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Despite the consequence of species going extinct not currently being visible, its impact in our future can be devastating to
biodiversity, ecosystem stability, and our own society. Predicting extinction rates and identifying the primary causes of a species
decline are crucial first steps to improving our conservation efforts. An accurate understanding and insight into factors driving
species extinction can equip conservationists with the tools needed to preserve endangered species. As the number of extinct
species continues to rise, a variety of issues become apparent. As species decline, so does biodiversity. With reduced biodiversity,
many species — and by extension humans — could suffer from reduced resilience, causing us to be more easily influenced by
diseases and climate change. To protect species at risk of extinction, conservationists need to identify which species are most
vulnerable by understanding the factors that drive their decline. Utilizing AI models is a crucial first step in this process. This
study utilizes the Random Forest Regressor model, trained on Animal Information Dataset published on Kaggle containing
characteristics across a range of species, to help conservationists understand which species are at a greater risk of extinction''. To
ensure robustness, our model was tested using k-fold cross-validation to calculate RMSE values, such as those for the Amur Tiger
and Alaotra Grebe being 2.94 and 8.85 years respectively. The model provides a relative timeline for species decline, allowing
conservationists to more strategically allocate their resources. This paper explores the development of a prediction model designed

to predict extinction rates, ultimately aiding conservationists in their efforts to protect endangered species.

Introduction

The decline and eventual extinction of species has become a
major issue in modern times. A variety of species have gone ex-
tinct recently; some such species being the Alaotra Grebe which
went extinct back in 2012, the Bramble Cay Melomys in 2016,
and the Maui Akepa in 201823, The permanent loss of species
can lead to ecosystem destruction which can cause irreversible
damage to our planet and negatively impact our lives. Due to the
structure of ecosystems, every species has a role to play, such
as in food production and resource accessibility, making their
extinction have a direct negative impact on us. When a species
goes extinct, they cause an imbalance in the food chain. The
predators that used to consume them now have a reduced food
source, which could lead to their starvation. Without natural
predators, prey can grow uncontrollably, leading to imbalances
in the ecosystem. As the number of species declines, so does
biodiversity®. With reduced biodiversity, many species — and
humans — could suffer from reduced resilience, causing us to be
more easily influenced by diseases and climate change. Some
human-induced extinction factors include climate change, pollu-
tion, and changes in habitat”. Understanding these factors is key
to understanding extinction events. Not all extinction factors
are man-made, yet people can still mitigate their effects. For
example, an abundance of predators, a lack of resources, or the
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inability to reproduce all play significant roles, and are a few
examples of natural extinction causes.

Many modern prediction models related to extinction predic-
tion focus mainly on a very specific species®. An underworked
part of extinction prediction models is creating a general model
that could give extinction dates for a variety of animals. Unlike
standard extinction prediction models that focus on a single
species, this model uses a multi-species dataset to predict ex-
tinctions across a wider taxonomic range.

Related Works

Comparative studies have shown species traits can be associated
with extinction risk2. Across taxa, characteristics such as off-
spring production, taxonomic group, and social group size have
correlations with extinction risk”. These results helped narrow
down our search for datasets when deciding on characteristics
to utilize for training the model.

Knowing this, past research has been done to approximate
the International Union for Conservation and Nature (IUCN)
Red Lists threat categories for species that are Data Deficient®.
Approaches typically tend to combine traits to identify species
that are most at risk, using feature importance to drive their
predictions .

This paper seeks to follow trait-based ML predictions but in a
different way: developing a general species extinction prediction
model’s to predict lifespans rather than TUCN statuses"?.
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Methods

To predict the extinction date of species, there are several key
steps. Firstly, identifying the best type of model for the most
accurate prediction. Next, collecting proper data to make accu-
rate predictions. Lastly, training the model on the data to predict
their relative extinction date.

To decide on the best type of model, a variety of different
models were researched to better understand their pros, cons,
and varying use cases. After understanding multiple different
models such as XGBoost, K-Nearest Neighbors (KNN), and
Linear Regression, the model that was chosen for this research
was the Random Forest Regressor model 112,

Unlike some of the previously mentioned models, Random
Forest Regressor excels at handling smaller amounts of data,
whereas Linear Regression which might underfit due to its sim-
plicity or XGBoost which can overfit due to recognizing quirks
rather than general patterns' '3, In addition, it excels at han-
dling large amounts of categorical data where other models such
as Linear Regression and KNN struggle! !4, Finally, due to
its use of multiple decision trees, it is able to more easily simu-
late complex ecological relationships by better accounting for
various characteristic combinations compared to other model
types.

In short, RandomForestRegressor splits testing data into sev-
eral decision trees, unlike other models that just rely on one
decision tree. By using multiple decision trees and comparing
them to one another, the model enhances its ability to make
accurate predictions'l. Then, when the model is supplied with
data, it can compare the input data with the preprocessed data to
find patterns to make predictions of the expected outcome.

To make predictions, adequate data on the topic is needed.
After extensive searching, we selected the dataset, Animal In-
formation Dataset, published by Sourav Banerjee on Kaggle, an
online platform used for data science competitions that simul-
taneously hosts a large library of free use data. This specific
dataset was chosen as it contained 16 characteristics spanning
206 species which would allow the model to be usable in a
general setting. The dataset spans a wide range of taxa — such
as mammals, reptiles, birds, and aquatic species — allowing the
model to train on a diverse set of ecological traits. However, a
majority of the data have lifespans under 30 years which could
overrepresent short-lived species.

The data is often unusable in its base form, as it is not tai-
lored towards the model. As such, preprocessing the data is
required. In the end, the columns that remained, which rep-
resent the training characteristics, were Animal, Height (cm),
Weight (kg), Color, Lifespan (years), Diet, Habitat, Predators,
Average Speed (km/h), Countries Found, Conservation Status,
Family, Gestation Period (days), Top Speed (km/h), Social Struc-
ture, and Offspring per Birth. These characteristics can be found
in Figure[I] The model utilizes these combined characteristics to

A 8 c D 3 F G H
Height(cm)  Weight(kg)  Color Lifespan (years) Diet Habitat
105-130 40+ Grey 23 Insectivore Savannas, Grasslands

Predators
Lions, Hyenas

1 |Animal
Aardvark

3 Aardwolf 40-50 814 Yellow-brown 8 Insectivore Grasslands, Savannas  Lions, Leopards

4 African Elephant 270310 27006000 Grey 65 Herbivore Savannah, Forest Lions, Hyenas

5 | African Lion 80-110 120250 Tan 12 Camivore Grasslands, Savannas  Hyenas, Crocodiles
6 | African Wild Dog 75-80 1836 Multicolored 11 Carnivore Savannahs Lions, Hyenas

7 Alpine Ibex 67-101 19120 Brown 12 Herbivore Mountains, Alpine Wolves, Golden Eagles
& Amazon RainforestFrog 2-13 Upto05 Various. 4 Insectivore Amazon Rainforest Birds, Snakes.

9 | American Bison 152-186 3181000  Brown 17 Herbivore Grasslands, Plains Wolves, Grizzly Bears
10 Anteater 5201 22-41 Brown, White 13 Insectivore Grasslands, Forests. Jaguars, Pumas.

11 Arabian Horse 140-160 3801000 Various 27 Herbivore Middle East, North Africa  Humans, Predators
12 Arabian Oryx 70-90 65-90 White 17 Herbivore Desert Lions, Leopards.

13 Arctic Fox 2530 259 White 5 Omnivore Tundra Polar Bears

14 Arowana Upto120  Upto67 Sitver, Gold, Green 13 Camivore, Piscivore  Freshwater Rivers, Lakes  Birds, Larger Fish

15 Astan Elephant 200300 20005000 Grey 60 Herbivore Grasslands, Forests Tigers, Leopards

16 Atlantic Puffin 2530 500-620 Black, White 23 Camivore, Piscivore  North Atlantic, Arctic Gulis, Birds of Prey
17 Atiantic Spotted Dolphin 200-250 120-140 Gray, White 25 Carnivore Oceans, CoastalAreas  Sharks, Orcas

18 Australian Fur Seal 112-160 1840 Brown, Gray 20 Camivore Coastal Waters Sharks, Orcas

19 Axolott Upto30 Upto300  Various 13 Carnivore Lakes, Canals Fish, Birds

20 Aye-hye 35-37 2227 Black, Brown 15 Omnivore, Insectivore  Rainforests Birds of Prey

21 Baird's Tapir 76-107 150-400 Brown, Black 27 Rainforests, Grasslands  Jaguars, Crocodiles
22 BaldEagle 70-102 36 2 Forests, Lakes, Coasts  Wolves, Raccoons
23 Banded Palm Civet a7 25 13 Forests Birds of Prey

24 Barbary Macaque Upto75 513 17 Forests, Mountains. Leopards, Eagles

25 Basking Shark Upto1100 400700 25 e Oceans Orcas, Great White Sharks
26 Bearded Dragon Upto60 Upto600 10 Omnivore Deserts, Woodlands Birds, Snakes.

27 Bengal Fox 35-40 254 Yellowish-gray 9 Omnivore Grasslands Wolves, Birds of Prey

28 Bengal Tiger
29 BlackRhinoceros
30  Blobfish
31 Blobfish

90-110 Orange, Black 13
132-180 Gray, Black 43
Upto30 Upto10 Pinkish-gray 35
NotApplicable NotApplicable Pinkish-gray ES
32 Bluelay 2230 007012 Blue,White 8

33 |Blue Morpho Butterfly  Upto 15 Upto0.028  Blue 05

Fig. 1 Re-formatted data from Animal Information Dataset published
by Sourav Banerjee on Kaggle.

Camivore

Grasslands, Mangroves  Humans, Crocodiles
Lions, Hyenas
NotApplicable
NotApplicable
Birds of Prey, Snakes
Birds, Bats

Herbivore
Camivore
Camivore
Omnivore
Herbivore

Grasslands, Forests
Deep-sea

Deep-sea

Forests, Urban Areas
Rainforests

formulate accurate predictions. In addition to removing certain
unnecessary columns, minor edits to the data were necessary
to ensure usability such as removing hyphens for certain char-
acteristics, changing capitalization, and other small data fixes.
Feature engineering steps were taken to remove all null values
from the data, re-format categorical inputs (e.g. USA and US),
and apply one-hot encoding to avoid ranking categorical data
in a similar style to numerical values'>''®, When using data to
make predictions, it is also important to classify pieces of data
as numerical or categorical. Numerical is data that uses num-
bers (integers & floats), while categorical uses words (strings).
The model must know which characteristics use numerical and
categorical, as the model treats them differently when making
predictions. Numerical data can be compared much more eas-
ily, as the model can easily compare different numbers to each
other. Since the model used in this research was Random Forest
Regressor, which utilizes decision trees which are not sensitive
to feature magnitude, no feature scaling was used.
Scikit-learn version: 1.6.1 was used with the default hyperpa-
rameters, some of which included n_estimators: 100 (number
of trees), criterion: squared_error (how splits are evaluated),
min_samples_split: 2 (minimum samples needed to split a node),
and many others'>. While this study did not focus on hyper-
parameter tuning due to the purpose of the research being to
identify the feasibility of a general extinction prediction model,
future work could explore optimizing these values to further
improve accuracy in the model’s predictions. Categorical data
is treated differently as words cannot be compared with one
another the same way numbers can. Assigning numerical val-
ues to countries could help improve accuracy. For example,
assigning the US and USA the value of 1 can help to classify
the United States of America as just one piece of data, rather
than two pieces of data, as in categorical terms, the US and
USA would act as different values despite meaning the same
thing. Accurately classifying data as numerical and categorical
before running the model can significantly boost the model’s
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accuracy. In this study, one-hot encoding was utilized to prevent
the implicit ranking of categories.

Not all the data is used to train the model. The data is split
into a training and testing category. By using all the data on
training, the prediction model may be too rigid, and struggle
making predictions when the input data is not what is directly
from the training data. This is known as overfitting and can lead
to very inaccurate predictions due to the model not being flexi-
ble enough to make accurate predictions. Underfitting, on the
other hand, works in the opposite way. Using too little training
data can cause the pattern recognition to be weak, causing the
model’s accuracy to suffer. The most common train-test splits
are 80% train and 20% test, 67% train and 33% test, and 50%
train and 50% test'Z. Finding a balance between splitting the
training and testing data is key to accuracy and consistency of
the model. When running the model, the model trains using
the training data, and then tries making predictions using the
testing data, checking its predictions with the actual values of
the testing data.

To make predictions of species expected extinction dates,
there are a series of steps that need to be taken. Firstly, it is
necessary to separate the characteristics into X and Y datasets.
The Y represents what information that is being predicted, and
in this case, the lifespan of the species, as that can be used
to predict extinction dates using basic math. The rest of the
characteristics mentioned earlier were put into the X list. As
previously mentioned, the X and Y datasets were split into
training and testing data. After testing the model, a split of 80%
training data and 20% testing data worked best for this specific
experiment when trying to make accurate predictions. Then the
training data is used to fit the model, causing the model to learn
about the data and create the patterns mentioned earlier. Now,
when inputting new data (all characteristics mentioned earlier
excluding lifespan) about animals not previously in the dataset,
the model can recognize patterns in the data to give estimations
about expected lifespans of certain species. With the predicted
lifespan, the following information can be calculated:

* Death per year = Population / lifespan

* Birth Per Year = Offspring Per Birth * #Of Times Repro-
ducing Per Year

» Rate of Change of the Population of Species = Births Per
Year - Deaths Per Year

With this information, it is possible to graph an exponential
equation which can represent the population of species by using
the equation

Future Population = Current Population x Growth Rate™™®

where the X-axis represents time and the Y-axis represents the
population. There are two methods that can be employed to

check for accuracy of the model, checking the root mean squared
error (RMSE) or the R-squared value. The mean squared error
is a way of quantifying the overall error of the model. To do this,
it averages the squared differences between the predicted and
actual values of the model. By utilizing sklearns cross_val_score
function, we were able to calculate the RMSE value for both
species. This was done by performing 10-fold cross-validation
and computing the negative mean squared average for each
fold, before averaging those results and taking the square root
to obtain the RMSE' 720 For the Amur Tigers and Alaotra
Grebe graphs that are shown in the Results section of this paper,
the RMSE values of 2.94 and 8.85 were obtained respectively.
Considering the lifespan range in the dataset spanned from 0.25
to 125 years, an error of 2.94 and 8.85 years is a relatively small
portion of the total range. This suggests that the model performs
well when predicting species lifespans. The R-squared (R?)
value measures the amount of error that can be explained by
the independent variables'®. By using scikit-learns r2_score
function, the R? value was calculated as one minus the sum
of squared differences between the predicted and actual values
divided by the sum of the squared differences between actual
values and their mean. An R? value closer to 1 shows that the
model accounts for a greater variance in the data, while a value
closer to 0 shows that the model performs the same as predicting
the mean. For the Amur Tiger and Alaotra Grebe, they got an R?
of 0.84 (83.76%) and 0.85 (84.67%) respectively. This signifies
that in both cases, the model explains over 83% of the variation
in lifespan, demonstrating a strong prediction.

Since the RMSE and R? values highly depend on the training
data, prediction parameters, and range of values, comparing
them across models can be misleading. As such, a direct com-
parison between these values was avoided in this study"?.

Results

To test the Random Forest Regressor model, the extinction dates
of multiple species were predicted to test for accuracy and valid-
ity. The Amur Tiger (otherwise known as the Siberian Tiger) is a
species of tiger that is currently critically endangered. Based on
prediction trends, the Amur Tigers were expected to go extinct
around the year 2055 as shown in Figure 2] Due to the graph’s
exponential shape when relating time and population, the pop-
ulation numbers will never reach 0. However, estimations can
be made on when species may go extinct based on how low
their populations become. Based on all the tested characteristics
being input to the model, the Amur Tigers are predicted to go
extinct around that time frame, unless major action gets taken
to support them. To validate these findings, two series of tests
were run.

The first test took the Amur Tigers population from 15 years
ago, and tried to predict its current population, assuming none
of the factors affecting their growth or decline changed. This
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Predictions for new data (Lifespan in years): [13.89]
Average RMSE: 15.50090171984073

R2 score (variance explained): 0.8783750766361967
Percent variance explained: 87.83750766361968

Predicted Decline of Amur Tigers

100 —— Population Over Time

Population

2030 2040 2050

Fig. 2 Graph showing predicted population of Amur Tigers over the
span of 50 years

2060 2070

Predicted Decline of Amur Tigers

—— Population Over Time

300
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Population

150

100

2010 2012 2014 2016 2018

Fig. 3 The graph shows the predicted population of Amur Tigers in the
modern day based on data from 15 years ago

2020 2022 2024

graph shows that by following the trend of their population 15
years ago (325 Amur Tigers), a prediction can be made for the
present day: there should be roughly 100 tigers left.

The second test tried to predict the rough extinction date of
an already extinct species. To do this, a prediction was made for
the Alaotra Grebe, a species of bird which unfortunately went
extinct in 2012. Their population from 50 years ago was taken
and used to predict their population to find when they may go
extinct. Based on the exponential curve, a safe prediction is that
their species may go extinct around 2015, as that is when their
population numbers become dangerously low. With their actual
date of extinction matching the predicted extinction, it is safe
to assume that the model is relatively accurate when predicting
extinction risk of species.

Luckily for Amur Tigers, Russia has been making conserva-
tion efforts to increase their population. Russia’s efforts have
been effective, as in recent times, the Amur Tiger population

Predicted Decline of Aloetra Grebe

— Population Over Time

Population
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g 3 8 3 s

&

~N
°

1980 1990 2000

Years
Fig. 4 Graph showing how accurate the model is by predicting the
relative extinction date of the Alaotra Grebe, an already extinct species

2010 2020

Predictions for new data (Lifespan in years): [30.88]
Average RMSE: 15.400797653545942

R? score (variance explained): 0.8539628950421485
Percent variance explained: 85.39628950421485

Predicted Decline of Sumutran Orangutans
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o
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Years

2060 2070

Fig. 5 Graph showing predicted decline of Sumatran Orangutans 221

has been steadily increasing. However, if Russia did not take
the appropriate measures to maintain the tigers safety, these
graphs reveal some potential scenarios that could have taken
place. Figures 5 - 8 show example graphs of various species’
predicted population over time graphs. In addition, understand-
ing the factors behind species extinction is equally as important
as understanding relative extinction dates. While analyzing
the driving factors that led to reduced populations, feature im-
portance revealed how the species family (e.g. Elephantidae,
Felidae, Canidae, etc.), number of offspring per birth, and color
were the strongest characteristics that drove extinction®. In
contrast, traits such as social structure (solitary, herd-based, or
group-based), top speed, and average speed had minimal effects
relative to other characteristics when determining overall popu-
lation extinction'’’2>, These results suggest that ecological and
reproductive factors play a more critical role than raw physical
or behavioral traits in determining species survival.

While some features may be biologically important in survival
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Predictions for new data (Lifespan in years): [23.96]
Average RMSE: 15.369476947792808

R2 score (variance explained): 0.874906552697598
Percent variance explained: 87.4906552697598

Predicted Decline of Philippine Eagles

100 —— Population Over Time
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2030 2040 2050

Years

2060 2070

Fig. 6 Graph showing predicted decline of the Philippine Eagles222

Predictions for new data (Lifespan in years): [19.88]
Average RMSE: 15.59862665940624

R? score (variance explained): 0.8617747939338889
Percent variance explained: 86.1774793933889

Predicted Decline of Vaquitas

100 —— Population Over Time
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2060 2070

Fig. 7 Graph showing predicted decline of the Vaquita'l2'23

such as social structure or speed, due to those traits showing re-
duced relative importance in this dataset, it may imply that there
may be limitations in the data rather than those characteristics
true ecological role.

Discussion

This research showcases the feasibility of a general prediction
model, specifically Random Forest Regressor, to predict ex-
tinction risk across a diverse range of species. The models
alignment with both historical extinction (e.g. Alaotra Grebe)
and future risk species (e.g. Amur Tiger) suggests accurate
predictive findings.

The consistency between the model’s predictions and real
world conservation efforts (e.g. Russia’s emphasis on Amur
Tiger conservation) support the models accuracy. However,
these results suggest correlations between characteristics and

Predictions for new data (Lifespan in years): [56.02]
Average RMSE: 15.450944580227329

R? score (variance explained): ©.7937016406663014
Percent variance explained: 79.37016406663014

Predicted Decline of Kakapo
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Fig. 8 Graph showing predicted decline of the Kakapo2/24

extinction risk and are not meant to be used without proper
ecological expertise. Additionally, the model’s ability to pre-
dict across taxa is promising, but species-specific traits and
unique ecological dynamics can still cause significant predictive
error?2%, While the model itself showcases reasonable accu-
racy in predicting the extinction date of species, it is difficult
to compare it to a species-specific model as they serve distinct
purposes. A species-specific model is specialized for a single
organism and can produce higher accuracy predictions at the
cost of time. A general model such as this one, on the other hand,
can significantly reduce the time taken to make predictions on a
wide range of taxa, allowing for better scalability, at the cost of
reduced accuracy.

However, despite the model being accurate for many species,
there are still several limitations that should be considered. One
main factor is the variability in species ecosystem interactions.
While the model does incorporate multiple biological factors
such as reproductive rate, diet, and social structure, some species
have unique biological responses that may potentially influence
its extinction path in ways that may not be captured by the
model. The model might oversimplify or completely omit cru-
cial interactions between species, food accessibility, or disease
prevalence which can vary widely even within a single habitat.

Additionally, the availability of data also posed serious limi-
tations. Due to the limited data available to use, the model was
most accurate when predicting the lifespan and extinction date
of species with certain traits. When binned by lifespan, species
with short lifespans (under 30 years) had a mean absolute error
(MAE) of 1.21-1.53 but increased to 2.06 for species between
ages 30 and 60 and increasing all the way to 7.01 for lifespans
greater than 60 years. When creating bins based on conservation
status, (e.g., least concern, critically endangered, etc.) the MAE
was lower (0.96) when predicting species in more common cat-
egories (least concern) when compared to those in threatened
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categories (e.g. Endangered: 2.25 or Vulnerable: 2.49). Many of
these skews in prediction accuracy can most likely be attributed
to the dataset having more available species in those specific cat-
egories, allowing for stronger predictions in those areas. Finally,
due to the model having a set number of factors it is checking
for and using to make predictions, it is difficult to account for
unforeseen variables such as the impact of conservation areas,
habitat loss/expansion, or natural disasters.

The potential impact of these findings can be used to highlight
the role of predictive modeling in conservation biology. The
ability to anticipate extinction timelines for species allows for
preemptive action. By utilizing the insight of machine learning
models, resources can be better allocated to more effectively
and efficiently support species when needed. Models such as
this one can add a data-driven perspective that complements
conservationists expertise, helping to identify species that may
experience rapid population declines without the proper support.

This study’s model functions as an early warning system
rather than a surefire predictor on species extinction risk. This
model can act as a tool for biologists to use, complementing
conservationists skills to better understand extinction trends.
The predictive data generated can support the hypothesis that
certain species are at a high risk of extinction. There are a few
improvements that could be made to this project. Keeping track
of more recent environmental impacts would greatly increase
the accuracy of the prediction results. By incorporating factors
relating to human impact such as global warming, pollution, and
other modern factors, the results could be greatly influenced.
With the increase in characteristics, the model would become
more complex. In return, it would have increased accuracy
as the model would be able to recognize patterns in the data
more easily. By including additional factors, the model can
better reflect the complex intricacies of modern environmental
issues. Additionally, being able to link the predictions with
real time systems such as satellite data could be used to make
more dynamic predictions. By accounting for current weather
conditions, changes in environments due to - deforestation, tem-
perature rises, and increased sea levels - as well as monitoring
the effect of protected areas (such as national parks, nature
reserves, and wildlife sanctuaries) versus non-protected areas
(wilderness), the real time systems would allow conservationists
to immediately react to environmental changes.

As shown by the data, it is possible to create a general model
that can predict the lifespans, population, and extinction risk
of species. It was possible to decide which model was the
most effective by running practice simulations and testing. By
training the model with data that was preprocessed, predictions
were made on the lifespan, population numbers, and extinction
risk of declining species. Finally, it was possible to cross-check
the work by running an additional series of tests to validate the
findings.

This research may prove beneficial to conservationists, as

they can better allocate their conservation efforts to species
that have a greater risk of extinction soon, allowing a more
effective conservation effort regarding endangered species. As
most modern prediction models are hyper-focused on a specific
species in a small sub-region on the globe, this model strives to
give an accurate, and more general, prediction for any species.
Due to the current dataset having such limited information, the
predictions for lifespans may not always be accurate, especially
when species lifespans are too long or too short, as the current
dataset does not have enough species with lifespans in those
ranges to use as training data. As a result, when the model tries
to run a simulation, the outcomes may be different than expected
which could lead to inconsistencies while predicting extinction
risk.
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