested with the same architecture over
all executions, and the performance of other original models
with different architectures (outside of the two transfer learn-
ing model architectures tested) remains largely unseen.

Given the model’s high performance, it may be applicable
to real-world contexts such as in households and food retail
businesses. In households, the model could be integrated into
a mobile application. Users could take photos using their mo-
bile phone cameras, and the images would be run through
the model. The model would then return whether the pro-
duce in the picture is fresh or rotten. In this application, how-
ever, there must be a check that occurs before inputting the
image to the model. This check must ensure that the photo
is of good enough quality for the model and that it actually
contains a fruit or vegetable of the types represented in the
model. This functionality could be enabled through the use
of an external API that detects specific produce types, such
as the Google Cloud Vision API. Regarding the model’s ap-
plicability in food retail businesses, a practical use would be
in real-time produce spoilage detection. If cameras were po-
sitioned in stores where they could take periodic pictures of
produce, these pictures could be run through the model, and
spoiled produce could be removed. In addition, amounts of
fresh and spoiled produce could be reported to business man-
agers, allowing them to optimize their buying habits to ensure
most or all of their purchased produce is sold and little to none
goes to waste through spoilage. However, these applications
are tentative, as the model has only shown strong performance
in a controlled, experimental setting and has not been tested in
real household or retail environments.

Additional testing would be needed before the model could

be deemed applicable and trustworthy for use in these real-
world environments. This future work could focus on increas-
ing the scope of the model’s awareness. The scope could be
increased through experiments training, validating, and testing
the model on a dataset containing a wider variety of produce
(e.g., lettuce, spinach, and onions) or types of classification
(e.g., fresh, ripe, overripe, and spoiled). These implementa-
tions would better reflect real-world scenarios where there is
often the need for classification of many different types of pro-
duce (not just the 10 types used in the dataset in this study) and
more specific freshness detection (not only fresh and rotten).
Further future work could prepare the model for use under
real-world lighting conditions and camera setups by testing it
with the manipulation of prospective setups.

In conclusion, although the model in this study was highly
successful, there is still room for improvement, both in this
model and in the topic of food waste mitigation as a whole.
However, this research demonstrates the applicability of deep
learning models to everyday tasks, not only to drive efficiency
but also sustainability and more environmentally friendly con-
sumption.
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