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Ever since the first discovery of an exoplanet in the 1990s, there has been an abundance of exoplanet research and discovery as
more bodies are being detected with better technology. The goal of the research is to develop a machine learning model that can
predict whether an observation is a candidate for an exoplanet or not. It is important because discovering more exoplanets could
lead to better research on exoplanets. Using python and python libraries, we created a model that would be able to predict whether
an observation was a candidate for an exoplanet based on the characteristics of the exoplanet. The model was trained using data
from the NASA exoplanet database with 9564 unique values. The final model was able to produce an accuracy of over 80% of
classifying whether an observation was an exoplanet or not, while being able to analyze a large data set over a short period of time.
With the inclusion of more characteristics or data points, the model could be further improved to be more accurate. However,
even with just two input features, which were selected based on domain knowledge, it is possible for the model to be above 80%

accurate. This is revealed through the feature importance plot created for the RandomForestClassifier model.

Introduction

Planets outside of the solar system are a great subject of study
in astronomy, and have been studied intensely over the past few
decades. The first ever exoplanet around a solar like star was
discovered by Mayor and Queloz in 1995, Many missions,
including the Kepler mission hunted for planets in the Milky
Way Galaxy. The Kepler mission, a space based telescope
observing in visible light, was launched in 2009 by NASA,
and it was created to analyze and monitor planetary candidates
that were earth-sized. Over a thousand confirmed candidates
were found, hundreds of Earth-sized planetary candidates were
discovered, and Earth-sized planets in the habitable zone were
detected?. The mission was also NASA’s first exoplanet mission,
and transits were used to monitor 100,000 main sequence stars
over 3 and a half years. This mission showed that our galaxy
contained billions of exoplanets, which could hold life",

This information allows scientists to put into perspective the
frequency of exoplanets in our galaxy, and the possibility of
discovering an exoplanet that is habitable grows larger. Thus, the
ever growing demand and field of discovering exoplanets can be
further improved with help from machine learning, as machine
learning provides a way to quickly sort through information
and data in a way that humans are unable to. The application
of machine learning can make the discovery and analysis of
exoplanets much easier, quicker, and more cost-efficient. This
information can then be put to use to discover life beyond Earth,
discover more about our solar system.

An exoplanet candidate is one that is a likely planet discov-

ered by a telescope but not yet proven to exist. The major-
ity of exoplanet candidates are discovered through the “transit
method”. In this case, the light from the star is temporarily
obscured by a planet passing in front of it, in many cases only
a small fraction (few parts in a thousand). The Kepler space
telescope, and more recently, the Transiting Exoplanet Survey
Satellite (TESS) are examples of space-based missions that
used the transit technique, and led to thousands of exoplanet
candidates. TESS data has been used to confirm long orbital
period exoplanets, allowing for a more accurate database®. A
confirmed exoplanet is one that is verified with two additional
telescopes, and thus more observations are needed to deter-
mine whether an exoplanet is confirmed or not. Sometimes, the
“signal-to-noise” ratio is very low, meaning that the light curve
has strong noise usually due to the faintness of the star. In these
cases, other techniques are needed to confirm an exoplanet. For
example, the radial velocity technique may be used after the
initial discovery to confirm that the star is being gravitationally
“wobbled” by a planet in the orbit. In order to do this manually,
however, it would be more costly and time consuming. There-
fore, in order to boost the efficiency of determining whether
an observation can actually be a confirmed exoplanet, machine
learning can be used. Artificial Intelligence has already been
applied to inferring star rotation patterns through deep learning,
showing the effectiveness of machine learning in handling large
amounts of data. Additionally, convolutional neural networks
(CNNs) have been used to separate eclipsing binaries and false
positives from planet candidates®. The problem we worked
with was a supervised classification problem of developing a
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machine learning model that can predict whether an observa-
tion is a real candidate for an exoplanet. The machine learning
model classified observations as either candidate, confirmed,
or false positive. The numerical data from NASA’s database
was collected through the Kepler mission. While similar studies
mentioned above apply machine learning to astronomical data
and may be more accurate, the methodology used in this study
is simpler and much more efficient in how it works.

Dataset

The dataset used for this project is the NASA and Caltech exo-
planet dataset. The data was collected from the Kepler mission
which discovered thousands of planets in the solar system™’.
There are 9564 unique, numerical values gathered in the dataset.
In order to characterize the dataset, several histograms and a
scatterplot were plotted, which are shown in Figures 1-4.
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Fig. 1 The blue is the distribution of false positives, and the orange of

true planets. The blue line shows that a common period in the false

positives is simply a year (365 days), which imprints onto the dataset.

The 9564 objects were classified as either a ‘CONFIRMED’,
‘CANDIDATE’, or ‘FALSE POSITIVE’ exoplanet in the
‘koi_disposition’ column. The data set also provided charac-
teristics of each entry, including orbital period, transit duration,
and others. To preprocess the data, only certain columns per-
taining to the research question were studied. The included
columns are: koi_disposition: Exoplanet Archive Disposition,
koi_period: Orbital Period [days], koi_timeObk: Transit Epoch
[BKID], koi_impact: Impact Parameter, koi_duration: Transit
Duration [hrs], koi_depth: Transit Depth [ppm]. koi_prad: Plane-
tary Radius [Earth radii], koi-teq: Equilibrium Temperature [K],
koi_insol: Insolation Flux [Earth flux], koi_model_snr: Transit
Signal-to-Noise, koi_steff: Stellar Effective Temperature [K],
koi_slogg: Stellar Surface Gravity, koi_srad: Stellar Radius [So-
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Fig. 2 The number of false positives increases with transit depth since
false positives are dominated by brown dwarfs and low mass stars,
which are larger and can block more stellar light. The difference in
distributions here motivates the use of machine learning in this study,
since previous assumptions may be biased towards larger transit
depths, which are easier to detect.
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Fig. 3 The bimodality of the false positive distribution can be
explained by the large number of false positives in Figure[I] that have
supposed year-long periods. This is also correlated to the large number
of false positives in Figure 2] that show deep transits, which indicate
large radii. Both of these are false and, if misinterpreted, would point
to two very different planetary populations.

lar radii], koi_kepmag: Kepler-band [mag]. Entries without
data were filled in with the average value of that column. This
was chosen as to not throw out many rows of useful data, and
the Gaussian trend of many features justified this assumption.
The effectiveness of filling in empty values could be enhanced
with incorporating KNN imputation. These features were cho-
sen because of their ability to describe the planetary orbit and
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Fig. 4 This scatter plot visualizes the relation between stellar
temperature and planetary radius. No obvious trend is clear, except
that the largest true planets tend to be located around hotter stars.

parameters (e.g. orbital period, transit epoch, transit duration,
planetary radius), as well as features that concern the modeling
of the transit itself (e.g. signal to noise, transit depth, impact
parameter). Additionally, some features are related to the star
itself, which has been underutilized in planetary detection and
may prove to be ultimately just as useful as planetary parameters
(e.g. stellar temperature, surface gravity, radius). The column
‘koi_disposition” had its values replaced by either 1 or 0- where
1 represents a ‘CONFIRMED’ or ‘CANDIDATE’ classification,
and O represents a ‘FALSE POSITIVE’ classification. This was
done to make model development easier. Only two categories
were used since the goal of this project is to use machine learning
to simplify the selection of true planet candidates, and making
three classes would generate an additional class of uncertain
planet labels. The three class problem was also avoided due
to the problem of imbalance that would result due to the low
number of ‘CONFIRMED’ exoplanets. When testing the data,
the train-test-split was 80% to 20%, where 80% of the data was
used as training data, and 20% of the data was used as testing
data. Training data is the subset of the data that generates the
weights for the machine learning model, and the test data is
the subset of the data that that model is tested on to assess the
performance of the model.

Methodology / Models

Important categories from the NASA dataset were imported into
a dataframe, shown in Table 1. As mentioned above, columns
that contained no values had the entries with no values filled
with the average of the rest of the values in that column. Rele-

Table 1 Features/Columns included in data analysis

Feature Name | Description

"koi_disposition’ | Exoplanet Archive Disposition
Orbital Period [days]

Impact Parameter

"koi_period’

’koi_impact’

’koi_duration’ Transit Duration [hrs]

’koi_depth’ Transit Depth [ppm]
“koi_prad’ Planetary Radius [Earth radii]
’koi_teq’ Equilibrium Temperature [K]

’koi_model_snr’ | Transit Signal-to-Noise

’koi_steft’ Stellar Effective Temperature [K]
’koi_srad’ Stellar Radius [Solar radii]
’koi_slogg’ Stellar Surface Gravity
Feature importances using MDI
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Fig. 5 Feature 6 is clearly shown to be the most important, with
Features 2, 8, and 9 all being the least important for prediction. The
large error bars are likely inflated from the small number of trials run
in the randomization process to generate them, but detailed estimates
are beyond the scope of this work.

vant columns included in model development were discussed
in the dataset section. ‘CONFIRMED’ and ‘CANDIDATE’ for
the ‘koi_disposition’ column, which was the column being an-
alyzed, were replaced with 1, while ‘FALSE POSITIVE’ in
‘koi_disposition’ was replaced with O to make analysis easier.
The columns were all read into a dataframe. Data preprocessing
was completed with these steps, and the data was visualized
using histograms and scatter plots. The first histogram shown
has orbital period in days (log) on the x-axis. The second plot
has transit depth in ppm (log) on the x-axis, the third plot has
planetary radius in Earth radii (log) on the x-axis. All histograms
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Fig. 6 The confusion matrix shows that on average, the classifier is
accurate, with the majority of labels being true positives and true
negatives. The diagonal matrix elements are the smallest values,
showing that this is justified. The potential exoplanet label also
includes true exoplanets, demonstrating that both true and potential
exoplanets can be grouped into the same category.

have the number of either category on the y-axis. The false posi-
tives are colored in blue, and the confirmed and candidates are
colored in orange. The scatterplot which is shown has koi_prad
on the x-axis, and koi_steff on the y-axis, which are the plan-
etary radius and the stellar effective temperature respectively.
The hue is ‘koi_disposition” and the observations labeled with
a ‘0’ are blue and the ones labeled with a ‘1’ are orange. Us-
ing train_test_split, the model was developed with a test_size
of 0.2. A single random seed was used and a single run was
used, but the outputs remained consistent when experimenting
with different random seeds. Machine learning models, such as
Ridge Classifier, Logistic Regression, Random Forest Classifier,
and Decision Tree Classifier were used to find the accuracy,
precision, recall, and F1 scores of the model. The choice of
Random Forest Classifier and Logistic Regression is justified as
Random Forest is a local classifier and Logistic Regression is a
global classifier. Models like SVM were avoided because of the
inability of linear decision bounds to explain the data. Random
Forest Classifier was also used due to its ability to highlight
feature importance, as shown in Figureﬂ Scikit-learn’s Mean
Decrease Impurity (MDI) was used to determine feature im-
portance for Random Forest Classifier, and the resulting plot is
shown in Figure[5] Cross validation techniques were avoided as
the choice of different random seeds yielded consistent results.

The feature that was determined to contribute the most to
accuracy was feature 6, ‘log_koi_prad,” followed by features
3 and 1, ‘log_koi_period’” and ‘koi_teq’ respectively. The next
most impactful features based on MDI are ‘log_koi_depth’ and
‘koi_duration,” which are features 5 and O respectively. The
combination of features that were found to have the greatest ac-
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Fig. 7 The lack of improvement of accuracy as a function of alpha is to
be expected, mostly due to the small number of features used in the
model and reliability based on the simplest model.
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Fig. 8 The lack of improvement of accuracy as a function of alpha is to
be expected, mostly due to the small number of features used in the
model and reliability based on the simplest model. Precision is defined
as true positives over all positives, and recall is true positives over the
sum of true positives and false negatives, and the F1 score is the
harmonic mean of precision and recall. The Confusion Matrix was
plotted and is included below. For Logistic Regression, no
hyperparameter tuning was used and the final model metrics are
Logistic Regression Model Accuracy : 77.68%. Candidate exoplanet
class : precision=0.7360360360360361, recall=0.8747323340471093,
F1=0.7994129158512722. Not exoplanet class :
precision=0.8390646492434664, recall=0.6755260243632336,
F1=0.7484662576687118. The confusion matrix is also plotted in

Figure|]

curacy on Random Forest Classifier were ‘log_koi_period’ and
‘log_koi_prad.” To increase the accuracy of the model, hyperpa-
rameter tuning was used, and grid search was used to pick the
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Random Forest Classifier Confusion Matrix
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Fig. 9 Confusion matrix of Random Forest Classifier.
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Fig. 10 Hyperparameter tuning of Random Forest Classifier.

Results

In order to hyperparameter tune RidgeClassifer, the alpha
parameter was modified. The alpha parameter determines how
much regularization is applied, and larger values discourage
overfitting more than smaller values. Larger values of alpha

shrink coefficients more, and larger coefficients are penalized.

With the optimal alpha value of 0.4, the model metrics of
RidgeClassifier are as follows: RidgeClassifier:
Candidate exoplanet class: precision=0.7098103874690849,
recall=0.9218415417558886,
Not exoplanet class: precision=0.8830128205128205,
recall=0.6101882613510521, F1=0.7216764898493778. The

76.86%.

F1=0.8020493712156496.

confusion matrix is shown in Figure[6]and the hyperparameter
tuning graph is Figure[7]

For RandomForestClassifier, the max_depth was tuned. The
max depth of RandomForestClassifier controls how long the
path is from the root node to the leaf node. The max_depth
which produced the best accuracy was found to be 15. In the
graph below, the max_depth is plotted on the x-axis and the ac-
curacy is plotted on the y axis. With this max_depth, the model
metrics are Random Forest Classifier Model Accuracy: 84.98%.
Candidate exoplanet class: precision=0.83640081799591,
recall=0.8758029978586723, F1=0.8556485355648535.
Not exoplanet class: precision=0.8649592549476135,
recall=0.82281284606866, F1=0.8433598183881953. The
confusion matrix is plotted as Figure[9]and the hyperparameter
tuning is shown in Figure[10]

Lastly, for DecisionTreeClassifier, the max_depth was
also tuned, similar to RandomForestClassifier. The opti-
mal max_depth was tuned to be 6, which was the value
that provided the highest accuracy. The graph shows the
plots of the accuracy of the model when the max_depth
is between 1 and 15. The model metrics are Deci-
sion Tree Classifier Model Accuracy: 81.93%. Can-
didate exoplanet class: precision=0.7956777996070727,
recall=0.867237687366167, F1=0.8299180327868851. Not
exoplanet class: precision=0.8485958485958486, recall=
0.769656699889258, F1=0.8072009291521486. The confu-
sion matrix is Figure[IT)and the hyperparameter tuning is Fig-

ure
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Fig. 11 Confusion Matrix of Decision Tree Classifier.

Discussion

After hyperparameter tuning, the model that provided the best
accuracy was RandomForest, with an accuracy of 84.98%. A
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Table 2 Accuracy, Precision, Recall, and F1 Score of Models

Models
Model Metrics Ridge Classifier Logistic Regression Random Forest Classifier | Decision Tree
Classifier
Accuracy (%) 76.86 77.68 84.98 81.93
Candidate Exoplanet Class Pre- | 0.70981 0.73604 0.83640 0.79568
cision
Candidate Exoplanet Class Re- | 0.92184 0.87473 0.87580 0.86724
call
Candidate Exoplanet Class F1 | 0.80205 0.79941 0.85565 0.82992
Not Exoplanet Class Precision | 0.88301 0.83906 0.86496 0.84860
Not Exoplanet Class Recall 0.61019 0.67553 0.82281 0.76966
Not Exoplanet Class F1 0.72168 0.74847 0.84336 0.80720
0.2 classifies them as not exoplanets. A logistic regression model
could suffer from the problem of outliers when they go unde-
| tected”. Logistic regression could also have issues in having a
080 poor fit!"L If problematic points/outliers are not accounted
for, where the observed value and the model value are not in
0.78 1 agreement, this could have a great impact on model results'Z,
g Even without the benefit of having a very high accuracy, the
g 0.76 - models can be quickly run and data can be quickly analyzed.
RandomPForest was able to give results in 3.5s with 9564 data
074 ] points, each with 6 features, corresponding with 57384 data
' points. Therefore, the models can be quickly used to quickly
gather information, and are beneficial in that regard.
0.7
;. 2 & 8 1 & = Conclusion
Max Depth

Fig. 12 Hyperparameter tuning of Decision Tree Classifier.

possible explanation could be RandomForest’s effectiveness
when analyzing large datasets, being less sensitive to outliers,
and overcoming overfitting. Random Forest Classification is
also found to achieve better results than decision trees most
of the time, as it contains all the benefits of decision trees,
along with being able to use multiple trees to prevent overfitting.
Random Forest Classifier also uses bagging, which provides
generalization and decreases bias®. However, even after hyper-
parameter tuning, the model is still not fully able to correctly
categorize potential exoplanets. With RandomForest, the pre-
cision of finding a candidate exoplanet and not an exoplanet
were pretty similar. In other models, however, such as Logistic
Regression and Ridge Classifier, the model had much higher
precision in the not exoplanet class, meaning the model is not as
accurately able to determine potential exoplanets, and instead

In this study, supervised learning was conducted on the NASA
Exoplanet dataset, and the accuracy, precision, F1 score, and re-
call score were calculated for four models: Logistic Regression,
Decision Tree Classifier, Ridge Classifier, and Random Forest
Classifier. All models had at least a 75% accuracy rate. The
model that performed the best was the Random Forest Model.
With the inclusion of more data, the accuracy rate could increase.
Synthetic data could increase model performance, and it is possi-
ble that the model could have a much higher accuracy. Addition-
ally, it would be beneficial to explore other models, including
incorporating deep learning architectures such as convolutional
neural networks or ensemble methods such as gradient boosting.
This work demonstrates the incredible efficiency in classifying
exoplanets that would take a much longer time to classify by
hand. The study of exoplanets has great potential to be a field
of many discoveries and increasing the knowledge of possible
other habitable worlds. By incorporating follow-up data from
other telescopes, the classification accuracy of this model can be
improved and further investigated. Moreover, all of the data and
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associated models presented in this paper can be made available
upon request of citizen scientists.
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