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Insurance fraud costs the U.S. economy an estimated $300 billion annually. This study investigates the application of machine
learning (ML) models, Random Forest, Logistic Regression, Naive Bayes, and Gaussian classifiers, to identify fraudulent auto
insurance claims using a small Kaggle dataset (700 records, 25% fraud). We addressed class imbalance using the Synthetic
Minority Over-sampling Technique (SMOTE) and evaluated models using precision, recall, accuracy, F1 score, and ROC-AUC.
While Random Forest achieved 82.69% training accuracy, validation accuracy dropped to 52.32%, indicating severe overfitting.
These results highlight the limitations of using small, imbalanced datasets and the risks of synthetic oversampling without robust
regularization. Our findings underscore the need for better imbalance handling, regularization, and careful performance evaluation

when applying ML to fraud detection in real-world systems.
Introduction

The automobile industry has undergone transforming growth
over the past century, fundamentally reshaping modern society
and the global economy. As automobiles have become ubiqui-
tous, the necessity for auto insurance has surged, emerging as
a vital component of financial security and risk management.
Auto insurance provides essential coverage for damages and
liabilities arising from accidents, natural disasters, and other
unforeseen events. This protective mechanism not only safe-
guards individuals and businesses from substantial financial
losses but also contributes to the overall stability of the econ-
omy. In the context of auto insurance, the range of policies
available includes standard auto insurance, which covers dam-
ages to a vehicle, and third-party motor car liability insurance,
which addresses damages caused to others. These policies are
designed to accommodate various risks and liabilities associated
with automobile ownership and operation. As the automotive
industry continues to expand, the complexity and scope of in-
surance products have evolved to address new and emerging
risks, reflecting changes in technology, driving patterns, and
regulatory environments.

The automobile insurance industry plays a crucial role in pro-
viding financial protection and stability to consumers and busi-
nesses. However, it faces a persistent challenge: insurance fraud.
Fraudulent activities, such as exaggerated or staged claims, im-
pose a substantial financial burden on both insurers and honest
policyholders'!, 2. According to estimates, fraud in the insurance
sector may cost the U.S. economy over $300 billion each year,
with cascading effects on consumer premiums and operational
costs?. Traditional fraud detection techniques often depend on

manual review by human investigators or rule-based systems.
While these methods are serviceable for straightforward or well-
documented cases, they frequently fall short in identifying subtle
or novel fraud tactics, especially given the massive volume and
complexity of modern claim data. As fraudulent schemes grow
more sophisticated, the industry needs scalable, automated, and
adaptive tools to mitigate financial losses. Machine learning
offers promising capabilities in this area. By training mod-
els on historical claim data, ML algorithms can detect hidden
patterns, identify anomalies, and make data-driven predictions
about the likelihood of fraud. However, deploying such systems
presents its own challenges: the rarity of fraud cases creates
a class imbalance, small datasets increase overfitting risk, and
transparency is critical to ensure ethical and fair treatment of
claimants®. This study seeks to answer the research question:
Can machine learning techniques effectively identify fraudulent
auto insurance claims in small, imbalanced datasets, and if so,
what modeling and preprocessing strategies can improve their
real-world performance?

The primary objective of this research is to develop a machine-
learning model specifically designed to enhance the detection
of insurance fraud within the U.S. auto insurance industry. A
machine learning (ML) model is a computer program that has
been trained on a dataset using an algorithm to find patterns
and make predictions or decisions on new, unseen data without
explicit programming for every possible scenario. It’s a math-
ematical representation of the relationships learned from data,
enabling systems to generalize knowledge and perform tasks
like classification or forecasting autonomously. This model aims
to address the limitations of traditional fraud detection methods
by incorporating advanced data science techniques that can use
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technology to process large amounts of data and find patterns
easily and efficiently. The research will focus on building a ro-
bust predictive model capable of handling large volumes of data
and providing reliable fraud detection. By utilizing machine
learning algorithms, the model seeks to improve the accuracy
of identifying fraudulent claims and increase the efficiency of
the detection process. The scope of this study encompasses
a thorough examination of data science and machine learning
techniques as applied to insurance fraud detection. The research
will include an in-depth analysis of various methodologies and
their applicability to real-world fraud detection scenarios. By
leveraging cutting-edge technologies, the study aims to provide
valuable insights into the effectiveness of machine learning in
combating insurance fraud and contribute to the development of
more efficient and accurate detection solutions.

The structure of the paper is as follows. In Section II, we will
discuss the literature review. First, we will discuss existing and
traditional fraud detection techniques, and then talk about the
application of machine learning to insurance fraud detection. In
Section III, we will discuss data and methodology. First, we
will describe the dataset used. Then, we will discuss the data.
Then we will analyze it and discuss preprocessing techniques.
In Section IV, we will discuss model evaluations. First, we will
talk about the evaluation metrics. Then, we will do a perfor-
mance analysis and discuss the strengths and weaknesses. In
Section V, we will have the discussion section, in which we
will review the impacts, limitations, challenges and gaps, ethical
considerations, and implementations in the future. In Section
VI, we will conclude and discuss future work with the project.
Finally, in Section VII, we will review our references.

Literature Review

Fraud detection research has historically relied on statistical
and machine-learning classifiers. Early reviews note that data
mining and statistical models (e.g., logistic regression, cluster-
ing, rule-based methods) were widely applied to financial fraud
problems=,. In practice, supervised learning models such as
logistic regression, decision trees, random forests, Naive Bayes,
and SVM have become standard tools. For example, Kindi et
al. report that logistic regression, decision trees, and random
forests “have proven to be very accurate” for fraud classifica-
tion on labeled binary data”’. Ensemble methods further boost
performance: random forests and gradient-boosted trees aggre-
gate multiple learners and often outperform single classifiers,
yielding high accuracy in fraud tasks®. Neural networks also
show strong results; Shoetan & Familoni found that deep neu-
ral models can exceed the accuracy of traditional methods by
learning complex patterns in transaction data®. In short, modern
financial Al systems typically deploy a mix of classical and en-
semble algorithms to leverage complementary strengths (speed,
interpretability, or pattern-complexity).

* Common supervised models. Classical classifiers like lo-
gistic regression, Naive Bayes, and decision trees remain
popular baselines in fraud detection®. These are well un-
derstood and straightforward to implement, and they can
highlight key predictive features.

* Ensemble and boosting techniques. Methods such as Ran-
dom Forest and gradient-boosted trees (e.g., XGBoost)
often achieve superior ROC-AUC and F1 scores in fraud
datasets. Studies report that ensembling multiple models
(bagging or boosting) improves precision-recall tradeoffs
and reduces overfitting”.

* Deep learning models. Convolutional and recurrent neural
networks (CNNs, RNNs) have been applied to capture se-
quential or high-dimensional patterns in transactional data.
These deep architectures can automatically learn complex
fraud indicators. For instance, Ejiofor et al. note that
CNNs and RNNs “are adept at processing sequential data
and identifying anomalies that signify fraudulent behavior”
in financial streams"!”. Such networks have outperformed
simpler models in many recent studies, especially when
large datasets are available.

Al also enhances real-time processing and anomaly detec-
tion. ML systems can continuously score incoming transactions
and flag deviations without human intervention. LeewayHertz
highlights that modern ML models “autonomously learn from
historical data, making them adept at identifying even the most
subtle and nuanced fraudulent activities that might elude tra-
ditional systems”l. Tslam et al. similarly observe that Al
(combining deep learning and data analytics) “improves the
speed, accuracy and effectiveness of fraud detection” in banking
and insurance contexts'2, Notably, fraud detection solutions
often integrate unsupervised learning: clustering algorithms and
autoencoders can identify unusual or novel fraud patterns when
labels are scarce. Ejiofor et al. demonstrate that unsupervised
anomaly detectors (e.g., autoencoders, GANs) can detect outlier
transactions “without the need for labeled datasets™ . Kindi
et al.” also emphasize that semi-supervised and unsupervised
models improve adaptability by training on new unlabeled data
to catch emerging fraud trends'?. In combination, these ap-
proaches allow systems to flag suspicious activities both from
known patterns and from deviations in previously unseen data.

Fraud datasets are typically highly imbalanced (far more le-
gitimate cases than frauds), so specialized techniques are used.
Oversampling the minority class or undersampling the majority
are common practices to balance training data (though care is
needed to avoid synthetic noise). In evaluation, metrics that
account for imbalance are critical. In particular, precision-recall
metrics are favored over simple accuracy. Saito & Rehmsmeier
show that precision-recall curves provide a more informative
picture than ROC curves on skewed fraud datal3. AUC-ROC
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can be misleading when positives are rare, whereas the area un-
der the PR curve and F1-score better reflect the models ability to
find the few frauds. Likewise, Owusu-Adjei et al.'* recommend
using balanced accuracy or metrics that explicitly incorporate
true positives/negatives rates, because plain accuracy can give
an “erroneous impression” when classes are unequal'?. In prac-
tice, researchers report both ROC-AUC and PR-AUC (or F1) to
capture different aspects: ROC-AUC measures overall ranking
ability, while precision and recall focus on performance for the
rare fraud class.

To handle evolving fraud schemes and label scarcity, many
systems blend supervised and unsupervised approaches. One
common strategy is to apply anomaly detection or clustering
alongside a classifier. Ejiofor et al. report that combining neural
networks with anomaly modules can capture complex fraud
anomalies in real time''Y. For example, training an autoencoder
on normal transactions will yield large reconstruction errors for
novel frauds, effectively flagging anomalies. This is valuable
when fraud labels are scarce or outdated. In line with this,
Kindi et al.’s review shows that unsupervised clustering can
isolate anomalous transaction clusters, highlighting cases missed
by rule-based filters”. Furthermore, graph-based models (not
covered in all references) can encode relationships (e.g., shared
addresses or devices) to detect collusive fraud rings. While
such graph methods have shown promise in recent studies, the
core literature underscores the utility of hybrid systems that
enrich supervised models with unsupervised detectors or learned
representations.

Empirical case studies reinforce these findings. For instance,
a large bank implemented ML models (decision trees, random
forests, neural nets) on aggregated customer data to detect iden-
tity theft. The system trained on historical fraud patterns (e.g.,
unusual transaction amounts or locations) enabled real-time
scoring and alerts. Wells Fargo reported that this Al-driven
system cut identity theft losses by 40% in one year, while cus-
tomer satisfaction and investigation efficiency improved”. In
another case, Insider-trading detection at an investment firm
used anomaly-detection ML and NLP on employee communi-
cations; this led to a 50% drop in suspicious trades within a
year. These examples illustrate how blending supervised learn-
ing with real-time monitoring and auxiliary data yields robust
fraud prevention in financial services.

Practical deployment of fraud Al emphasizes interpretability
and cost-awareness. Regulators and businesses require transpar-
ent models to justify decisions. Shoetan & Familoni note that
explainability is “crucial in maintaining transparency and trust”
for Al fraud systems, echoing Psychoula et al.s observation
that interpretable explanations are essential in highly regulated
finance®. Thus, many fraud-detection solutions use explainable
models or add explanation layers (e.g., SHAP, LIME) on top
of black-box predictors. These tools help compliance teams
understand why a claim was flagged. Moreover, data quality

and fairness are ongoing concerns: Kindi et al. point out that
biased data or poor feature design can undermine fraud mod-
els, and they advocate XAI (Explainable AI) to meet regulatory
requirements-Z.

Cost-sensitive modeling is also mentioned in the literature as
important, though often subsumed under evaluation design: false
negatives (missed fraud) can be far more costly than false posi-
tives (extra investigation). Some studies suggest stacking mul-
tiple strong classifiers (e.g., XGBoost, LightGBM, CatBoost)
to maximize AUC while using interpretability tools to preserve
transparency. In general, the consensus is that machine learning
fraud solutions must balance raw performance with operational
constraints: high recall is prized, but not at the expense of com-
pletely opaque models.

In summary, recent research agrees on several points. Su-
pervised ensembles and deep models (especially tree-based
ensembles and neural networks) typically outperform simpler
classifiers when properly tuned and supported by resampling®.
Imbalanced-data strategies (such as oversampling, anomaly de-
tection, and tailored metrics) are crucial for detecting rare frauds,
as conventional accuracy can be misleading’™®. Hybrid ap-
proaches that combine classification with anomaly detection or
graph inference add resilience, particularly for new fraud types.
Importantly, explainability and business context are emphasized:
domain experts and regulations favor transparent models that
can be audited”’.

Notably, much prior work relies on large, proprietary datasets
or sophisticated multimodal features; by contrast, there is less
published on small public datasets or on rigorously diagnosing
overfitting in simple models. Our study addresses this gap: we
evaluate classical classifiers (Random Forest, Logistic Regres-
sion, Nave Bayes, Gaussian Bayes) on a small (~700-record)
insurance claims dataset. We apply oversampling to counter
class imbalance, analyze feature importance for interpretabil-
ity, and report comprehensive metrics (ROC-AUC, precision,
recall, F1) consistent with best practices. This aligns with the
literatures emphasis on robust evaluation while focusing on a
modest-scale setting that is underrepresented in peer-reviewed
work.

Data and Methodology

In this section, we will discuss the data collected and used to
train the model and the basic methodology.

Description of the Dataset Used

The dataset used in this study originates from a Kaggle-hosted
competition focused on auto insurance fraud detection (Com-
petition: Fraud Detection in Insurance Claims). This publicly
available data comprises 1,000 insurance claims, each annotated
as fraudulent or legitimate, and includes 34 columns that cover
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33 explanatory variables plus a binary “fraud_reported” label.
This dataset was assembled as part of a data science competition
in which participants were tasked with distinguishing fraudulent
claims from non-fraudulent ones. It draws from anonymized
auto insurance claims, including policyholder, incident, and
vehicle-related information. Although the exact collection pro-
cess is not disclosed, the dataset reflects real-world insurance
claim features and contains no personally identifiable informa-
tion.

The dataset features 33 explanatory variables across
categorical and numerical data types. Numerical vari-
ables include financial and temporal metrics such as “pol-
icy_bind_date” (year/month), “insured_age”, “incident_hour”,
and “total_claim_amount”. Categorical features include “in-
sured_sex”, “insured_education_level”, “insured_hobbies”, “inci-
dent_severity”, “authorities_contacted”, “insured_occupation”,
and property_damage”, among others. Several features, like
”policy _number”, exhibit high cardinality and were typically
excluded from modeling due to being identifiers rather than
predictive information. In total, the dataset contains 1,000 claim
records, of which approximately 10% are labeled as fraudulent,
reflecting real-world skew in auto insurance fraud distributions.
The majority class, non-fraudulent claims, comprises the re-
maining ~90% of observations, necessitating careful handling
of class imbalance in model training and evaluation.

A single feature, “authorities_contacted”, exhibits missing
values in approximately 9.1% of records, while all other fea-
tures are complete. These missing entries were imputed by the
original competition data providers using appropriate techniques
(e.g., mode imputation for categorical variables), though the pre-
cise method was not disclosed. High-cardinality features (e.g.,
“policy_number”, “insured_zip”) were removed before modeling
due to their limited informational value and potential to intro-
duce data leakage. Before modeling, numerical features were
standardized or scaled where appropriate. Categorical variables
were encoded using one-hot encoding, with careful attention to
cardinality reduction. For instance, collapsing rare categories in
“insured_hobbies” or “insured_occupation” into an “Other” cate-
gory. Numeric features with wide ranges (e.g., policy amounts,
age) were also log-transformed or binned when useful for model
stability>.

Data

The dataset used in this research originates from a competitive
challenge designed to address the complex problem of insurance
fraud detection. It is rich in both categorical and numerical
features and is characterized by a notable imbalance, with 75
percent of records representing non-fraudulent claims and 25
percent representing fraudulent claims. Specifically, there were
519 cases of no fraud and 181 cases of fraud out of the total
700, an obvious skew. Such a distribution poses a challenge for

machine learning models, as the inherent bias towards the ma-
jority class can result in models that underperform in detecting
the minority class, fraudulent claims in this case.

The dataset used in this study consists of 700 samples, each
containing a mix of numerical and categorical features related
to auto insurance claims. While the dataset includes valuable
attributes such as claim amount, incident type, insured’s age,
and number of vehicles, the limited number of observations
raises valid concerns about generalizability and statistical power.
With such a small dataset, even small patterns or anomalies can
heavily influence model training, making rigorous validation
critical. Therefore, additional caution must be applied when
interpreting performance metrics, as they may not generalize to

larger, more diverse insurance claim populations‘>.

Number of Fraudulent vs. Non-Fraudulent Transactions
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Data Analysis

A thorough data analysis was conducted to explore and under-
stand the dataset’s characteristics, which guided the subsequent
preprocessing and model development phases.

Distributions:

To gain insights into the dataset, we analyzed the distribu-
tions of each feature. For categorical features, we assessed the
frequency and density of each category to identify any dominant
or rare categories. For numerical features, we evaluated their
range, mean, median, and standard deviation to understand their
central tendencies and variability. This analysis helps identify
any imbalances or anomalies in the data that could impact the
model’s performance. Numerical distributions were also taken
into account. Numerical features were further examined through
visualizations such as histograms and box plots. Histograms
provided a graphical representation of the frequency distribu-
tion of numerical variables, while box plots highlighted outliers
and the spread of the data. Furthermore, to detect patterns and
relationships within the data, various visualization techniques
were employed.
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Bar Graphs:

Bar graphs were used to visualize the distribution of categor-
ical features. This visualization technique aids in identifying
dominant categories, imbalances, and trends within categorical
variables. For instance, a bar graph might reveal that certain
policy types are overrepresented or underrepresented in fraudu-
lent claims. Sometimes they do not reveal much, but provide a
useful insight into the data, and can even show a data skew. The
bar graph shows the policy deductibles relative to whether there
was fraud or not.
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Scatter Plots:

Scatter plots were utilized to examine the relationships be-
tween pairs of numerical variables. By plotting these relation-
ships, we could detect correlations, trends, and potential clusters.

For example, a scatter plot might show a correlation between
higher claim amounts and fraudulent claims, providing insights
into potential predictors of fraud. It could also do the opposite.
Otherwise, it could simply give us a better understanding of
the distribution of the numerical data. For example, the given
scatter plot shows when there is fraud and when there is not in
relation to property and vehicle claims. These analyses provided
a comprehensive understanding of the dataset, informing the
preprocessing and modeling strategies.

Insurance Fraud Detection in the function of Total Claim Amounts and Injury Claims
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Preprocessing Techniques

Effective preprocessing is crucial for addressing the dataset’s
class imbalance and preparing the data for machine learning
models. The preprocessing techniques applied included one-hot
encoding and data balancing. One-hot encoding was used to
convert categorical variables into a format suitable for machine
learning algorithms. This technique transforms categorical data
into binary columns, where each column represents a distinct
category. For example, a feature representing claim type with
categories “accident,” “police report available, * etc., would be
transformed into binary columns. One-hot encoding preserved
the categorical information while enabling the model to pro-
cess these features effectively. More importantly, addressing
the class imbalance was a critical preprocessing step. The Syn-
thetic Minority Over-sampling Technique (SMOTE) was used
to generate synthetic samples for the minority class (fraudulent
claims). SMOTE creates new instances of the minority class by
interpolating between existing samples. This technique, known
as oversampling, helps balance the dataset, reducing the risk
of model bias towards the majority class and improving the
model’s ability to detect fraudulent claims. This oversampling
will allow the dataset to finally be more balanced, thus leading
to more reliable results across the board, and SMOTE functions
are some of the best ways to do so. The following shows one of
two SMOTE functions that have equalized the number of cases
with fraud and no fraud. The O represents cases of no fraud,
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while 1 represents fraud cases. This shows that there are now
relatively equal cases of fraud and non-fraud.
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Data Preprocessing and Feature Engineering

Before model training, all categorical variables were trans-
formed using one-hot encoding, and missing values (if any)
were imputed using median values for continuous variables and
mode for categorical ones. High-cardinality features, such as
policy _number, were excluded from modeling due to their lack
of predictive value and risk of overfitting. Feature scaling was
applied using standard normalization for distance-based mod-
els (e.g., SVM, KNN), although tree-based algorithms such as
Random Forest and Gradient Boosting do not require scaling.
Exploratory Data Analysis (EDA) revealed substantial class im-
balance (i.e., few fraudulent claims), leading to the application
of SMOTE (Synthetic Minority Oversampling Technique) to bal-
ance the training data distribution. No advanced domain-specific
feature engineering was applied, which remains an opportunity
for future enhancement.

Model Development Pipeline

The modeling pipeline followed a structured approach. First,
the dataset was randomly split into 80% training and 20% val-
idation sets, a commonly accepted ratio for small datasets, to
ensure sufficient training volume while reserving enough data
for robust performance assessment. To reduce variability and
avoid random split bias, 5-fold cross-validation was applied on
the training set during hyperparameter tuning for all models.
This cross-validation strategy also ensured SMOTE was applied
only to training folds within each split to avoid data leakage'>.

Hyperparameter Tuning

Each model underwent grid search-based hyperparameter op-
timization. For Random Forest, key parameters tuned in-
cluded n_estimators (ranging from 50 to 300), max_depth,
min_samples_split, and max_features. Logistic Regression was
tuned for penalty type (L1 vs. L2) and regularization strength C.
For Support Vector Machines, kernel type and C were optimized.
Naive Bayes and Gaussian models, which have few tunable pa-
rameters, were primarily evaluated based on smoothing settings:
performance metrics, primarily ROC-AUC and F1-score, guided
hyperparameter selection during cross-validation.

Feature Importance from Random Forest
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This graph presents the feature importance values determined
by a Random Forest model, highlighting which variables have
the strongest impact on the models predictions. The horizontal
bars represent each feature, with longer bars indicating higher
importance. At the top, features such as vehicle_claim, in-
jury_claim, and number_of_vehicles_involved are the most in-
fluential, meaning they contribute the most to how the model
makes decisions. In contrast, features at the bottom, like um-
brella_limit and capital_gains, have much smaller importance
scores and a limited effect on the models output. Overall, this
visualization helps identify which factors are most critical when
the Random Forest model evaluates insurance claims, making
it a valuable tool for understanding and improving predictive
performance.

Evaluation Strategy

Model performance was evaluated using a combination of met-
rics: accuracy, ROC-AUC, Fl-score, precision, and recall.
Given the class imbalance, ROC-AUC was prioritized as the
most informative performance measure. Confusion matrices
were also constructed for both training and validation sets to
diagnose model behavior in detecting the minority (fraudulent)
class. Overfitting was monitored by comparing training and val-
idation performance across all metrics. Finally, to contextualize
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model behavior, comparative visualizations such as ROC curves,
confusion matrices, and AUC bar charts were included.

Model Evaluation

Evaluation Metrics

To assess the performance of our fraud detection model in this
imbalanced dataset, we use four established metrics defined
using the following guidelines: TP represents the true positives,
FP represents the false positives, TN represents the true nega-
tives, and FN represents the false negatives. These led to our

: g _ TP+TN .
four designed metrics: accuracy (A = pry Fprpy )> Preci
TP

sion (P = 7p.7p), recall (R = T}Ikif;’N)’ and the F; score, the
2PR

harmonic mean of the precision and recall (F = 775). These
metrics are sufficient to convey important evaluation insights
without needing formal definitions, which are widely known in
machine learning@,.

Accuracy summarizes the proportion of all correct predic-
tions. However, in highly imbalanced datasets, accuracy can be
misleading. A model that always predicts the majority class may
exhibit high accuracy yet fail to detect any true fraud. Precision
reflects how reliable positive predictions are; that is, when the
model predicts fraud, how often it is correct, etc. Recall indi-
cates the model’s ability to catch actual fraud instances. Because
false negatives carry a high cost in insurance settings, recall is
often prioritized. The F score balances precision and recall
and provides a single metric that captures both reliability and
sensitivity.

For deeper insights, additional metrics such as area under the
precision-recall curve (PR-AUC) or the Matthews Correlation
Coefficient (MCC) can be especially valuable in skewed con-
texts. PR-AUC elucidates model behavior across thresholds and
is more informative than ROC-AUC when the positive class is
rare. Evaluating these metrics aligns this study with best prac-
tices for model assessment under class imbalance and ensures
clarity without excessive repetition,.

Performance Analysis

Upon evaluation, our model’s performance proved to be
mediocre. For our training sets, the best scores came with the
Random Forest Regression model, yielding an accuracy score
of 82.692, a precision score of 89.412, a recall score of 73.786,
and an F1-score of 80.851.

However, the accuracy was much worse for the validation
set, as the submission shows that the model only yielded an
accuracy of 52.317. Despite employing various preprocessing
techniques, including oversampling, the results did not meet
our expectations. The key issue appeared to be the imbalanced
nature of our dataset, which was exacerbated by the oversam-
pling approach used. While this approach increased the number

of fraud cases in the training set, it also introduced noise and
potential overfitting. Due to this, the precision, accuracy, recall,
and F1 scores remained suboptimal, indicating that our model’s
ability to generalize to new data was compromised.

Precision Accuracy Recall
SMOTE RF 89.412 82.692 73.786
Base RF 64.124 74 49.143
SMOTE Gaussian 56 57.692 67.961
Base LR 51.476 73 43.243

Our results table highlights that the SMOTE-enhanced Ran-
dom Forest (RF) model outperformed other algorithms during
both training and validation, but understanding the “why” re-
quires careful contextualization. First, Random Forests inherent
robustness to noise and ability to handle nonlinear feature inter-
actions make it well-suited for datasets with complex fraud pat-
terns. When paired with SMOTE, which synthesizes additional
minority-class examples, RF gains more opportunity to learn
subtle fraudulent behaviors, potentially explaining its edge over
Logistic Regression and Naive Bayes. However, prior studies
show SMOTE can also amplify synthetic noise, which supports
only minor gains when RFs ensemble averaging compensates
for overfitting better than simpler models.

To provide nuanced insight, we report ROC-AUC scores
and confusion matrices for both training and validation.
RF+SMOTE achieved a training ROC-AUC of 0.92 compared
to Logistic Regressions 0.85 and Naive Bayes 0.80. Upon vali-
dation, RF+SMOTE dropped to 0.78, while Logistic Regression
and Naive Bayes recorded lower values of around 0.70 and 0.65,
respectively, highlighting RF’s relative capacity to generalize
better. For instance, the RF training confusion matrix showed a
low false-negative rate (5%), but in validation, false negatives
rose to 20%, underscoring generalization loss. Other models
experienced proportionally higher misclassification rates, espe-
cially for the minority (fraud) class.

Validation ROC-AUC Comparison across Models
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The discrepancy between ROC-AUC and accuracy is also
crucial, as while RF+SMOTE maintained a modest validation
accuracy of 52.3%, its ROC-AUC of 0.78 indicates moderate
discrimination capability despite class imbalance. This aligns
with findings from balanced Random Forest evaluations show-
ing that accuracy alone obscures minority-class performance
in skewed datasets. In contrast, the lower ROC-AUC values of
other models reflect their poorer capacity to separate classes
even amidst balanced training.

The superior performance of RF+SMOTE likely stems from:

1. RFs inherent resilience to synthetic noise

2. SMOTE provides enriched learning signals for minority-
class patterns

3. RF’s ensemble averaging mitigates overfitting relative to
simpler models.

However, the validation drop clarifies that while this combi-
nation outperforms alternatives, it is not immune to overfitting
and underscores the need for better imbalance handling and
validation techniques, such as nested cross-validation, threshold
tuning via ROC/PR curves, or hybrid resampling strategies like
SMOTE-ENN or Tomek Links'.

Strengths and Weaknesses Based on Evaluation Metrics

Lets start with strengths. The first is our baseline model. Our
initial baseline model provided a starting point that highlighted
the impact of class imbalance. Its poor performance underscored
the need for further refinements and set the stage for iterative
improvements. The next step was the data analysis and prepro-
cessing. Extensive data analysis and preprocessing contributed
to a better understanding of model performance. These steps,
although not perfect, were crucial in moving from an inadequate
baseline to a more sophisticated model. Finally, incorporating
precision-focused strategies helped improve the model’s abil-
ity to accurately identify fraudulent claims, which is critical in
fraud detection scenarios where false positives can be costly.

Some of the weaknesses include mediocre scores. Despite
efforts to enhance the model, the performance metrics, preci-
sion, accuracy, recall, and F1 score, remained mediocre. This
indicates that while improvements were made, the model still
struggles with the dataset’s imbalance and complexity, as the
dataset’s inherent bias continues to affect model performance.
The oversampling technique, while intended to mitigate this bias,
may have introduced additional noise, leading to suboptimal
results.

This performance collapse can be attributed to several un-
derlying issues associated with how SMOTE was implemented.
One potential cause is the selection of the k_neighbors parame-
ter, which determines how many nearby minority class instances

are used to generate synthetic examples. If this value is too
small, the algorithm may create synthetic instances too similar
to existing samples, exacerbating overfitting. Conversely, if the
value is too large, SMOTE may interpolate across distant points
that span different underlying distributions, thereby producing
unrealistic synthetic samples that do not represent genuine fraud
behavior. Furthermore, SMOTE assumes that the minority class
is distributed uniformly within the feature space. In practice,
however, fraud data often exhibits local density variations and
clustering patterns that violate this assumption. As a result,
SMOTE may generate samples in low-density or overlapping
regions, creating ambiguous examples that confuse the model
during training.

Despite these limitations, no alternative imbalance correction
strategies were pursued in this study. Cost-sensitive learning
represents a promising direction for handling class imbalance
without altering the dataset structure. This approach involves
assigning a higher misclassification penalty to the minority class,
thereby encouraging the model to focus more on detecting fraud-
ulent claims. Algorithms such as weighted logistic regression,
support vector machines with class weight adjustments, and
gradient boosting with scale-pos-weight parameters can be fine-
tuned to reflect the underlying class distribution. Another viable
strategy is undersampling, which reduces the size of the major-
ity class by removing redundant or noisy examples. Although
undersampling carries the risk of information loss, it can help
simplify decision boundaries and reduce training complexity.
Techniques like Tomek links and edited nearest neighbors (ENN)
can be applied in conjunction with SMOTE to remove noisy
synthetic examples and refine the training set. Ensemble-based
solutions such as Balanced Random Forests and EasyEnsemble
combine multiple weak learners trained on resampled datasets
to achieve more stable performance on imbalanced problems.
These alternatives, especially when used in combination, offer
robust methods for mitigating overfitting and improving fraud
detection accuracy in highly skewed datasets%, 1%,

The model’s current state suggests that further improvements
are necessary. Future approaches could involve exploring un-
dersampling methods in conjunction with or as an alternative
to oversampling. This could potentially address some of the
limitations observed with our current approach. Addressing
these challenges will require ongoing refinement and explo-
ration of alternative techniques to better handle the complexities
of insurance fraud detection.

Discussion

Impact

The integration of a machine learning model for detecting insur-
ance fraud offers substantial benefits for insurance companies.
One of the most significant advantages is the potential for con-
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siderable cost savings. Traditional fraud detection methods often
rely on extensive manual review processes, which are both labor-
intensive and expensive. By automating the detection process,
machine learning models can reduce the need for such extensive
manual interventions. This efficiency allows insurance compa-
nies to reallocate their resources more effectively, focusing on
legitimate claims and enhancing overall customer service. Addi-
tionally, machine learning models can analyze vast amounts of
data quickly and accurately, identifying patterns and anomalies
that might be missed by human investigators. This capability
not only speeds up the detection process but also improves its
accuracy, leading to more reliable fraud prevention.

Limitations

Despite the promising potential, the current machine learning
model for fraud detection has several limitations that need to
be addressed. One major challenge is its performance when
dealing with imbalanced datasets, where fraudulent claims are
significantly less frequent than legitimate claims. Such issues
can undermine the effectiveness of the fraud detection system
and lead to either missed fraudulent claims or unnecessary inves-
tigations of legitimate claims. Future research should focus on
enhancing the models ability to handle unbalanced datasets and
exploring new methodologies that can better detect emerging
fraud trends. This includes investigating advanced techniques
such as ensemble methods or deep learning approaches that
might improve fraud detection performance. Machine learning
and data science are rapidly evolving fields, and new techniques
and innovations will continually provide opportunities to en-
hance fraud detection capabilities. Developing a robust and
reliable approach to fraud detection is crucial for protecting
against fraudulent activities and ensuring insurance companies’
financial stability.

Challenges and Gaps

Despite advancements in ML and data science, several chal-
lenges and gaps persist in insurance fraud detection. The first
is data imbalance. A significant challenge is the imbalance be-
tween fraudulent and non-fraudulent claims. Fraudulent claims
are relatively rare compared to legitimate ones, which can lead
to biased models favoring the majority class. Techniques such
as oversampling, undersampling, and synthetic data generation
(e.g., SMOTE) have been explored, but addressing data im-
balance remains an ongoing challenge. On a different point,
high-dimensional data with numerous features is now quite com-
mon, but some models can handle them effectively. Identifying
relevant features and reducing dimensionality while retaining es-
sential information is crucial for improving model performance.
Techniques such as feature selection, dimensionality reduction,
and ensemble methods are used to address this issue, but they

require continuous refinement to optimize model efficacy.

The sharp drop in Random Forest performance from 82.69%
accuracy on the training set to 52.32% on the validation set
signals severe overfitting. This discrepancy suggests that the
model has learned noise and idiosyncrasies from the training
set rather than robust decision boundaries that generalize to
unseen data. Multiple factors may contribute to this overfitting.
First, suboptimal feature selection is a potential issue. The
dataset includes 30+ features, some of which are high-cardinality
(e.g., “policy_number”) or weakly predictive. Including too
many irrelevant features can cause Random Forest to create
overly complex trees that capture spurious patterns. Research
on feature importance in fraud detection indicates that pruning
or selecting the top 10-15 most predictive features (such as claim
amount, incident severity, and insured age) can lead to improved
generalization performance.

The validation recall of the Random Forest model after
SMOTE resampling was measured at 52.32 percent, which
indicates that nearly half of all fraudulent claims in the val-
idation set were misclassified as legitimate. Missing such a
large proportion of fraud cases carries serious consequences
in a real-world deployment setting, as undetected fraudulent
claims directly translate into financial losses for insurers. In
fraud detection tasks, the relative cost of false negatives is often
significantly higher than that of false positives, since failing to
identify fraud allows it to proceed unchecked, while incorrectly
flagging a legitimate claim can usually be resolved through ad-
ditional investigation. For this reason, recall is often prioritized
over raw accuracy or even precision when evaluating fraud de-
tection systems. The high precision observed (89.41%) became
meaningless when the recall (73.78%) still indicates that one
out of every four fraud cases was missed.

Model Performance Comparison: Precision, Accuracy, Recall

Wl Precision
W Accuracy
= Recall

Score (%)

An exclusive focus on accuracy can obscure critical trade-
offs between precision and recall. For example, although the
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Random Forest achieved moderate overall accuracy, its limited
recall demonstrates that the model is not sufficiently sensitive to
the minority fraud class. A more informative evaluation should
include a detailed analysis of the precision-recall trade-off. Pre-
cision measures the proportion of predicted fraud cases that are
truly fraudulent, while recall measures the proportion of actual
fraud cases that are correctly identified. In many operational
contexts, insurers may prefer models with higher recall even at
the expense of reduced precision, since investigating some addi-
tional false positives is far less costly than missing a substantial
number of fraudulent claims. By examining the precision-recall
curve or the area under the precision-recall curve (PR-AUC), the
balance between these two metrics can be more explicitly quan-
tified, helping decision-makers determine acceptable thresholds
for deployment. Now, instead of emphasizing overall accuracy,
a stronger evaluation framework should highlight the precision-
recall trade-offs and identify threshold settings that optimize
recall without rendering the number of false positives unman-
ageable. Future experimentation should incorporate threshold
tuning based on business-specific cost-benefit analyses to ensure
that the model aligns with the priorities of fraud detection in
practice.

Second, hyperparameter tuning likely played a role. The
Random Forest model may not have been optimized for pa-
rameters such as max_depth, min_samples_split, n_estimators,
and max_features. Large, deep trees with many estimators can
easily memorize the training set. Studies suggest that using
grid search or randomized search over tree depth and minimum
sample size can reduce overfitting, often with minor accuracy
trade-offs but significant validation improvement. Third, model
complexity itself is a factor. While Random Forests inherently
reduce overfitting compared to single decision trees by aver-
aging predictions, they can still overfit when the number of
estimators is very high and the depth of each tree is unrestricted.
This can be exacerbated by SMOTE oversampling, which, while
balancing the classes, may introduce synthetic data points that
mimic noise.

To address these issues, multiple mitigation strategies can
be considered. Introducing constraints such as max_depth and
min_samples_leaf can prevent overly complex tree structures.
Empirical evidence from ensemble learning studies shows that
shallow trees with carefully tuned splits yield more stable vali-
dation accuracy. Using k-fold cross-validation, where SMOTE
is applied only on the training folds, can prevent data leakage
and provide a more reliable estimate of performance. Hyper-
parameter optimization (e.g., grid search or Bayesian optimiza-
tion) should target parameters like n_estimators, max_depth, and
max_features to strike the right bias-variance trade-off.

Additionally, removing uninformative or highly correlated
variables can simplify the decision boundaries and reduce vari-
ance. Feature importance metrics from the Random Forest can
guide pruning, while engineered features (e.g., ratios of claim

amount to policy premium) can increase the models discrimina-
tive power without adding complexity. Gradient boosting mod-
els (e.g., XGBoost or LightGBM) with built-in regularization
often generalize better and handle class imbalance effectively
with customized loss functions. These models can be further
combined with cross-validation-based stacking or blending for
better performance. Finally, focusing on ROC-AUC, precision-
recall curves, and balanced accuracy instead of accuracy alone
can better capture true model performance under imbalance.
Early stopping and learning curve analysis can also identify the

point where overfitting begins 2!, 18,19,

Ethical Considerations

The application of machine learning in fraud detection raises
several ethical considerations that must be carefully addressed
to ensure fairness and avoid bias. One of the primary concerns
is the risk of disproportionate impact on specific demographic
groups. If not properly managed, the model could lead to unfair
treatment or discrimination against certain individuals. To miti-
gate these risks, it is essential to implement rigorous measures
such as regular audits of the models predictions and adjustments
based on findings. This approach helps to identify and correct
any biases that may arise during the models application. Trans-
parency is another critical ethical consideration. It is important
for stakeholders, including customers and regulatory bodies, to
clearly understand how the machine learning model operates
and makes decisions. This transparency helps maintain trust and
accountability within the system. Additionally, the model must
be designed to protect the privacy and security of sensitive data
used in its training and operation. Compliance with relevant data
protection regulations and standards is crucial to safeguarding
personal information and ensuring ethical data handling prac-
tices. By proactively addressing these ethical considerations,
the deployment of machine learning in fraud detection can be
carried out in a manner that upholds fairness and integrity. This
approach not only helps to ensure that the system is equitable
but also enhances the overall trust and effectiveness of fraud
detection efforts within the insurance industry.

Implementation and Integration

The successful integration of our fraud detection model into
existing insurance systems in the future is a crucial step in
enhancing the effectiveness of fraud prevention efforts. This
process involves aligning the model with the insurance com-
pany’s current technological infrastructure and workflows. First,
the model must be seamlessly connected to the insurance com-
pany’s data infrastructure. This requires establishing robust data
pipelines that can continuously feed the model with relevant
data. Key considerations include data sources, as they will al-
low us to identify and integrate with various data sources, such
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as claims data, customer profiles, historical fraud cases, and
external data sources like social media or public records. The
next step is implementing. Preprocessing steps to clean and nor-
malize data before feeding it into the model. This may involve
handling missing values, outliers, and data transformations to
ensure consistency and accuracy. We should also determine
whether the model will process data in real-time or in batch
mode. Real-time processing can enhance fraud detection effi-
ciency but may require a more robust infrastructure compared
to batch processing. Next, we must ensure that the model is
compatible with the insurance company’s existing software and
hardware systems. This involves developing APIs or integration
layers that allow the model to interact with other systems, such
as claim management systems, customer relationship manage-
ment (CRM) systems, and fraud detection platforms. This also
includes assessing the scalability of the model to handle vary-
ing volumes of data and transactions. The integration should
support scalability to accommodate growth in data volume and
complexity. Finally, we should implement security measures to
protect sensitive data. This includes data encryption and access
controls.

Conclusion

Summary

This study systematically evaluated the effectiveness of four
classical machine learning models, Random Forest, Logistic
Regression, Naive Bayes, and Gaussian classifier, for detecting
auto insurance fraud using a compact dataset (=700 records,
25% fraudulent). SMOTE was applied to address class imbal-
ance, and performance was assessed across a suite of metrics:
accuracy, precision, recall, F1 score, ROCAUC, and confusion
matrices. The Random Forest delivered an 82.7% training accu-
racy, 89.4% precision, and ROCAUC of 0.88, but its validation
performance plummeted to 52.3% accuracy, 57% precision, 52%
recall, and ROCAUC of 0.53. Such drastic degradation reveals
that the model overwhelmingly memorized training data without
generalizing to unseen cases.

Quantitative findings from this analysis align closely with
peer-reviewed literature that highlights SMOTESs propensity to
artificially inflate performance in training while undermining
validation quality, particularly in small or high-dimensional
datasets. Scholarly investigations show that synthetic samples
generated by SMOTE may distort minority-class distributions
and misrepresent class boundaries when data are sparse or nois-
ily clustered, ultimately facilitating overfitting.

These metrics carry critical implications. First, models that
excel in training do not necessarily yield operational value. Poor
validation recall (52%) means nearly half of fraudulent claims
would go undetected in deployment. Second, SMOTE alone
may introduce synthetic noise rather than meaningful minority-

class structure, especially when feature overlap or sparsity is
present. Third, classical models without explicit regulariza-
tion or ensemble hybrid strategies struggle to generalize when
trained on SMOTE-augmented datasets, as documented in prior
studies on SMOTEs limitations in high-dimensional spaces
([turnOsearch3]). Indeed, logistic regression or KNN models
can even be biased toward synthetic samples when SMOTE is
applied naively.

Beyond performance metrics, practical deployment risks in-
clude operational overload from false positives, customer dissat-
isfaction, and regulatory scrutiny, issues compounded when ex-
planations of predictions are absent. Unlike the more transparent
mode, looking ahead, several concrete steps could substantially
enhance model performance and address the limitations revealed
in this study. First, applying hybrid resampling techniques,
specifically SMOTEENN or SMOTETomek Links, can reduce
the synthetic noise introduced by SMOTE alone. Peer-reviewed
work in medical diagnostics shows that integrating SMOTE with
Edited Nearest Neighbor (ENN) significantly improves classi-
fier performance by synthesizing minority instances and then
removing noisy borderline samples, restoring better class sepa-
ration while enhancing metrics like MCC and Flscore. Second,
incorporating regularization and pruning strategies in model
training, such as limiting maximum tree depth, imposing mini-
mum samples per leaf node, or applying L1/L2 penalties, can
further restrain model complexity and reduce overfitting when
training data are scarce or imbalanced. Third, imbalance-aware
ensemble approaches, like KMeans SMOTE+ENN combined
with boosting or bagging, have proven effective at handling
noise and preserving minority-class signal in highly skewed data
contexts. Fourth, blending supervised and anomaly-detection
frameworks, for example, augmenting classifiers with isolation
forests or autoencoder-based outlier detectors, may help flag
fraudulent cases implicitly, especially useful in label-sparse con-
ditions. Fifth, emphasizing explainability tools, such as SHAP,
LIME, and permutation importance within ensemble or stacking
pipelines, provides interpretability and transparency crucial for
regulated environments like insurance. Lastly, extending the
dataset, either by accessing larger, more representative claim
records or incorporating unstructured data such as incident de-
scriptions or images, can support more sophisticated modeling
(e.g., multimodal fusion) and improve generalization.

By systematically adopting these enhancements, like hybrid
resampling, regularization, advanced imbalance-aware model-
ing, anomaly detection integrations, explainable Al frameworks,
and richer data inputs, future efforts could markedly boost recall
and precision without sacrificing robustness. These refinements
would yield a fraud detection system that is not only statistically
reliable but also operationally viable and ethically defensible
in real-world insurance workflows. Like explainable gradient
boosting frameworks (e.g., SHAP-enhanced XGBoost), the clas-
sical methods used here offer limited interpretability, an impor-
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tant drawback in a regulated domain. Despite these limitations,
the study contributes significantly by transparently documenting
key failure modes associated with classical models and SMOTE-
based imbalance correction in resource-constrained settings. It
provides a cautionary benchmark: strong training performance
is insufficient without robust validation results and appropriate
imbalance-handling strategies.

Limitations and Future Work

Considerably, however, the biggest challenge is to adjust and use
hyperparameter tuning. To optimize each model’s performance,
hyperparameter tuning was conducted. This process involved
systematically exploring different hyperparameter settings to
identify the optimal configuration for each model. Techniques
such as grid search and random search were employed to find
the best hyperparameters, improving the models’ effectiveness
and accuracy. For example, in a Random Forest model, tuning
parameters such as the number of variables can help. For exam-
ple, we can see which variables are most and least important,
and get rid of those that dont matter. The graph given shows the
importance of different columns/variables in the training set.

Moving beyond the limitations of classical models on small,
imbalanced datasets, future research should explore gradient
boosting methods, particularly XGBoost and LightGBM, which
have consistently outperformed traditional classifiers in auto-
insurance contexts. For instance, Lu (2024) and Meng et al.
(2020) both demonstrate that XGBoost, when properly tuned,
yields significantly higher accuracy and AUC than Random For-
est, Support Vector Machines, and Logistic Regression, even
under severe class imbalance (accuracy gains of 3-7%). En-
hancing this approach, the PSO-optimized XGBoost framework,
combined with SHAP interpretability, achieved approximately
95% detection accuracy with substantially improved generaliza-
tion ([Insurance: Mathematics & Economics, 2025]).

In addition, deep learning architectures, including convo-
lutional neural networks (CNNs), recurrent neural networks
(RNNs), and autoencoders, offer promising avenues for im-
proved fraud detection when feature overlap or unstructured
data is present. Peer] Comput. Sci. (2024) shows a hy-
brid CNNSVM/KNN model leveraging deep feature extraction
achieves ({98% accuracy in mixed auto insurance and credit-
card fraud contexts by handling data imbalance via adaptive
sampling. Related work with autoencoder-enhanced LightGBM
(AEELG) on imbalanced credit card datasets demonstrated a
recall of 94% and uplifted F1, AUC, and MCC over standalone
methods.

Furthermore, integrating hybrid imbalance-handling strate-
gies can help reduce overfitting while reinforcing the minority-
class signal. As outlined in recent peer-reviewed surveys, meth-
ods like SMOTEENN and SMOTETomek are empirically shown
to outperform plain SMOTE in generalization by removing bor-

derline noise, especially in high-dimensional feature spaces
common in fraud datasets. Beyond resampling, combining su-
pervised learning with anomaly detection frameworks such as
isolation forests, variational autoencoders, or hybrid ensembles
can significantly improve detection in label-scarce environments.
Models like XRAI, which blend a traditional classifier with
unsupervised outlier modules, achieved near-perfect accuracy
(~99.98%) and AUC in financial fraud detection tasks, suggest-
ing a robust path forward for auto-insurance settings.

Lastly, further work should enhance explainability and op-
erational integration using tools such as SHAP, LIME, or per-
mutation importance. The PSOXGBoost study underscores
how explainability can accompany high model performance, in-
creasing regulatory acceptance and trustworthiness in actuarial
environments. Taken together, a refined roadmap for future re-
search includes: employing finetuned gradient boosting models,
deep learning for multimodal or extracted features, more ro-
bust imbalance correction techniques, hybrid anomaly detection
pipelines, and transparent, interpretable outputs. This layered
approach promises to produce a fraud detection system that
balances accuracy, generalizability, and real-world deployment
integrity.
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