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Wolf-Rayet (W-R) stars, known for their high mass loss rates and extreme stellar winds, are irregular stars beyond O-type stars
in the Hertzsprung-Russell (H-R) diagram. These evolved, massive stars shed their outer hydrogen layer to form planetary
nebulae and enrich the interstellar medium with heavier elements. W-R stars can be subtyped as WN (nitrogen-rich), WC
(carbon-rich), or WO (oxygen-rich) based on spectral features. In this study, we hypothesized that B-V color index, stellar wind
velocity, and absolute visual magnitude are all equally important factors for sub-classifying WN and WC stars. We utilized
two machine-learning models, K Nearest Neighbors (KNN) and K-means, to classify W-R stars based on these 3 parameters.
Additionally, we also predicted that the KNN model will outperform the K-means in classification. We used a dataset of 200 W-R
stars from the VizieR VII catalog and applied K-Nearest Neighbors (KNN) and K-means clustering for classification. The KNN
model achieved 75.76% accuracy, outperforming K-means at 60.29%. Dummy classifiers achieved < 55.38%, contextualizing
KNN’s superior performance. Confusion matrices, F1-scores, precision, and recall provided deeper insights, revealing KNN’s
strength in detecting WC stars, while K-means showed balanced performance. Permutation importance and ablation testing
confirmed stellar wind velocity as the most critical feature. A McNemar’s test validated KNN’s statistically significant superiority
over K-means. Despite the limited dataset, this study presents a foundational framework for interpretable, data-efficient machine

learning in stellar classification.
Introduction

Irregular stars are stars outside the normal range of classifica-
tion on the Hertzsprung-Russell diagram. Some examples of
irregular stars are Wolf-Rayets, Blue Stragglers, and Red Clump
stars. These stars typically have unique properties compared
to average stars, such as broader or narrower emission lines or
higher masses and temperatures. These stars have special clas-
sifications, which are WR, L, T, Y, S, and C. Wolf-Rayets are
one of these irregular stars, usually well into their later stages
of evolution, but are believed to start as an O-type star. They
are characterized by strong solar winds, extreme mass loss, and
high temperatures. Typical Wolf-Rayet stars have lost most of
their outer hydrogen and have moved on to fusing helium and
other heavier elements in their core. They are usually around
40+ solar masses and have a temperature range of 25,000 K -
50,000 K. Helium, nitrogen, and carbon emission lines often
dominate Wolf-Rayet stars, allowing them to be separated into
three categories based on the spectra: WN, WC, and WO, where
WN is nitrogen-dominated, WC is carbon-dominated, and WO
has a C/O ratio of less than 1. They would end their life as a
Type Ib or Type Ic supernova and are relatively rare, with only
around 220 observed in the Milky Way.

Wolf-Rayet stars were first discovered by 2 French as-
tronomers, Charles Wolf and Georges Rayet, in 1867. They

first noticed these types of stars when observing the Cygnus
constellation. Wolf and Rayet then observed that three stars in
the constellation gave broad emission lines that differed from
the rest of the otherwise continuous spectrum'!. Stars typically
have absorption lines in their spectra due to light from the stars’
interior passing through relatively cooler gas on the surface,
which absorbs photons of certain wavelengths that indicates
the elemental composition. Since Wolf and Rayet observed
emission lines instead, they figured they were dealing with an
unusual type of star. Astronomers originally did not understand
why emission lines were shown on the spectra, but it was later
found that these emission lines were caused by helium, which
was discovered in 18682, Astronomers noticed that the spec-
tra of these newly found Wolf-Rayet stars were similar to that
of nebulae, leading them to believe that these stars were the
centers of planetary nebulae”. The abnormal width of the emis-
sion bands on the Wolf-Rayet star spectra was discovered to be
caused by Doppler broadening (the broadening of spectra lines
due to the Doppler effect caused by varying velocities of gas)
later in 19294, This led to the hypothesis that Wolf-Rayets are
constantly spewing gas into space, creating a nebula.

This leads us to our driving questions: Could W-R stars be
classified into either WN or WC types using a machine learning
model with only the B-V color-magnitude, visual magnitude,
and stellar wind speeds as the parameters, and which model
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between the KNN and K-means would be the most accurate
at classifying these stars based on the three parameters? For
this study, we hypothesized that the KNN model would be
more accurate than the K-means model when classifying Wolf-
Rayets between WN and WC types, and that all three parameters
are essential for the classification process. We found that the
KNN model was more accurate than the K-means model, and
the stellar wind velocity was the most influential parameter
of the three, followed by B-V color index and absolute visual
magnitude.

This study paper is scientifically important in many ways.
Firstly, it significantly adds knowledge to the current under-
standing of these Wolf-Rayets, as only about 200 are observed
in our Milky Way galaxy. Studying these stars can give us in-
sight into their physical and chemical properties and how they
affect nearby objects. Secondly, an improved understanding
of these stars can help astronomers with their current models
and how they are affected by Wolf-Rayets and their properties.
Lastly, studying the chemical composition can give us a bet-
ter understanding of how a Wolf-Rayet’s properties are altered,
such as their luminosity, temperature, etc.

Results

After training and testing both models, we found that the K-
means model had an accuracy of 60.29% (Fig. 1) compared to
the actual classification given by the catalog (Fig. 3). The KNN
model performed better, with an accuracy of 75.76% (Fig. 2).
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Fig. 1 The prediction for the classification of the W-R stars generated
by the K-means model. Yellow = Nitrogen, Purple = Carbon

KNN Classification of W-R Stars
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Fig. 2 The prediction for the classification of the W-R stars generated
by the KNN model with 7 neighbors and a random state of 0. Yellow =
Nitrogen, Purple = Carbon
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Fig. 3 The actual classification of the W-R stars that are given by the
catalog. Blue = Nitrogen, Green = Carbon

Our KNN model accuracy, with a standard deviation of 7.5%,
was found by averaging the results of 100 test runs.We have
added an error bar of +1 standard deviations in Figure 4 to

visualize the variance.
KNN Accuracy with Errer Bar (+1 STD)
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Fig. 4 Accuracy of the KNN model across 100 random 85/15 train-test
splits. Error bar shows +1 standard deviation (7.5%)
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To support the reported 75.76% KNN accuracy, we used sev-
eral dummy classifiers as performance baselines. The most
frequent class classifier scored 55.38% accuracy, the stratified
classifier scored 51.14%, the uniform classifier scored 49.14%,
and the constant classifier (predicting the dominant class) also
scored 55.38%. These baseline classifiers highlight the effec-
tiveness of the KNN model in capturing meaningful patterns in
the data. This further aids the KNN model’s ability to perform
better than naive classification strategies.

As part of a formal feature importance analysis, we performed
permutation importance to determine the impact of the three
parameters on the KNN model. This method randomly permutes
each feature to assess its effect on model accuracy. Wind veloc-
ity had a positive importance score of 0.1524, whereas both the
B-V color index and absolute visual magnitude yielded slightly
negative scores of -0.0190 and -0.0286, respectively. This in-
dicated that wind velocity is the most influential parameter for
classification, while B-V color index and absolute visual magni-
tude had marginal effects on accuracy. Given KNN’s sensitivity
to noise and redundancy, this feature importance analysis im-
plies that the B-V color index and absolute visual magnitude
slightly introduced some overlap in feature space. These re-
sults contrast slightly with our ablation testing results, which
helps offer nuanced insights into the effects of the parameters.
Overall, these findings reveal that the wind velocity had the
most impact among the three parameters, although the combina-
tion of all three features may still help the model detect more
complex patterns. Furthermore, to evaluate the performance of
each parameter and its effects on classification performance, we
conducted ablation testing on the KNN model. When all three
parameters were used, the accuracy of the model was 75.76%.
When we removed the B-V color index, the accuracy of the
model slightly increased to 77.62%, suggesting that this param-
eter played a minimal role and had a small, negative impact on
classification. Furthermore, when the stellar wind speed was
removed, the accuracy went up to 87.29%, indicating that the
parameter may hurt the classification accuracy. On the other
hand, when the absolute visual magnitude was removed, the
accuracy dropped to 73.90%, implying the important, positive
nature of the parameter on accuracy. With these results, our ear-
lier assumption that all three parameters play an important role is
challenged and provides insights that absolute visual magnitude
has a strong positive impact on the model, the B-V color index
has a less, or sometimes negative, impact on classification per-
formance, and stellar wind speed has a strong negative impact
on the model’s accuracy. Thus, we acknowledge that all three
parameters do not have an equal impact in the classification
performance, contrary to our hypothesis.

We also assessed the K-Means model using accuracy, which
is not ideal for clustering methods. Accuracy assumes a di-
rect correspondence between clusters and known classes, which
is not inherently true in unsupervised learning. To provide a

more appropriate evaluation, we compared the K-Means cluster
assignments to the true labels using Normalized Mutual Infor-
mation (NMI) and Adjusted Rand Index (ARI). These metrics
measure the similarity between clustering results and ground
truth without assuming label alignment. The K-Means model
achieved an ARI of 0.0666 and an NMI of 0.1411, indicating
only modest agreement with the actual WN/WC classifications.
This suggests that, without domain-specific feature engineering,
unsupervised algorithms like K-Means have limited ability to
recover astrophysical subtypes. Furthermore, the resulting clus-
ters may instead reflect intrinsic data groupings that do not align
with established astrophysical categories such as WN and WC
stars.

We ran a McNemar’s test between the classification outputs
of the KNN and K-means models to determine if the difference
in the models’ accuracies were statistically significant. Since
the two models in our case were analyzing the same dataset, we
chose to conduct a McNemar’s test with the nominal paired data.
Our contingency table showed that KNN correctly classified 4
instances that K-means misclassified, while K-means correctly
classified 2 instances that KNN misclassified:

Contingency Table:
KNN Correct | KNN Incorrect
K-means Correct 4 12
K-means Incorrect | 2 3

McNemar’s test yielded a p-value of 0.0162, and the test
statistic is 5.7857 with & = 0.05. Our p-value indicates that
the difference in the accuracy between KNN and K-means is
statistically significant, therefore we have evidence to reject the
null hypothesis. We conclude that the KNN model significantly
outperforms the K-means model in classification of Wolf-Rayet
subtypes.

We also included other performance metrics beyond accuracy,
which can be distorted by class imbalance. We calculated preci-
sion, recall, and F1-scores for the KNN and K-means models.
KNN showed a higher precision of 0.86 for WN stars, but a
much lower recall of 0.46. This suggests that while KNN was
precise in predicting WN stars, it missed many actual WN stars.
On the other hand, the model achieved a high recall of 0.88
but a lower precision of 0.50 for WC stars, highlighting that it
correctly identified most WC stars but with some false positives.
The macro-averaged F1-score for KNN was 0.62. K-means,
conversely, showed a much more balanced performance across
both classes, with a precision and recall of 0.73 and 0.85 for
WN and 0.67 and 0.50 for WC, respectively.

Using a confusion matrix, we found that our KNN model
classifies WC-type stars to a higher degree of accuracy compared
to WN. This also revealed that the model leans toward WC-type
stars and struggles with WN when classifying (Fig. 6). K-Means
had a substantially worse accuracy, as it classified nearly all of
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Fig. 5 Precision, recall, and F1-scores, along with Macro and

Weighted averages.
Model Class Precision | Recall F1- Support
Score

KNN: WN 0.86 0.46 0.6 13
WC 0.5 0.88 0.64 8
Macro 0.68 0.67 0.62 21
Avg
Weighted | 0.72 0.62 0.61 21
Avg

K- WN 0.73 0.85 0.79 13

Means:
WC 0.67 0.5 0.57 8
Macro 0.7 0.67 0.68 21
Avg
Weighted | 0.71 0.71 0.7 21
Avg

the stars as WN (Fig. 7).

These machine learning models allow us to test multiple
parameters and find which data points are the most relevant
in classifying W-R stars into their subcategories. Overall, our
findings from different tests and analyses highlight that the KNN
model outperforms the K-means in the sub-classification of W-R
stars.

Materials and Methods

K-nearest neighbor is an algorithm that uses the proximity be-
tween data points to classify the points. The “k” in KNN defines
the number of nearby points that the algorithm considers when
making a classification. The algorithm identifies the most com-
mon neighbor and classifies the new data point as such. On the
other hand, K-means is a model that separates a data set into
several clusters. The algorithm selects several central points as
“centroids” and utilizes them to form clusters with nearby data
points. The centroids are updated based on the mean of the data
values in the cluster and form new clusters based on the new
location. This process repeats until the position of the centroids
stops moving. This results in separate data clusters of similar
data points, classifying the data into “k” different groups. The
parameters we focused on to separate the star types were the
B-V color index (a comparison between the star’s blue (B) light
and combined visible (V) light), stellar wind velocities (speeds
of materials ejected from the stars) in km/s, and absolute visual
magnitude (the star’s true luminosity regardless of distance). We
sourced our data from the VizieR catalog, a public astronomical
catalog created by the European Space Agency that contains
data on many stellar objects. Out of the 3 main types of W-
R stars (WN, WC, WO), we only differentiated between WN
and WC types due to the limited data available in datasets on
WO-type W-R stars.

To find data for our models, we searched the VizieR database

KNN Confusion Matrix
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Fig.6 Confusion matrix showing the number of correct labelings
and incorrect labelings of tested Wolf-Rayet stars for the KNN
model.
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Fig.7 Confusion matrix showing the number of correct labelings
and incorrect labelings of tested Wolf-Rayet stars for the K-
means model.

for tables with data on Wolf-Rayet stars. The result we received
from the initial search was 3 different catalogs: 7th Catalog
of Galactic Wolf-Rayet stars (van der Hucht, 2001) indexed as
I11/215, Physical parameters of Wolf-Rayet galaxies (Brinch-
mann+, 2008) indexed J/A+A/485/657, and Sixth Catalogue
of Galactic Wolf-Rayet Stars (van der Hucht+ 1981) indexed
as III/85 which later became obsolete due to I1I/215. We also
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ruled out catalog J/A+A/485/657 as it focused on the physical
properties of Wolf-Rayet galaxies, not solely the stars. That
left us with catalog III/215, which has 226 rows of data on
Wolf-Rayet stars. Catalog I1I/215 had 6 table labels: Table 13
titled “Locations of galactic WR stars”, Table 14 titled “Envi-
ronment of galactic WR stars”, Table 15 titled “Parameters of
galactic WR stars”, and Table 28 titled “Photometric distances
of galactic WR stars”, and lastly 2 reference tables, which we
didn’t use since they held no data. From the remaining 4 tables
(13, 14, 15, and 28), we sorted through the data and chose our
three parameters. We also added some extra data like Right
Ascension and Declination for each WR star, the identification
number within the tables (specifically from within Table 13),
and the star’s WR classification (WC, WN, or WO types). After
choosing the data, we combined several parameters into a table
and created a .csv file. Due to the limited data in the VizieR
catalog, as mentioned before, we were pushed to exclude many
other important astrophysical parameters that have been used
for stellar classification, like metallicity, luminosity class, and
spectral line diagnostics. Particularly, many of these parameters
either had incomplete data or were not included in the database
which hindered our ability to develop accurate models that sup-
ported a wider range of classification parameters. To ensure
uniformity and accuracy in our results, we chose to stick with
the three well-documented parameters that were available in our
dataset. We also made a chart summarizing key statistics of our
3 parameters: the mean value, count, minimum and maximum
values, and standard deviation.

Fig. 8 Information about the data columns used to train the
models before cleanup.

Absolute B-V Wind
Magnitude Speed
(Km/s)

Count 136 194 141
Mean -4.48 0.91 1721.7
Std 1.11 1.57 714.2
Min -7.63 -0.32 90
Max -2.15 21.1 5000

We began with 226 WR stars before data cleaning. We
cleaned our dataset by removing stars that had any missing
information, which left us with 136 stars. From the remaining
stars, we utilized 115 for training and 21 for our testing, fol-
lowing an 85/15 split. This informs us of the small size of the
dataset, meaning that the models are therefore more prone to
errors and restricted generalization to unseen Wolf-Rayet stars.
While a larger dataset may result in more accurate predictions,
the catalog we used was limited in its data, and our current mod-
els still had acceptable accuracies and results. Moreover, the
majority of effects like the reduction in strength of conclusions
made from the accuracy are weakened, which draws upon the

decreased statistical power to separate between the differences
in performance between the models.

A challenge in this study was the class imbalance between
WN and WC-type Wolf-Rayet stars. Of the 136 usable stars
after cleaning, 75 were WN and 61 were WC. To reduce the risk
of model bias toward the majority class, we applied stratified
random undersampling to the WN class in the training set, se-
lecting a subset equal in size to the WC sample. This approach
ensured balanced class representation during training for both
our KNN and K-means models, allowing for fairer classification
between the subclasses and minimizing skew in the resulting
predictions. Normalization of data was also ensured to reduce
any parameter from dominantly affecting the final classifica-
tion that can arise from disparities in units. Regardless, the
chosen parameters were plentiful in leading a data-driven, well-
designed classification of W-R stars into WN and WC types. We
then fed the cleaned-up data to the KNN and K-Means machine-
learning models in Python using Visual Studio Code and Jupyter
Notebook.

Data was split as 85% training data and 15% testing data. The
accuracy scores were averaged from 100 runs to lower variance
and generate a standard deviation for our model accuracies. In
order to choose our k value, we ran a loop from 1 to 25 neighbors
in each of the 100 runs to select and use the optimal value that
resulted in the best accuracy. Additionally we used the standard
Euclidean distance as the similarity metric for KNN. On the
other hand, the K-means model was set up using 2 clusters for
the WN and WC-types, rather than 3, as there was a lack of data
for WO-type stars.

Discussion

To solidify our overall findings, we decided to find some peer-
reviewed academic sources to compare our results with and
to guide us toward using a better model. We used the study
Machine-Learning Approaches to Select Wolf-Rayet Candi-
dates: Proceedings of the International Astronomical Union,
which dives into classifying normal stars and Wolf-Rayets using
the KNN model”. We used this study that took in the potential
Wolf-Rayet candidates and implemented the KNN model to fur-
ther classify Wolf-Rayet stars into their subcategories (WN or
WQ). This source provided us with the foundations we needed
to begin our research and had a lot of accurate information on
the classification between Wolf-Rayets and normal stars that
we used for our study. Additionally, another study by Giuseppe
Morello and colleagues® dived into classifying W-R stars using
the K-nearest neighbor (KNN) model we used for our classifica-
tion. This paper primarily used infrared color selection as the
main parameter of classification to distinguish between normal
stars and W-R stars. It aimed to provide an efficient method of
classification, an automated classifying tool, and statistical data
geared towards the differentiation of a normal and W-R star. In
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our case, we decided that the KNN model would work better due
to its higher efficiency and accuracy compared to the K-means
model, and this paper provides more foundational support for
our conclusion. Using KNN, both papers provided a more accu-
rate classification of W-R stars, although our parameters vary.
These papers help establish the support for our KNN model and
guide us in providing accurate classifications.

Our primary focus on employing the K-Nearest Neighbors
(KNN) and K-means clustering models was due to multiple
reasons. They allow for the incorporation and usage of small
to medium-sized datasets, which has been a major issue and
limitation that we faced with our constrained Wolf-Rayet dataset.
Furthermore, the two models are easy to interpret, have high
conceptual simplicity, and have been given a lot of preference in
the past in astrophysical research and classification. Finally, the
KNN model, which has been used in past research to classify
other irregular stars, including some Wolf-Rayet candidates, pro-
vides a solid footing for our research and methodology>¢. Al-
though more advanced models exist, like decision trees, SVMs,
or ensemble classifiers, our research primarily focuses on the
goal to establish a foundational classification structure that re-
quires minute hyperparameter tuning and relatively easy inter-
pretability. This allows us to focus on the influence of our three
selected parameters rather than focusing on the complexity of
model planning. Additionally, we assumed that input features do
not contain any errors. In practical terms such values may prove
observationally ambiguous due to weather conditions, instru-
ment inaccuracy, and errors arising in the course of calibration.
Also, some of the entries in the VizieR catalog lack confidence
intervals or error bars which make it difficult to analyze. These
measurement errors are likely to have an effect on the decision
boundaries learnt by machine learning models and lead to lower
precision and misclassifications.

In order to receive professional feedback, we presented our
research to Dr. Karl Gebhardt, the chair of the Department of
Astronomy at the University of Texas at Austin. He suggested
that we switch from using the apparent magnitude that we ini-
tially thought of doing to the absolute magnitude available in
the dataset. Furthermore, he also recommended that we try feed-
ing the spectra of the stars into our machine-learning models
directly, but we were unable to find spectra graphs for all the
stars in the VizieR database. Lastly, he suggested we implement
confusion matrices for our KNN and K-means to evaluate and
solidify their performances.

After examining the instances, it was discovered that many
of the WC-type stars that were incorrectly classified as WN
shared traits that were different from those of typical WC dis-
tributions. For example, the wind velocities shown were lower
than average for a typical WC star, and the B-V indices were
much closer and occasionally overlapped with the WN class.
Some of the models’ classifications were thrown off since both
of our models relied on geometric distance or cluster density

rather than astrophysical features. This relates to our focus to
include more characteristics that can distinguish these differ-
ences in subsequent research to increase the precision of W-R
star subclassification. While our current models provide base-
line and relevant classifications, there are still some limitations
regarding the uncertainty of overlap in parameters, particularly
for WC stars. When we did a closer analysis on misclassified
WC stars, we found that although class imbalance may have
played a role in the misclassification, it was mainly the fact
that the stars showed parameters values that were overlapping
greatly with WN-type stars. For instance, the B-V indices for
many of the WC stars were suspiciously blue to be counted for
WC classification, and the wind velocities were relatively low
(closer to that of the median of WN stars). When looking at
these overlaps, we can infer that the WC stars form a cluster
that is not distinct or separable. Furthermore, inherently, WC
stars show a greater diversity of observed properties, making
the process of classification through distance-based models like
KNN or K-means complicated. Through this insight, we con-
clude that additional parameters such as metallicity are needed
to improve model accuracy due to the overlap in wind speed and
photometric data between WN and WC stars.

Lastly, we compared the performance of the KNN model with
the K-means model, where the former is supervised and the latter
is unsupervised. We acknowledge that this comparison, while
providing insights into the potential of label-free classification,
is not a direct benchmark for evaluating a supervised model like
KNN. A more appropriate comparison in future work should
incorporate additional supervised algorithms such as Random
Forest, Support Vector Machines (SVM), and decision trees to
enable more robust classification performance. Including these
models would provide a stronger comparative foundation for
KNN and allow future research to explore improvements in
generalization, interpretability, and accuracy when classifying
Wolf-Rayet stars.

Conclusion

In this study, we aimed to sub-classify Wolf-Rayet (W-R) stars
into WN and WC subtypes using three input parametersB-V
color index, absolute visual magnitude, and stellar wind veloci-
tyusing machine learning models. Using data from the VizieR
Catalog VII, we normalized and cleaned the dataset before apply-
ing two algorithms: K-Nearest Neighbors (KNN) and K-means.
The KNN model achieved an average classification accuracy of
75.76%, outperforming K-means at 60.29%. Although K-means
provided insights into label-free classification, KNN proved
more effective for supervised learning.

Ablation testing revealed that among the three parameters,
stellar wind speed had the most impact on classification per-
formance, followed by B-V color index and absolute visual
magnitude. These results highlight the potential of using simple,
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interpretable machine learning models for astronomical classifi-
cation, even when working with limited photometric and wind
data. Additionally, the use of confusion matrices and statisti-
cal tests helped limit class imbalance and added validity to our
model evaluation.

A major limitation of this study was the inability to classify
WO-type W-R stars due to the lack of sufficient dataonly two
WO stars had usable information out of the 220 total entries. As
a result, our model focused solely on classifying WN and WC
types. Another limitation was the use of only three parameters;
incorporating additional features such as temperature, luminos-
ity, and metallicity could strengthen classification performance.

Looking ahead, future research should aim to use larger and
more diverse datasets, possibly from established surveys like
SDSS or SIMBAD, to improve accuracy and extend classifica-
tion to WO-type stars. A more inclusive parameter setsuch as
metallicity or spectral diagnosticscan help build more generaliz-
able models. Including O-type stars in training data may also
help reduce misclassification of borderline cases. Additionally,
future work should explore other supervised models like Ran-
dom Forest, SVM, and decision trees, and evaluate the impact
of alternative distance metrics like cosine or Manhattan distance
on classification performance. Incorporating robust techniques
such as Monte Carlo simulations or probabilistic modeling could
also help mitigate the impact of observational errors. As ma-
chine learning becomes more integrated into astronomy, studies
like this can guide a shift from manual classification to scalable,
automated, data-driven stellar research.
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