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Competitive multi-agent reinforcement learning (MARL) presents unique challenges in balancing dynamic adaptation with
strategic diversity, particularly when comparing architectures that employ static versus adaptive opponent training. This study
investigates the relationship between training methodology and emergent behavior by analyzing two distinct approaches: 1.
Simultaneous Competitive Training (SCT): Both teams of agents learn together, where each agents policy updates in response to
the evolving strategies of its opponents. 2. Frozen Opponent Training (FOT): Learning agents compete against static versions of
themselves frozen after post-foundational training. Through an examination of tactical development, representational learning,
and policy dynamics in a zero-sum lunar lander environmenta competitive 2D simulated game domain where two spacecraft
teams containing descenders and attackers fight for control of a central landing zonewe uncover fundamental differences in how
these algorithms shape agent behavior. Our analysis demonstrates that adaptive training (SCT) fosters richer strategies and more
complex state representations, while static opponent algorithms (FOT) lead to constrained policy evolution. SCT agents developed
more distinct tactics, including rushing, recoverable ramming, and baiting against FOT agents. Representatively, SCT agents
exhibited a higher AUC in state discriminations via t-SNE clustering for 2 out of 3 tactical states. They also demonstrated direct
spatial encoding, whereas FOT agents tended to overfit inefficiently. In terms of adaptability, SCT agents showed cubic reward
progression with an r of 0.962, maintained high KL-divergence indicative of ongoing exploration, and achieved a 3.74-meter
improvement in landing precision despite environmental drift. In contrast, the performance of FOT agents declined, with accuracy
becoming negatively correlated over time (r = -0.83). The analysis extends beyond performance metrics to explore how training
frameworks influence the very nature of competitive interaction, offering insights into the mechanisms that drive MARL systems.

Keyword: Physics-based Simulation and Control, Multi-Agent, Data Science, machine learning, Deep Learning; Rein-
forcement Learning, Neural Network

Introduction agents and their environment define the problem space. Despite
these advances, MARL often trains against static or pre-trained
opponents>® which may limit its adaptability in dynamic sce-
narios. Such agents fail catastrophically when faced with novel
strategies’a gap our work attempts to quantify through tactical
and representational analysis. A common approach to manage
this complexity is to train agents against static or pre-trained
versions of themselves®. This approach, which we formalize as
Frozen Opponent Training (FOT), can yield stable policies by
turning the multi-agent problem into a single-agent one against
a fixed distribution of strategies. However, a well-documented
limitation of this method is that agents may overfit to the spe-
cific strategies of their frozen adversaries, leading to a lack of
robustness and a failure to generalize when faced with novel
tactics”. This phenomenon, sometimes referred to as strategy
brittleness, means such agents can fail catastrophically against
strategies outside their training distribution ', In contrast, an
alternative way embraces non-stationarity by having all agents
learn simultaneously. This approach, which we term Simultane-

Recent advances in Single-Agent Reinforcement Learning
(SARL) have demonstrated potential for developing autonomous
systems capable of sophisticated coordination. Lee et al.s
muscle-actuated human simulation! showed how deep rein-
forcement learning can master complex motor skills in high-
dimensional musculoskeletal systems. However, while such
single-agent systems excel at individual skill acquisition, they
cannot address multi-agent coordination, particularly in com-
petitive environments where agents must dynamically adapt to
opponents and where imitation data may be unavailable. Multi-
Agent Reinforcement Learning® (MARL) presents a solution,
offering the potential for autonomous agents to learn competitive
and cooperative strategies in complex, physics-based environ-
ments. This capability is crucial for real-world applications
involving multiple decision-making entities, ranging from au-
tonomous vehicles coordinating traffic flow" to robotic systems
operating in warehouse logistics®, where interactions between
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ous Competitive Training (SCT), is grounded in the concept of
self-play, famously used to train human-like agents in soccer'>
and implemented in mini-games such as OpenAlI’s hide-and-
seek agents. The core hypothesis is that continuous mutual
adaptation drives an arms race of increasingly sophisticated
and robust strategies 1>, However, pure self-play can some-
times lead to obsessive cycles or an over-concentration on a
narrow set of strategies'®. Recent research has explored meth-
ods to encourage diversity and robustness within simultaneous
training, such as population-based training'” and league train-
ing®, which maintains a diverse pool of opponents to prevent
overfitting and promote generalizable policies'???. This paper
directly compares Simultaneous Competitive Training (SCT),
in which agents learn concurrently through competition, with
Frozen-opponent Training (FOT), in which agents learn against
a fixed policy. This test examines whether mutual adaptation
yields more robust strategies than those against static opponents.
We hypothesize that in our physics-based environment, MARL
agents trained with SCT will outperform FOT-trained agents
in robustness and strength. Our study makes three key contri-
butions to the field: First, we introduce a novel physics-based
multi-agent lunar lander benchmark for MARL research. Sec-
ond, we present a hybrid training methodology that combines
foundational skill acquisition with competitive learning. Third,
through systematic head-to-head evaluation, we demonstrate
that agents trained in a competitive co-adaptation regime de-
velop measurably stronger strategies than those trained against
static opponents.

Methods

The Multi-Agent Learning Challenge

This work examines a MARL problem in which agents are
equipped with the ability to use discrete actions to interact with
the environment and other agents, to complete an objective.
MARL introduces substantially greater complexity than single-
agent reinforcement learning due to environmental stochasticity
and the inherent interdependence of agents’ learning dynamics.
A central challenge in MARL arises from the non-stationarity
of the learning process. When one agent updates its policy, the
optimal strategies of other agents may become invalid. MARL
frameworks are typically classified into two types: competitive
and cooperative. In competitive MARL, agents optimize their re-
wards while actively minimizing those of their opponents, either
through explicitly adversarial (zero-sum) incentives or indirectly
conflicting objectives. In cooperative MARL, agents align their
rewards toward a common goal, with individual contributions
collectively advancing system-wide performance. Furthermore,
agents may adopt either on-policy or off-policy learning strate-
gies. On-policy methods exclusively learn from actions sampled
under the current policy, ensuring consistency but limiting data

reuse. Off-policy approaches, while more sample-efficient by
leveraging historical experience, risk instability due to discrep-
ancies between past and current policies.

Multi-Agent Markov Games

Unlike [Littman, 1994]Y, who modeled agents in a partially
observable setting where each agent only has access to its
own local state information, we model our multi-agent sys-
tem as a fully observable Markov game with k interacting
agents. The environment is formally defined by the tuple
(S,Ay,-- ,Ak,R1, -+ ,Rg,p,T), where S represents the com-
plete set of global states visible to all agents simultaneously, A;
denotes the action space available to agent i, and R; specifies that
agent’s reward function. The game begins with an initial state S
drawn from p, while the state transition dynamics are governed
by the stochastic transition function 7 : S X Ay X --- X Ag — AS,
where AS represents the set of probability distributions over S.
The game progresses through discrete timesteps in the follow-
ing sequence. First, all agents observe the current global state
s € S. Each agent then independently selects and executes an
action ¢; from its available action space A;. These joint actions
trigger a state transition to s, sampled from the distribution 7,
after which each agent i receives its corresponding reward r; as
determined by its reward function R; : S X A| X --- X Ag — R.
This cycle repeats until the game reaches a horizon 7. Within
this framework, each agent i aims to learn an optimal policy 7;
that maps states to actions to maximize its expected cumulative
discounted return E[Y.7_ ¥'r;,], where y € (0,1] represents the
standard discount factor applied to future rewards. The complete
observability of state information distinguishes this formulation
from partially observable variants, as agents make decisions
with full knowledge of the environment state. This general
framework can accommodate both competitive and cooperative
scenarios through the appropriate design of the reward functions
R;, while the shared global state space S provides a simpler
learning environment compared to partially observable settings.
The stochastic transition function 7 inherently captures both the
environmental dynamics and the complex interactions between
learning agents.

Environment

Our competitive multi-agent environment is built upon the Gym-
nasium Box2D Lunar Lander framework22 modified to support
team-based interactions. The simulation space measures 40 me-
ters in width and approximately 26.67 meters in height (800/30
ratio), featuring procedurally generated terrain with varying
elevation across different chunks (Figure. 1). Each episode
is temporally bounded to 5 seconds of simulated time, with
physics updates occurring at 100 frames per second to ensure
smooth dynamics. After each episode is finished, a different
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Fig. 1 Multi-agent reinforcement learning (MARL) environment.
Illustrates our environment setup, which consists of two agent roles
and a shared target zone. A) Descenders (light red/blue): Agents with
4 discrete actions, tasked with maintaining proximity to the landing
pad and securing territory. B) Attackers (dark red/blue): Adversarial
agents with 5 discrete actions, including projectile attacks to disrupt
opponents. C) Landing pad (yellow flags): Target zone for Descenders,
positioned at the origin (0,0), serves as the contested objective for both
teams. Workflow: Agents are spawned at opposing corners;
Descenders navigate toward and try to maintain position near the
landing pad, while Attackers actively interfere with the opponents.
Team rewards are computed purely based on each teams descenders
success and act as a feedback loop that guides learning.
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seed is chosen for the preceding run. The environment hosts
two competing teams (red and blue), each composed of two
distinct lunar lander variants differentiated by both function and
visual design (light and dark coloration). All landers are phys-
ically modeled as trapezoidal rigid bodies equipped with two
spring-damped landing legs, providing more complex contact
dynamics. Both blue landers and red landers start the match
at the top right corner and top left corner, respectively. The
competitive framework follows an area control paradigm, where
teams vie for dominance over a central landing pad positioned
at the origin . Agent specialization is implemented through dif-
ferentiated roles and capabilities. The descender agent (dark) is
tasked with maintaining stable positioning near the landing pad,
while the aggressor agent (light) focuses on disrupting opposing
team operations. Action spaces are discretized according to Pon-
tryagin’s maximum principle23, which dictates optimal binary
throttle control. The descender’s action space comprises four
discrete commands: null operation (0), left orientation thruster
activation (1), main engine activation (2), and right orientation
thruster activation (3). The aggressor expands this capability
with a fifth action (4), enabling the launch of triangular projec-
tiles. The observation space is structured as a 32-dimensional
vector, constructed by concatenating of each agent’s state rep-
resentation. For each lander, the state vector s € R3 consists

of:
s = [X,y,x,y,ﬂ,d),cz,cr}

where [x,y] denotes positional coordinates, [%,y] represents lin-
ear velocities, 0 indicates angular orientation, ® is angular ve-
locity, and ¢;, ¢, are Boolean contact indicators for left and right
landing legs, respectively. This per-agent state vector is stacked
across all four agents (two per team) to form the global obser-
vation space used for policy inputs. Normalization is applied
to each component of the state to maintain numerical stability
and ensure consistent input scaling. Specifically, x is centered
relative to the horizontal midpoint of the viewport and scaled by
half the viewport width:

VIEWPORT,,

2.SCALE

VIEWPORT,,
2-SCALE

Xnorm =

y is centered relative to the helipad height and scaled by half the
viewport height:

F LEGgown
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y VIEWPORT;
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Linear velocities are scaled by their respective viewport dimen-
sions and normalized by the simulation framerate (FPS):
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. _ X" TOSCALE . _ Y T 3SCALE
Xnorm = EPS 5 Ynorm = EPS

Note that SCALE is 30 meters per pixel. Positional coordinates
are constrained to x € [—1.5,1.5] and y € [-0.5,1.7], while both
linear and angular velocities are clamped to the range [—5,5].
This normalization scheme prevents gradient explosion dur-
ing backpropagation while maintaining physically meaningful
ranges for all state variables. The reward function is carefully
designed to promote stable learning dynamics while discour-
aging chaotic behavior. For descendent agents, the reward r at
each timestep is computed as:

r=—10v/x2+y? — 15y/%2 4+ y> 4 0.5Ind[c;] +0.5Ind[c,]

where Ind denotes the indicator function for leg-ground contact
events. This formulation combines three key components: (1) a
quadratic penalty on displacement from the origin and velocities,
(2) a velocity-dependent penalty to encourage smooth maneu-
vers, and (3) positive reinforcement for successful leg contacts.
All agents receive an additional boundary violation penalty:

r=r—20-Ind[|x| > Xmax 0 [y| > Ymax]

where xmax and ymax represent the horizontal and vertical bound-
aries, respectively. This harsh penalty strongly discourages
agents from exiting the valid simulation space while maintaining
differentiable gradients within the permitted operating region.

© The National High School Journal of Science 2025

NHSJS 2025 | 3



The reward system implements a competitive zero-sum frame-
work through team-based reward aggregation. For each team
T € Red, Blue the collective team reward R; is computed as the
summation of individual agent rewards within that team:

RT:Z}’i

icT

where r; represents the reward for agent i as defined in the
previous section. The net reward Ry for each team is then
calculated as:

Rr =Rr—R_7

where —T denotes the opposing team. This differential reward
structure ensures strict zero-sum competition, as RRed + Rlue =
0 by construction. The zero-sum formulation naturally emerges
from the competitive nature of the environment, where one
team’s gain corresponds directly to the opponent’s loss.

Algorithm Selection

Several algorithms exist for solving MARL problems. One
prominent MARL algorithm is Multi-Agent PPO (MAPPO)2Z,
which employs Centralized Training with Decentralized Exe-
cution (CTDE). In MAPPO, agents utilize a centralized critic
during training that has access to global state information, en-
abling better cooperation and more accurate value estimation.
During execution, however, agents operate independently us-
ing only their observations. While MAPPO and other MARL
algorithms such as QIMIX, MADDPG, and related methods
were considered, practical constraints limited their applicability.
Many of these algorithms are deprecated in popular libraries and
have limited integration with the Gymnasium API. Therefore,
we opted for Proximal Policy Optimization (PPO)%%, which
provides a well-supported and stable baseline, allowing for re-
producible experimentation in our competitive multi-agent set-
ting. PPO is an on-policy reinforcement learning algorithm that
optimizes a clipped objective function to ensure stable policy
updates. PPO maintains two policy networks - an active policy
that interacts with the environment and another policy used for
importance sampling, which are periodically synchronized. The
key advantage of PPO lies in its surrogate objective function:

LEMP(9) =, [min (r;(0)A,, clip (r;(0),1 —&,1 + €) A,)]

where r;(0) represents the probability ratio between new and
old policies, A; denotes the advantage estimate, and € is a hyper-
parameter that constrains policy updates. This clipped objective
prevents excessively large updates that could destabilize training,
while the advantage normalization promotes more consistent
gradient estimates. We implemented PPO with separate policy
networks for each agent to accommodate their specialized roles.
Two distinct architectural approaches were evaluated. Shared
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Fig. 2 Proposed multi-agent reinforcement learning architecture. Each
agent runs a separate Proximal Policy Optimization (PPO) model with
a multilayer perception (MLP) policy. Agents receive a
32-dimensional global observation from the environment, process it
through their MLP, and take actions. Rewards are provided by the
dynamic environment, and each agent updates its policy using PPO.

Hyperparameter Value Description

Number of steps 2048 Steps to collect before each update

Batch size 64 Size of minibatches used for training
Number of epochs 10 Number of training passes over each batch
gamma 0.99 Discount factor for future rewards

Gae lambda 0.95 Controls bias-variance tradeoff in GAE
Clip range 0.2 PPO clipping parameter

Learning rate 3e-4 Optimizer learning rate

Entropy coefficient 0.0 Entropy bonus to encourage exploration
Value function coefficient 0.5 Weight for value function loss

Max gradient normalization | 0.5 Gradient clipping threshold

Network architecture [64, 64] | Hidden layer sizes for both policy and value networks
Activation function tanh Activation function used in network layers

Table 1 Hyperparameters of each agents model. Specifications used in
the PPO algorithm with an MLP policy, as implemented in the
Stable-Baselines3 library. These values represent the default, standard
settings commonly used in reinforcement learning and are provided for
reproducibility. No additional hyperparameter tuning was performed,
as these standard values generally support stable training of PPO
agents in any environment.

Policy Architecture: This approach utilized a single model gov-
erning all agents within a team, outputting a multi-discrete ac-
tion space that represented the combined actions. The model
received a one-hot encoded vector to distinguish between agents.
However, this implementation demonstrated poor convergence
properties, particularly given the distinct roles and action spaces
of our agents. The shared representation proved insufficient for
capturing the specialized behaviors required by each agent’s
unique responsibilities. Independent Policy Architecture: Our
final implementation assigned each agent its policy model (Fig-
ure [2). This approach proved significantly more effective, as
it allowed each agent to develop specialized behaviors tailored
to its specific role and action space. The independent policies
converged more reliably and achieved substantially better per-
formance compared to the shared policy approach.
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Algorithm Implementation

All agents, whether destined for Simultaneous Competitive
Training (SCT) or Frozen Opponent Training (FOT), first com-
pleted identical foundational training. Learning effective con-
trol policies in this high-dimensional, stochastic environment
presents significant challenges. The inherent non-stationarity of
observations (OBS) and the moving target problem frequently
leads to poor policy convergence and task failure. While imita-
tion learning approaches using motion capture data have proven
successful in other domains, the unique structure of our environ-
ment precludes this option due to the lack of suitable demon-
stration data. Manual piloting to generate training data was
also considered but ultimately rejected, both due to the extreme
difficulty of manual control and our desire for agents to discover
novel control strategies autonomously. To address these chal-
lenges, we developed a phased foundational training approach
that closely parallels curriculum learning®*, where agents are
gradually exposed to increasing levels of task complexity to
stabilize learning and improve sample efficiency. In the initial
isolation phase, we train individual policies while freezing all
other agents’ actions (setting them to null operations). For in-
stance, when training policy II, we disable action prediction
for Iy, I3, and I14. During this phase, the reward function
considers only the rewards of the training agent. After establish-
ing basic competencies, we gradually introduce opposing team
agents into the environment, allowing them to predict (but not
update) actions while incorporating their respective rewards into
the training regime. Note that the training agents teammate was
not allowed to predict during this process, particularly because
we found that agents started sacrificing their primary objectives
to compensate for teammate errors.

The second phase trained teammate’s policies while main-
taining frozen opponent policies. This stage cultivates essential
team coordination skills such as collision avoidance and goal
alignment. The same process is then replicated for the opposing
team. Each policy underwent approximately 24 hours of this
foundational training. The competitive training diverged based
on this methodology: For the SCT Group, both teams trained
simultaneously with full policy updates enabled across all agents
(Team A vs Team B). For the FOT Group, Team C underwent
training while competing against a static, inference-only Team
D that maintained its foundational training parameters without
further updates. Our evaluation compares the final SCT Team
A versus the final FOT Team C. The complete reward function
was implemented with round-robin training, where each policy
received 250,000 updates before rotating to the next learning
agent. Both SCT and FOT configurations underwent identi-
cal training durations of 21 million timesteps. A Comparative
evaluation was conducted at five checkpoints (0, 4, 9, 15, and
21 million timesteps), where teams were assessed over 1 mil-
lion inference timesteps. To accelerate training, we employ a

Tnference Session 2 | Inference Session 3 | Inference Session 4 | Inference Session 5
47.068 61786 79301
[14.536, 208.254] | [289.940,532.973] | [96.152, 501.615]

[84.466, 110.160] [369.016, 402.745] [359.597, 402.887]

Inference Session 1

Standard Deviation (STD)
Range
95% Confidence Interval (CI)

195079, 6.656]
[51.161. 38.653]

[297.010, 639.294]
[469.088, 518.398]

Table 2 Reward Variability Metrics for each Inference Session. Data
were collected during inference sessions (deterministic policies) at 0, 4,
9, 15, and 21 million training timesteps. For each checkpoint, the FOT
(red) and SCT (blue) teams were evaluated over 1 million timesteps
(2,000 episodes), with the data calculated after clipping outliers
(5th95th percentile). This table reports the standard deviation, range,
and 95% confidence interval of the average reward obtained during
each inference session in Figure Eh The statistics quantify the
variability and reliability of each teams performance during inference.

subprocessed), which parallelizes environment instances across
multiple CPU cores (we used 4). This architecture enables the
simultaneous execution of episodes with synchronous state ag-
gregation, where experience tuples from all parallel instances
are collected and batched before each policy update. All training
metrics and results were logged and analyzed using TensorBoard
for comprehensive performance monitoring. This phased strat-
egy functions analogously to curriculum learning by structuring
exposure to difficulty, rather than forcing agents to learn all
aspects of the task simultaneously. Random initialization with-
out such phasing would likely slow convergence and increase
policy instability, as agents would face the full complexity of
the competitive environment from the outset. A Systematic ex-
ploration of these initialization strategies remains an important
direction for future research. Additionally, while SCT, like other
MARL approaches, could in principle diverge, in our experi-
ment, however, we did not observe divergence or catastrophic
instability across multiple seeds. We attribute this, in part, to
our normalization scheme“® and clipped PPO objectives. Nev-
ertheless, systematically analyzing SCTs stability under more
challenging conditions is another interesting direction for future
research.

Results

This study compares SCT and FOT to evaluate whether dynamic
co-adaptation yields superior tactical diversity, representational
learning, and competitive performance over static opponent
paradigms in multi-agent reinforcement learning. All agents
completed identical foundational training (24 hours/policy)
before diverging into SCT or FOT, with SCT enabling co-
adaptive learning between teams and FOT using static oppo-
nents, followed by evaluation at five checkpoints over 21 mil-
lion timesteps. SCT agents achieved consistently higher net
rewards than FOT agents across all post-baseline evaluations
with a mean reward of 493.7 (Figure[3|A1). Compared to the pre-
trained baseline of 44.9, this represents a dramatic improvement
of over 1,100%, with reward progression following a strong
cubic trend (> = 0.953, Figure [3| A2). While mean rewards
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Fig. 3 Mean Reward Comparison and Trend Modeling of FOT vs SCT
teams. Data were collected during inference sessions (deterministic
policies) at 0, 4, 9, 15, and 21 million training timesteps. For each
checkpoint, the FOT (red) and SCT (blue) teams were evaluated over 1
million timesteps (2,000 episodes), with the data calculated after
clipping outliers (5th95th percentile). Al. Average reward during
inference sessions. Bar graph comparing the mean reward of FOT and
SCT teams. Data logged via TensorBoard. A2. Curve fitting of the
data points in Figure A1 across training. Fitted models (linear,
quadratic, cubic, exponential, logarithmic, power) are plotted with
their associated R values. Black dots represent original data points
from Figure Al.
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increased over training, the standard deviation, range, and 95%
confidence intervals reveal notable variability between sessions.
For example, early sessions (OM timesteps) exhibited relatively
low variability (STD = 22.9, 95% CI [-51.2, -38.7]), whereas
later sessions (21M timesteps) showed higher variability (STD
=90.3,95% CI [469.1, 518.4]) (Table[2).

Behavioral Analysis

Qualitative analysis quantified strategy development across 7
tactical categories (Figure [d)). Attackers in both groups pro-
gressed from basic stable flying and aiming to more advanced
tactics, including Camping, Close-Quarters approaches, and
Ramming. v1 (Figure. 4 A, C, D). However, the development of
more sophisticated behaviors like Ramming. v2 - where Attack-
ers learned to recover from missed attempts - was significantly
less consistent in the FOT-trained Attacker (Figure. 4 G). The
FOT-trained Descender failed to develop key strategies that were
present in the SCT Descender, particularly Rushing and Dodg-
ing maneuvers (Figure ] B, F). The action distribution patterns
revealed that the FOT descender exhibited a 2.72x stronger bias
toward lateral thrust actions (left=1, right=3), compared to the
SCT descender (Figure[5|C1, D1). This contrast was particularly
evident in Attacker behavior: the FOT Attacker overwhelmingly
favored left thrust (analogous to the SCTs attackers right thrust)
which was used three times more frequently and the firing action
was used 42 times more frequently, whereas the blue attacker
primarily employed main thrust (16x higher) with moderate
right thrust usage (Figurdd|C2, D2). Our comparative analysis

0--

Shuba iy under attsek, Alming IFOT o, 50T o)

{}' - -

Russhing [FOT ) 50T |

@- - ’

Camping [FOT ¥ SCT4" )

Close-guartrs shooting [FOT o 5CT |

e
2

Ramming 1 FOT " 5CT" |

Dodging, Rakiing [FOT I 527 ')

Ramming.v2 FOT X S2Tv |

Fig. 4 Emergent strategies and tactics in FOT vs SCT teams.
Checkmarks (v') and crosses (X) indicate the presence/absence of each
skill per team. Strategies were observed through gameplay analysis
during training. A. Stable flying under attack & aiming. Descenders
maintained stability while under long-range projectile fire. Attackers
developed oscillatory rotation to maintain aim. B. Rushing.
Descenders prioritized landing pad proximity, accepting speed
penalties and reduced protection for the attacker. C. Camping.
Attackers idled engines at the landing pad to increase projectile fire
rate. D. Close-quarters shooting. Attackers aggressively approached
opponent descenders to maximize the opponents descenders
displacement from the landing pad. E. Ramming v1. Attackers utilized
their main engine superiority to ram opponents at 90-degree angles,
knocking them off the map. F. Dodging & baiting. Descenders evaded
or lured attackers into failed ram attempts, causing instability amond
the attackers. G. Ramming v2. Attackers recovered from missed ram
attempts to re-engage.

of performance metrics revealed systematic differences between
FOT and SCT-trained agents across all measured dimensions
(Average Cohens d=0.6552) (Figure[6]|B1-B5). Accuracy trajec-
tories showed an obvious divergence: while the SCT Attacker
maintained stable accuracy (u = 0.55 £0.21) with slight im-
provement over time (r=0.38), the FOT Attacker exhibited a
significant downward trend (r = —0.83), declining from ini-
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Fig. 5 Counterfactual policy divergence (CPD) and action
distribution across training for FQT (red) vs SCT (blue). (A1B2)
shows the smoothed CPD of how each agents behavior depends on the
other agents positions, calculated as:

CPD(7,,b) := Esp [EX/NR”SDKL(ﬂa(~\given §') || 7a(-|given s))] ,

where 7, (+|given s) is the policy of agent a given the full state s, D is
the distribution of original states s encountered during gameplay, R (s)
is a resampling distribution where only agent bs position is replaced
randomly, while all other components of s stay fixed, s’ is the modified
state where bs position is perturbed, and Dgy [-]|-] is the KL divergence
between the policy distributions before and after perturbation. Higher
values indicate stronger influence. (C1D2) shows the action
distribution histograms from the final inference (21M steps). Action
distributions were logged over 1M deterministic inference steps.

tial superiority to substantially lower final accuracy (A=97%,
p<0.08, Cohens d=0.61) (Figure[6|B1). The aggression met-
ric demonstrated particularly striking differences (Cohens d =
0.633) (Figure[6|B2). Although both groups showed comparable
aggression levels during early training (0-15M timesteps), the
SCT attacker displayed a dramatic late-stage surge to 2,544,180
aggression units 21,202 higher than FOT’s peak (12 units).
Recovery dynamics revealed an important learning pattern (Co-
hens d=1.013) (Figure|§|B3). While the FOT Descender initially
showed superior recovery (11 vs. 23 steps), this relationship
inverted by 4 million timesteps, with the SCT Descender achiev-
ing consistently better recovery (final A = -6 steps). Positional
analysis showed the SCT Descender establishing significantly
better landing pad proximity than the FOT Descender (Posi-
tion=3.74m) after 9M timesteps (Cohens d=0.217) (Figure |§|
B4). Notably, both groups showed a deteriorating relative po-
sition over time, although the SCT Descender maintained a

Fig. 6 Behavioral Metrics During Inference: Accuracy, Aggression,
Recovery, Position, and Stability of Agents. Data were collected
during inference sessions (deterministic policies) at 0, 4, 9, 15, and 21
million training timesteps. For each checkpoint, the FQT (red) and
SCT (blue) teams were evaluated over 1 million timesteps (2,000
episodes), with the data calculated after clipping outliers (5th95th
percentile). B1. Attackers accuracy during inference. Accuracy was
computed as cosine similarity between the attackers and opponents
descender vectors (1 = aligned, O = orthogonal, 1 = opposed). B2.
Attackers aggression during inference. Aggression was calculated as
the inverse Euclidean distance between attacker and opponent
descender positions (log-scaled y-axis; higher values indicate greater
aggression). B3. Descenders recovery time. Recovery steps were
measured as the time (steps) required for a destabilized descender
(angle > 0.6, provided y* > 0.1) to stabilize (angle < 0.6, provided
y* > 0.1). B4. Descenders relative position to the landing pad.
Euclidean distance between each teams descender and the landing pad
across inference sessions. B5. Descenders stability. Stability was
quantified as the magnitude of the descenders speed. Lower values
indicate greater stability.

persistent advantage (Cohen’s d = 0.803). Stability metrics con-
firmed the SCT Descenders superior control, with 6110% less
speed variance (F = 62.32, p < 0.001) until the final timestep
when both groups showed expected strategy-induced instabil-
ity (Figure[6| B5). Training showed SCT’s oscillating rewards
(62 = 1.92x higher) and maintained high KL divergence reflect
active strategy evolution, while FOT’s reward and KL conver-
gence monotonically increased (Figure [7] C1-C2). Heatmap
analysis showed the SCT Descender with greater movement
diversity and the Attacker taking more direct interception paths

(Figure ).

Representational Analysis

The t-SNE visualization of latent features showed clear differ-
ences in how FOT and SCT agents represent important game
states (Figure[9). For descender proximity to the landing pad,
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Fig. 7 raining Dynamics: Smoothed Reward and KL Divergence
during Training. C1. Smoothed reward during training. Reward
trajectories for both teams over training timesteps, logged via
TensorBoard and smoothed. C2. Smoothed KL divergence during
training. KL divergence (a measure of policy update magnitude) for
both teams over training, smoothed and logged via TensorBoard.
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Fig. 8 Positional heatmaps of agent trajectories during inference
sessions. Heatmaps show spatial distributions of FOT (red) and SCT
(blue) agents positions logged over 1 million inference timesteps.
Positional data were collected during deterministic inference sessions
at specified training checkpoints (OM and 21M timesteps). Heatmap
kernel density estimates were normalized across teams for comparison.
Warmer colors indicate higher frequency positions. A. OM timesteps.
Both teams exhibit similar diagonal trajectories directly toward the
landing pad, showing no strategic differentiation between FOT and
SCT agents at initialization. B. 21M timesteps. The Descender and
Attacker of the FOT team follow nearly identical, predictable paths
(vertical descent followed by horizontal approach), demonstrating
minimal path variation between agents. The Descender of the SCT
team shows diverse, non-linear trajectories with multiple approach
angles. The Attacker of the SCT team prefers direct diagonal routes
toward the opponents descender rather than the landing pad. The SCT
team exhibits greater overall spatial coverage and strategic variability.

the FOT Descender had scattered and poorly separated repre-
sentations, while the SCT Descenders features formed a distinct
cluster in the northeast quadrant (Figure[J] A1, B1). This pattern
appeared again for descender-attacker proximity, with the SCT
Descender showing organized clustering in the same area (Fig-
ure[9] A2, B2). When looking at the proximity of attackers to
the opponents descender, both teams had similar distributions,
clustering in southern regions, though blue was grouped a bit
more tightly (Figure [0] A3, B3). Representational efficiency

@

Fig. 9 Comparative analysis of internal representations between FOT
(red) and SCT (blue) agents across three tactical scenarios: (1)
Descender proximity to landing pad, (2) Descender proximity to
opponent attacker, and (3) Attacker proximity to opponent descender.
Labels are true if the Euclidean distance is less than 0.4. All data
collected during 1M-step deterministic inference sessions. (Panels
A1-B3) shows t-SNE projections of PPO latent features for both the
FOT and SCT teams. t-SNE was performed with perplexity of 30 on
10 policy rollouts per condition. (Panels C1-D3) show the activation
densities of each teams maximally diagnostic neuron. Neural
selectivity analysis identifies maximally diagnostic neurons through
AUC-ROC scoring. Neuron selectivity analysis was evaluated for all
hidden units, with density plots displaying activation distributions for
top-scoring neurons (AUC > 0.6). Panels (E1-F3) illustrate the
classification accuracy of each model. Representational efficiency is
quantified through three classifiers: logistic regression on raw
observations (LR-OBS), logistic regression on latent features
(LR-latent), and MLP on latent features. Classifiers were trained on
70% of the data (200 iterations, 64 hidden units for MLP) and tested
on the held-out 30%.

metrics highlighted several key differences (Figure [9] E1-F3).
For landing pad proximity, the FOT Descender followed the
pattern MLP > raw > LR, which means their internal represen-
tations encoded proximity information in a nonlinear but useful

8 | NHSJS 2025

© The National High School Journal of Science 2025



way (Figure[9|El). In contrast, the SCT Descender showed raw
> MLP > LR, suggesting this spatial information was more
directly available in the observations than in their internal repre-
sentations (Figure[9|F1). In the Descender-Attacker proximity
task, the FOT Descender performed well across all inputs, indi-
cating that proximity information was available in both raw and
learned features (Figure[9]E2). The SCT Descender showed a
similar trend, (raw = MLP) > LR, which suggests their represen-
tations captured the relevant features, but these were not linearly
separable (Figure [9] F2). For the Attacker-Descender proxim-
ity task, FOTs Attacker showed MLP > (raw = LR), again
relying on nonlinear structure in their internal representations
(Figure 9| E3). The SCT Attacker showed MLP > raw > LR,
which demonstrates both rich internal encoding and moderate
linear separability of features (Figure[9] F3). Neuron activation
analysis (AUC metrics) revealed notable differences in state
processing (Figure[9)C1-D3). For landing pad proximity, both
teams had similar discriminative ability (FOT AUC: 0.738, SCT
AUC: 0.731), with stronger activation for “far” states in both
cases (Figure[9]C1, D1). In the descender-attacker proximity
analysis, the SCT Descender achieved 1.17% better separation
(0.777 vs FOT’s 0.768), with the FOT Descender showing a
strong focus on far states. At the same time, SCT maintained
more balanced activation (Figure[9]C2, D2). The biggest dif-
ference was in attacker-descender proximity processing: the
FOT Attacker focused mainly on avoidance (0.686, far-state
focus), while the SCT Attacker showed 6.12% better discrim-
ination (0.728) with a clear emphasis on near states (Figure E]
C3, D3). Counterfactual policy divergence measurements gave
more insight into decision-making (Figure 5 A1-B2). Both FOT
and SCT Descenders emphasized opponent and teammate states
in their policies, showing similar social awareness (Figure 5
Al, B1). However, attackers differed: the FOT Attacker prior-
itized opponent states, while the SCT Attacker showed more
self-interested policies (Figure 5 A1-B2).

Discussion

Our comparative analysis of SCT and FOT shows clear differ-
ences in how agents perform, behave, and learn. In our tests,
SCT-trained agents perform better tactically and were more ro-
bust and adaptable then FOT agents. For example, SCT agents
earned much higher net rewards (mean: 364.9) compared to
FOT agents, which is an 11,000% improvement over the base-
line. Although reward variability increased across inference
sessions, we did not interpret this as an indication of training
instability. Rather, the increasing variability reflects that the
agents were adopting riskier, higher-reward strategies to maxi-
mize performance (an indication of exploration and adaptability).
Early sessions are more uniform because policies were conser-
vative, leading to lower rewards. The SCT Attacker developed
advanced strategies (e.g., Ramming.v2) that the FOT Attacker

did not. The rapid progression in rewards (r = 0.962) suggests
that SCT helps agents learn skill quickly under adversarial pres-
sure. In contrast, FOT agents showed little improvement, with
declining accuracy (r = -0.83) and minimal aggression (up to
21,202 times lower than SCT)reflecting an inability to adapt
beyond the fixed opponents skill level. FOT agents also showed
a strong bias for lateral thrust (2.72 times more), suggesting
poor development from older strategies. In contrast, SCT agents
dynamically balance thrust and other actions, enabling them
the ability to execute a variety of tactics. The SCT Attacker
used main thrust maneuvers 16 times more often, matching the
ramming strategies analyzed in our behavioral analysis. FOT
attacker relied much more on firing (42 times higher), missing
out on the better strategies discovered by SCT. Recovery and
positional metrics further indicate that SCT-trained agents ex-
hibit stronger performance in this environment. While the FOT
Descender initially led in recovery steps, the SCT Descender
inverted this trend by mid-training, ultimately achieving 6 fewer
steps per recovery. Similarly, the SCT Descender maintained a
closer proximity of 3.74 m to the landing pad, demonstrating
better positional optimization despite both groups exhibiting
drift over time. SCT Descenders had much lower speed variance
(6110% less), showing more stability, except during late-stage
strategy changes like deliberate ramming. Visualizations and
neuron analyses show SCT and FOT agents process game states
differently. SCT Descenders formed clear clusters for impor-
tant states, like being new the landing pad, while FOT agents
representations, were scattered, making it harder to tell states
apart. SCT agents also encoded proximity between Attacker
and Descender more precisely (6.12% higher AUC), focusing
on getting close for interception, while FOT Attackers focused
on staying away. In terms of learning, FOT agents needed com-
plex decoding, while SCT agents used raw observations more
effectively, suggesting they learned spatial relationships better.
The counterfactual policy analysis revealed an unexpected find-
ing: while both teams descenders weighted teammate/opponent
states similarly, the SCT attacker prioritized self-reward over
cooperation, unlike the FOT attacker, which focused on oppo-
nentspotentially an artifact of static adversaries. Overall, SCTs
co-evolutionary setup encourages a wider range of strategies,
while FOT tends to get stuck on local optima, which matches
known issues with fixed-opponent setupsS. This difference also
shows up in how agents learn: SCT agents formed more orga-
nized internal representations, while FOT agents encodings were
more redundant and less efficient. Training patterns highlight
these differences: SCT agents rewards fluctuated and showed
high KL-divergence, indicating active exploration, while FOT
agents rewards stabilized too early. Still, there are three im-
portant caveats to SCTs advantages: (1) we have not tested its
effectiveness in purely cooperative tasks, (2) dynamic training
may require more computing resources than FOT, and (3) the
SCT attackers focus on self-reward needs more study to see
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if it comes from reward design or competition. In our Lunar
Lander tests, SCT-trained agents outperformed FOT agents in
tactics, learning speed, and adaptability. While these results
are promising for dynamic adversarial training, future research
should test if these findings hold in other environments, with
different tasks, algorithms, and reward systems.
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