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This study presents a novel approach to predicting stock prices by combining social media sentiment analysis with market data
forecasting models. By analyzing three stocks with varying levels of public attentionlow, moderate, and highwe demonstrated that
the integration of sentiment analysis is most impactful for stocks with high public discourse. Sentiment data was extracted from
tweets using VADER and Zero-Shot Text Classification and combined with traditional time series models (ARIMA, LSTM,
and XGBoost). Our results showed that sentiment-enhanced models improved prediction accuracy by 21.6% on average for
high-discourse stocks while offering limited gains and even decreased accuracy for stocks with low social media engagement.
This research advances existing methodologies by providing empirical evidence that public sentiment volume is a critical factor in
the performance of sentiment-driven financial models. It also highlights the superior predictive accuracy of transformer-based AI
models like Zero-Shot Text Classification compared to VADER for sentiment analysis. These findings contribute to adopting
hybrid approaches that blend quantitative and qualitative factors for more nuanced market predictions.

Keywords: Hybrid financial modeling, Sentiment analysis, Sentiment analysis, Stock price prediction, Machine learn-
ing, Social media sentiment, Time series forecasting, Large language models

Introduction

Predicting stock price movements has long been a cornerstone of
financial analysis, given its critical implications for investors and
market participants. Traditionally, quantitative models such as
ARIMA, LSTM, and XGBoost have relied on historical market
data to identify trends and forecast future price behavior1,2.
However, stock prices are not solely influenced by historical
patterns; they are also shaped by market sentiment, particularly
during periods of uncertainty or speculative activity, when public
discourse amplifies the behavioral tendencies of investors3. The
rise of social media platforms, such as X (formerly Twitter), has
further highlighted the growing influence of public sentiment
on financial markets, offering an opportunity to incorporate
qualitative factors into quantitative forecasting frameworks.

While sentiment-based approaches using Natural Language
Processing (NLP) have shown promise in enhancing financial
predictions by capturing public perception4, many existing mod-
els rely on lexicon-based tools like VADER. These approaches
use predefined dictionaries of sentiment-laden words, which
often fail to account for context, industry-specific terms, or
sarcasm. For instance, 75% of words labeled as negative in
financial texts by traditional dictionaries, such as the Harvard
Dictionary, are not negative in context5. Transformer-based
models, such as Zero-Shot Text Classification, overcome these
limitations by leveraging contextual embeddings and attention

mechanisms, making them better suited for financial sentiment
analysis.

Moreover, recent advances in financial sentiment analysis
have demonstrated the superiority of transformer-based models
over traditional approaches. According to a study, OPT models
achieved a 74.4% accuracy in stock return prediction, while Fin-
BERT continues to establish benchmarks with 97.4% accuracy
on Financial PhraseBank datasets6.

Despite these advances, the relationship between the volume
of public discourse and the utility of sentiment analysis remains
underexplored. Existing research tends to treat sentiment as
a uniform input, without accounting for how the level of pub-
lic attention on a stock may impact the quality and predictive
power of sentiment signals. This gap is especially relevant in
hybrid forecasting models, where sentiment and quantitative
data are combined. The effectiveness of these models likely
varies depending on the stocks visibility in public conversations.

Hybrid models that leverage both sentiment and quantita-
tive analysis have shown improvements between 10-40% over
single-modal approaches7,8, yet these studies assume consistent
sentiment effectiveness regardless of the varying amounts of
social media attention each stock and company receives. While
recent studies have employed advanced transformer models like
FinBERT-LSTM combinations achieving 95.5% accuracy9 and
state-of-the-art zero-shot approaches reaching extremely high
accuracies and levels of performance10, they typically focus on
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optimizing model accuracy rather than investigating the effec-
tiveness of sentiment analysis based on the volume of discourse.

Existing literature has provided foundational evidence that
sentiment effectiveness is far lower during periods that have
lower volume but shows statistically significant relationships
during Twitter volume peaks11, while other papers have demon-
strated that sentiment polarity has predictive power only during
sudden message volume peaks using 1.5 million StockTwits
messages12. However, existing hybrid models fail to account
for this relationship between volume-dependency, as they focus
on their models performance across all stocks regardless of so-
cial media visibility, meaning these hybrid models are not as
optimized as they could be.

This study addresses this gap by investigating the role of
public discourse volume in determining the effectiveness of
sentiment analysis for stock price prediction. Specifically, we
examine three stocks characterized by low, moderate, and high
levels of public attention and evaluate how sentiment analy-
sis impacts forecasting accuracy across these categories. Our
hypothesis is twofold: 1) sentiment analysis will significantly
enhance prediction accuracy for high-discourse stocks, where
public sentiment plays a substantial role in market movements;
and 2) for low-discourse stocks, sentiment analysis will provide
limited benefits, with quantitative models like ARIMA, LSTM,
and XGBoost remaining more reliable.

By bridging the gap between sentiment analysis and tradi-
tional time series forecasting, this study contributes to the field
of financial prediction and provides a framework for integrating
qualitative and quantitative data to address the complexities of
modern financial markets.

Methods

This section describes the processes used to investigate the im-
pact of social media sentiment on stock price forecasting across
3 stocks with varying levels of public discourse, which has been
measured through the number of tweets posted about the stock.
Our methodology consists of 3 stages: data preprocessing and
exploratory data analysis, model implementation, and evaluation
of model effectiveness.

The objective of this study is to predict the next trading day’s
adjusted closing price (stock price adjusted for dividends and
stock splits) using historical price data and sentiment scores
of the same day. All models use the previous day’s adjusted
closing price and technical indicators as baseline features, with
the sentiment scores being calculated from tweets that were
posted on the day of prediction. This approach tests whether
real-time social media sentiment can enhance next-day price
predictions.

Data Preprocessing & Exploratory Data Analysis

For this study, 2 datasets were utilized, both sourced from Kag-
gle, an open-source platform providing a variety of datasets for
public use. The first dataset comprises historical financial data,
the second dataset includes Tweets.

The first dataset includes parameters such as open, high, low,
close, adjusted close, and volume for 6300 stocks, extracted
from Yahoo Finance. Open and Close represent the stocks
price at the start and end of the trading day, respectively. High
and Low represent the highest and lowest price it reached, and
Volume represents the total number of shares traded during the
day.

The second dataset consists of 80793 Tweets about 25 com-
panies that also have their stock tickers listed in the historical
dataset, extracted from X. Both the datasets span one year from
the 30th of September 2021 to the 29th of September 2022,
enabling a direct correlation between public sentiment and quan-
titative stock metrics for each day for a specific company.

Table 1
Statistical
Indicators
of Historical
Data

Open High Low Close Adjusted
Close

Volume

Mean 174.748 177.594 171.734 174.657 173.756 2906806
Standard De-
viation

134.989 135.795 133.049 134.949 134.589 3342181

Minimum 11.05 11.21 10.61 11.06 10.837 30780
25% 78.17 79.891 76.792 78.11 78.11 585770
50% 145.475 147.475 143.501 145.505 144.248 1511883
75% 225.665 230.662 221.452 225.785 225.785 4122928
Maximum 692.349 700.989 686.09 691.69 691.69 31164520

The summary of statistical indicators in Table 1 offers insights
into the central tendency, volatility, and distribution shape of the
stock price and volume data. The mean and median (50th per-
centile) values across the columns are relatively close, indicating
a general balance in central tendency, but there are subtle signals
of a right skew. For instance, in the Open and Close prices, the
median values are significantly lower than the mean. This skew
is confirmed by the substantial difference between the 75th per-
centile and the maximum values, showing that a few extremely
high values pull the average upwards. Furthermore, in terms of
volatility, the standard deviations are relatively high compared to
the mean in both the price and volume columns, which suggests
considerable spread and variations in prices across stocks.

The statistical summary of the tweets dataset, as presented in
Table 2, provides a clear overview of the variation in the size
of public discourse across the 25 stock tickers in the dataset.
The number of tweets per stock ranges from a minimum of 31
to a maximum of 37,422, with a median of 635 tweets. This
wide disparity highlights the varying levels of public attention
different stocks receive on social media. To investigate the
impact of sentiment analysis on these stocks, we selected three
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Table 2
Statistical Indicators of the Tweets
Dataset

Number of Tweets

Mean 3231.72
Standard Deviation 7541.3
Minimum 31
25% 225
50% 635
75% 3021
Maximum 37422

stocks that represent low, medium, and high levels of public
discourse:

1. Ford (F): The stock with the lowest number of tweets (31),
representing a lack of public discourse.

2. Apple (AAPL): A stock with 5,095 tweets, representing a
moderate level of public discourse for a well-established
stock. Its tweet count, while exceeding the 75th percentile,
is significantly lower than Teslas 37,422, making it an
intermediary between low and high public attention.

3. Tesla (TSLA): The stock with the highest number of tweets
(37,422), representing significant public attention, and re-
lies on public sentiment for growth.

The low, moderate, and high discourse levels were also de-
termined based on the tweet volume percentiles. Ford, with 31
tweets, falls below the 25th percentile and was therefore chosen
as a low discourse stock. Apple lies near the 75th percentile
of tweet volume, though due to the large difference between
the 75th percentile and the maximum volume of tweets, it was
chosen as a stock with moderate discourse. Lastly, Tesla, being
an outlier with over 37,000 tweets, has the maximum value,
which warrants its classification as a stock with high volumes of
discourse and public sentiment.

Furthermore, incorporating the market capitalization of the
companies leads us to the same conclusion. Despite its $50
billion valuation, Ford received only 31 tweets, indicating un-
usually low discourse relative to firm size. Tesla, with a market
cap of approximately $800 billion, still received disproportion-
ately more attention than Apple, which has a valuation exceed-
ing $2.5 trillion but far fewer tweets. This means that Teslas
public sentiment data far exceeds what its market capitalization
alone would predict, and really indicates high discourse. Apples
public sentiment data is warranted by its market capitalization,
whereas Fords public sentiment data is relatively low for its
market capitalization.

Preprocessing the tweet was essential to ensure that the AI
model does not get confused by an influx of irrelevant informa-
tion or special formatting styles on X. During the preprocessing,
all tweets were converted to lowercase entirely, and links, men-
tions, punctuation, and extra whitespace were removed.

Sentiment Analysis through NLP Techniques

Two primary approaches are used for sentiment analysis:
lexicon-based models and machine learning models. Correctly
identifying the sentiment of Tweets on a given day for a stock
is vital for the accuracy of this study. To achieve this, we used
VADER for its rapid processing capabilities and Zero-Shot Text
Classification for its nuanced understanding of sentiment. The
following subsections provide a detailed overview of each senti-
ment analysis model used in our hybrid approach.

VADER
The Valence Aware Dictionary and sEntiment Reasoner

(VADER) is a lexicon-based sentiment analysis tool designed
to analyze sentiment in social media text. It assigns scores
ranging from -4 to +4 to each word within a Tweet, where 0 is
neutral. VADER adjusts for various linguistic nuances, such as
punctuation and intensifiers, to improve accuracy. For instance,
exclamation marks amplify a word’s sentiment score, while
conjunctions like but shift the emphasis toward the words that
follow. This process concludes with a normalization step, which
converts the score to a range of -1 to 1, representing negative
(-1), neutral (0), and positive sentiments (1), respectively.

VADER is fast, lightweight, and interpretive, making it partic-
ularly suitable for the real-time processing of large text volumes.
However, its reliance on static word lists can limit its ability
to capture context-dependent meanings, sarcasm, or evolving
language trends, which are all common in financial and social
media texts. Despite these limitations, lexicon-based models
have been shown to perform reasonably well for general sen-
timent analysis tasks, especially when processing speed is a
priority13.

Zero-Shot Text Classification
Zero-Shot Text Classification is a sophisticated machine-

learning approach in NLP that enables text classification without
requiring labeled data. It leverages transformer-based Large
Language Models (LLMs) pre-trained on general language data
using masked language modeling (MLM). In MLM, portions of
the text are masked, and the model learns to predict the missing
words, which helps it build a nuanced understanding of language
structure and semantics. Through this process, Zero-Shot mod-
els learn to recognize and classify new text in various contexts
and categories, even without specialized training for specific
topics or sentiments.

Its flexibility makes Zero-Shot Text Classification especially
valuable for domains with complex, context-dependent senti-
ment like finance, where traditional models may struggle with-
out comprehensive labeled data14. However, its sophistication
comes at a cost: the models computational demands make it far
slower and more resource-intensive than other models.

To evaluate the models on their respective accuracies, 100
randomly selected Tweets about Tesla, Apple, and Ford were
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labeled and evaluated manually from the dataset. This sample
size follows established practices in sentiment analysis valida-
tion studies, with Krippendorff’s methodology indicating that
100-300 units are typically adequate for categorical analysis
and model comparison15. While larger samples would increase
statistical power, particularly for high-variance social media
data, 100 tweets provide sufficient data to reveal systematic
differences in the behavior of the models.

Manual annotations were employed to establish ground truth
for the classifications of the sentiment, following standard prac-
tices in sentiment analysis research where human evaluation
serves as the definitive benchmark for model comparison16,17.
Financial sentiment analysis particularly requires expert human
judgment due to the domain-specific nature of language and
context-dependent sentiment expressions16. This also serves
as a control and enables the identification of systematic dif-
ferences in model behavior, such as classification biases and
error patterns, which are essential for meaningful comparative
analysis18.

Each model was then used to predict the sentiment of the
hundred tweets, and their performance was evaluated using a
confusion matrix along with metrics such as precision, recall,
F1 score, support, and total accuracy, as summarized in Table 3.

Table 3
Type of
Tweet

Precision Recall F1 Score Support

Key VADER ZeroShot VADER ZeroShot VADER ZeroShot VADER ZeroShot
Positive
Tweets

0.67 0.67 0.04 0.84 0.08 0.74 50 50

Neutral
Tweets

0.27 0.75 0.93 0.11 0.42 0.19 28 28

Negative
Tweets

0 0.55 0 0.82 0 0.65 22 22

Accuracy 28% 63% 100%

As can be seen from Table 3, VADER outperforms ZeroShot
in neutral tweets; however, it struggles to classify negative
tweets as its F1 score is 0, whereas ZeroShot has very high
F1 scores for both positive and negative tweets, and higher
overall accuracy, indicating that it performs better overall.

Even though the 100-tweet validation sample represents a
small percentage of our total dataset, practical constraints lim-
ited our manual annotation capacity, primarily the time taken
by deep learning models to analyze the sentiment of tweets.
Although existing literature suggests larger samples may be
preferable for high-variance social media data15, our sample
size remains adequate for comparative model evaluation, as evi-
denced by the clear performance distinctions between VADER
and Zero-Shot Text Classification. The focus of our validation
was a relative comparison of the performance between sentiment
analysis models rather than an absolute estimation of the models
accuracy.

While Table 3 provides a summary of the models perfor-

mance, further understanding of the models predictive behavior
can be gained through confusion matrices, as seen in Table 4.

Table 4
Actual
Label

Predicted Label

Confusion
Matrices

Positive
Tweets

Neutral Tweets Negative Tweets

Key VADER ZeroShot VADER ZeroShot VADER ZeroShot
Positive
Tweets

2 42 48 1 0 7

Neutral
Tweets

1 17 26 3 1 8

Negative
Tweets

0 4 22 0 0 18

Table 4 shows that Zero Shot Text Classification can clearly
identify the contrast between positive and negative sentiments,
with a high number of true positives and true negatives; however,
it is not as cognizant of neutral sentiments given the high number
of misclassifications. On the other hand, VADER over-predicts
neutral sentiments, given the 60 overall misclassifications of
the model, providing an inconclusive analysis for the combined
model if used for sentiment analysis.

Despite their contrasting approaches, both models exhibit a
common weakness in classifying tweets as neutral. VADER
misclassified 48 out of 50 positive tweets as neutral and all 22
negative tweets as neutral, while Zero-Shot Text Classification
correctly identified only 3 out of 28 neutral tweets. This pattern
indicates that neutral tweets contain ambiguous expressions or
language that challenge both lexicon-based and transformer-
based approaches, which suggests the need for more sophisti-
cated contextual analysis or domain-specific training for finan-
cial social media content.

Though, the challenges faced by both our models in neutral
sentiment classification reflects a broader field-wide limitation in
financial sentiment analysis. Recent academic literature reveals
that neutral sentiment poses a unique challenge due to its context-
dependent nature in financial texts19, and this difficulty affects
both lexicon-based and state-of-the-art transformer architectures,
with a 2024 BERT applications review noting that the model
faces difficulties in detecting neutral sentiment20. Even fine-
tuned models, despite their differences and training, fall short
of identifying neutral sentiment21. Given that even fine-tuned
state-of-the-art models exhibit these limitations, we proceed
with our analysis acknowledging this inherent constraint in the
classification of financial sentiment data.

To verify the same, a histogram with a density curve overlay
was created to represent the distribution of errors in discrete
bins, wherein the height of each bar shows the frequency of
errors within a specific range, as seen in Figure 1.

This confirms our hypothesis, as from Figure 1 it is evident
that the errors in Zero-Shot Text Classifications predictions are
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concentrated around 0, with a sharp peak and relatively narrow
spread, indicating that the model is generally accurate for both
positive and negative tweets, but due to overanalyzing the nu-
ance and context of the tweets, rarely predicts neutral correctly.
Conversely, the error distribution for VADER has a wider spread
and a less distinct peak, indicating greater variability and more
frequent misclassifications made by VADER. Furthermore, the
right-skewed errors align with the poor F1 scores for negative
tweets and the over-prediction of neutral sentiments, as noted in
Table 4.

Fig. 1 Error distribution histograms comparing VADER and Zero-Shot
Text Classification. Zero-Shot shows a high accuracy, while VADER
displays wider distribution that indicates frequent misclassifications.

Time Series Models

Time series analysis is inherently complex and diverse, and can
exhibit a wide range of patterns, including linear trends, non-
linear trends, and dependencies across time points. Capturing
all these aspects is crucial for developing a robust forecasting
model, as a model that focuses only on one type of pattern might
miss important predictive signals present in others. To address
this variability, we have employed three different models in this
study: ARIMA for linear relationships, XGBoost Regressors
for capturing nonlinearity in the data, and LSTM for long-term
dependencies.

ARIMAAutoRegressive Integrated Moving Average
(ARIMA) is a linear time series model that models time series
data as a linear function of its past values (autoregressive terms),
past forecast errors (moving averages), and differencing to
make the series stationary. It’s particularly useful for univariate
time series data where trends and seasonality can be captured
using past observations and error terms.

ARIMA has three main components: the autoregressive (AR)
order p, the differencing order d, and the moving average (MA)
order q. The AR order p represents the number of past values
(lags) used to predict the current value, while the differencing
order d specifies how often the data must be differenced to
achieve stationarity. Stationarity refers to a time series whose
statistical properties (mean, variance, autocovariance) remain
constant over time. This is a prerequisite for ARIMA, as it

ensures reliable modeling without trends or seasonal patterns
that could skew results. Finally, the MA order q indicates the
number of past forecast errors incorporated in the model.

The differenced series can be obtained through the following
equation for the first difference (d=1), higher differences involve
differencing the series multiple times.

dt = Yt −Yt−1 (1)

Variables in Equation 1:

• dt is the differenced value at time t

• Yt is the original value of the series at time t

• Yt−1 is the original value at the previous time (t −1)

In terms of y, the general forecasting equation is similar to the
following:

yt = µ +φ1yt−1 + · · ·+φpyt−p −θ1et−1 −·· ·−θqet−q (2)

Variables in Equation 2:

1. yt represents the value of the time series at time t

2. µ is a constant that defines a baseline level in the series

3. φi defines the autoregressive coefficients for the lag i

4. θ j defines the moving average coefficients for the lag j

5. et− j is the error term at lag t− j, representing the difference
between actual and forecasted values at past time points

To optimize the aforementioned parameters, we start by test-
ing for stationarity using the Augmented Dickey-Fuller (ADF)
test. The ADF test is commonly used to determine whether a
time series is stationary by examining if it has a unit root. A unit
root is a statistical property indicating that shocks to the time
series have permanent effects, making the series nonstationary.
The ADF test reflects the stationarity of a dataset through the
p-value with a common threshold set to 0.05; if the p-value is
greater than 0.05, the data is nonstationary; and if the p-value is
less than or equal to 0.05, the data is stationary.

The following mathematical equation is standard to conduct
the ADF test:

yt = c+β t +αyt−1 +φ1∆yt−1 + · · ·+φp∆yt−p + et (3)

1. yt represents the value of the time series at time t

2. c represents the constant term or intercept added to the
regression model

3. β t representing the trend term, wherein β is the coefficient
of the trend variable, while t is the time

© The National High School Journal of Science 2025 NHSJS 2025 | 5



4. αyt−1 represents the autoregressive effect at the first lag

5. φi representing the coefficients of the dependent variable
∆yt−i

Our initial testing showed a p-value of 0.21, indicating the
dataset by itself was not stationary and needed to be differ-
enced for ARIMA to be used. To make the series stationary,
we applied first-order differencing, which reduced the p-value
to 0.0683. After applying a second differencing, the p-value
dropped further to 0.048, allowing us to conclude that d = 2
would be sufficient to achieve stationarity.

Once the series was stationary, we explored various values
of p (autoregressive terms) and q (moving average terms) by
trying several different combinations. Through this process, we
identified that the best-fitting model had parameters p = 1, d = 2,
and q = 0.

Fig. 2 ACF and PACF plots used to determine optimal ARIMA
hyperparameters. The ACF helps identify the order of MA terms,
while the PACF helps select AR terms.

To ensure best-fitted parameters, the differenced data was
graphically represented through an autocorrelation function
(ACF) and partial autocorrelation function (PACF), which dis-
play the correlation of a time series with itself at different lags.

As Figure 2 shows, the ACF and PACF graphs both show
spikes at the first few lags, after which a quick drop to 0, con-
cluding that our ARIMA model will be particularly effective
with low p and q values, which is how we have optimized the
model.

Table 5 shows a comparison between the root mean squared
error (RMSE), mean absolute error (MAE), and coefficients of
determination of unoptimized parameters (p=1, d=1, q=1) and
the optimized parameters (p=1, d=2, q=0). RMSE measures the
square root of the average squared differences between predicted
and actual values, penalizing larger errors more than smaller
ones. MAE is less sensitive to outliers than RMSE, as it cal-
culates the average absolute differences between predicted and
actual values.

The following are the formulae of MAE and RMSE, respec-
tively (Equations 4 & 5):

MAE =
1
n

n

∑
i=1

|yi − xi| (4)

MSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (5)

Here:

• yi represents the predicted value

• xi represents the actual value

• n represents the total number of data points

Table 5
Model RMSE MAE
ARIMA(1, 1, 1) Not optimized 268.26 268.11
ARIMA(1, 2, 0) Optimized 162.66 140.96

From the results shown in Table 5, it is evident that there
is a significant decrease in both the RMSE and MAE post-
optimization of the parameters, indicating better accuracy and
reduced errors.

In conclusion, ARIMA is a particularly effective model when
the data is stationary, as it models the relationship between
past values and errors. However, this assumption of linearity
limits its ability to capture other non-linear and seasonal patterns
in the data and necessitates additional preprocessing. Despite
these limitations, ARIMA was chosen for its ability to handle
linear trends, simplicity, and effectiveness as a baseline model,
allowing a comparison in performance to more advanced models
like XGBoost Regressors and LSTM.

XGBoost Regressors
Extreme Gradient Boosting (XGBoost) is a machine-learning

algorithm based on decision trees that has proven to be highly
effective for regression, classification, and time series forecast-
ing. XGBoost sequentially trains a collection of decision trees
wherein each new tree attempts to correct the errors made by
the previous one. Furthermore, XGBoost has built-in regular-
ization that improves model generalization, and it optimizes a
differentiable loss function through gradient descent.

The primary function of XGBoost is to minimize the objective
function. The objective function consists of a loss term and a
regularization term. The loss term represented by L is a loss
function like the mean squared error between the actual value yi
and predicted value pi. Additionally, K represents the number
of trees and Ω( fk) is the regularization term for each function
fk.

The following function is the general formula of an objective
function used in XGBoost regressors:

L(θ) =
N

∑
i=1

L(yi, pi)+Ω(θ) (6)

The regularization term exists to penalize the complexity of the
model and prevent overfitting by adding a cost for having too
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many large parameters. It is typically defined as:

Ω(θ) = γT + 1
2 λ

T

∑
j=1

w2
j (7)

Variables in Equations 6 and 7:

1. T is the number of leaves or nodes in the tree.

2. γ is the hyperparameter that controls the penalty for adding
more leaves or nodes in a tree. The larger this hyperpa-
rameter is, the more the model is penalized for having an
excess of leaves, meaning that the model is encouraged to
keep T small, leading to simpler trees.

3. w j is the weight of the jth leaf

4. λ is a regularization hyperparameter that controls the size
of the weights w j. A larger λ value discourages large
leaf weights, which prevents overfitting by discouraging
complex leaf structures that have larger weights that might
model noise.

In our implementation, XGBoost was configured with 100 es-
timators, max depth=3, learning rate=0.1, and incorporated
lagged features for up to 4 time steps.

In conclusion, XGBoost is a powerful model that excels at
capturing non-linear relationships and performing well on com-
plex datasets. Its ability to incorporate various types of input
data, including sentiment analysis, makes it ideal for predicting
stocks in hybrid models. Despite being computationally inten-
sive and requiring careful tuning to avoid overfitting, XGBoost
was chosen for its superior predictive performance, particularly
in handling large datasets with diverse features.

LSTM
Long Short-Term Memory (LSTM) is a type of recurrent

neural network (RNN) that is designed to model sequential data,
making it particularly well-suited for time series forecasting. It
can capture both short-term and long-term dependencies in the
data, overcoming the vanishing gradient problem in other RNNs.
Unlike other classical models like ARIMA or XGBoost, LSTM
is a deep learning model that automatically identifies complex
patterns in sequential data without the need for extensive feature
engineering or optimization. Due to these reasons, LSTM has
generally outperformed other time series models for stock return
predictions2.

The vanishing gradient problem occurs when gradients be-
come exponentially small during backpropagation, preventing
effective learning in deep networks. One prominent challenge
of deep learning models with several layers is the vanishing
gradient problem, which occurs due to the sigmoid and hyper-
bolic tangent functions as their derivatives fall between 0 and
0.25, and 0 and 1, respectively. This leads to extreme weights
becoming small, consequently causing the updated weights to

resemble the original ones. However, LSTM overcomes the
vanishing gradient problem by using three gates that regulate
the flow of information, namely the forget, input, and output
gates.

The following equations are of the different gates coupled
with the hidden state:

ft = σ
(
Wf · [ht−1,xt ]+b f

)
(8)

it = σ
(
Wi · [ht−1,xt ]+bi

)
(9)

ot = σ
(
Wo · [ht−1,xt ]+bo

)
(10)

ht = ot · tanh(Ct) (11)

Variables in Equations 8, 9, 10:

1. Wf ,Wi,Wo are the weight matrices for gates.

2. xt represents the input data at time step t.

3. ht−1 represents the previous hidden state.

4. σ is the sigmoid activation function, which outputs a value
between 0 and 1.

5. tan(h) is a hyperbolic tangent function that outputs a value
between -1 and 1.

6. b f ,bi,bo represent the bias terms for each gate

7. Ct represents the memory cell state at time t

For our study, the LSTM network was configured with two
layers (32 and 16 units), sequence length of 10 time steps, and
trained for 50 epochs. In conclusion, LSTM is one of the few
deep learning models that solves the vanishing gradient problem
through its gating mechanisms, enabling it to capture both short-
and long-term dependencies in the time series data, which is
why it was chosen.

Results & Discussion

Before combining the sentiment analysis and time series mod-
els, it is necessary to incorporate various technical indicators
(mathematical calculations based on historical price and volume
data) to gain a broader understanding of market trends. These in-
clude the 7-day and 20-day moving averages (MAs), which are
average prices over specified time periods; as well as the expo-
nential moving averages (EMAs), which are weighted averages
giving more importance to recent prices. The 7-day and 20-day
moving averages were selected based on established literature
in the field of technical analysis, because they fall within the
established timeframes for identifying short-term trends and the
momentum of a stock, respectively22,23. EMAs help smooth out
short-term fluctuations and place greater weight on more recent
data, allowing for better identification of long-term trends.
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To combine the different models that have been used together,
numerous feature sets were created by combining the sentiment
from either VADER or Zero Shot Text Classification with each
of the three distinct time series models, measuring RMSE and
MAE to evaluate the impact that sentiment analysis has on
traditional time series models.

The feature set includes solely the adjusted close prices as
a baseline to measure the impact of adding sentiment scores,
along with combinations of adjusted close prices and sentiment
scores derived through various methods. For Positive LLM,
tweets classified as positive about the stock were identified
using Zero-Shot Text Classification, capturing the influence of
positive sentiment.

Similarly, Neutral LLM and Negative LLM were created
by extracting scores for neutral and negative classifications,
respectively, using the same model. For Positive VADER, Neu-
tral VADER, and Negative VADER, scores were automatically
assigned by VADER for each analyzed text, requiring no ad-
ditional classification steps. These combinations allow for a
comprehensive analysis of the role of sentiment across different
methods in stock price forecasting.

The weighting scheme in equations 12-14 follows established
principles in behavioral finance where extreme sentiment signals
carry more predictive information than neutral classifications.
This approach aligns with prospect theory, which categorically
shows that investors exhibit stronger reactions to clearly positive
or negative information compared to ambiguous signals24,25.
Other studies have attributed this because extreme sentiment
events trigger disproportionate investor responses, with losses
having an even greater emotional impact than equivalent gains26.
Recent behavioral finance research confirms that investors over-
react to both positive and negative news while showing minimal
response to neutral information, validating our emphasis on
extreme sentiment values over neutral classifications27,28.

Sentiment scores convert the multi-class output of the senti-
ment analysis models into unified numerical values that can be
integrated as features in stock price prediction models. These
scores aggregate positive, neutral, and negative classification
probabilities into a single metric that quantifies the overall
emotional tone of the tweet. These scores are calculated as
a weighted combination of positive, neutral, and negative scores
with the following formulae:

S =
1
3
+

2
3

P if P ≥ N and P ≥ Ne (12)

S =−1/3−Ni f NPandNNe (13)

S = P−N (14)

otherwise (neutral is greater than both or balanced cases)
Variables in Equations 12, 13, 14:

1. S denotes the sentiment score.

2. P denotes the positive score

3. Ne denotes the neutral score

4. N denotes the negative score

The weighting parameters were designed to optimize the signal-
to-noise ratio in sentiment classification. Strong sentiment sig-
nals (positive/negative) inherently carry more predictive infor-
mation than neutral classifications, which often represent am-
biguous or low-confidence predictions. This weighing scheme
therefore amplifies extreme sentiment values while minimiz-
ing neutral ones, ensuring that the composite sentiment score
reflects the most informative aspects of the classification out-
put. This approach prevents neutral sentiment from diluting the
signal when clear positive or negative sentiment is present.

Model Performance Analysis

These sentiment scores were then integrated as additional fea-
tures in the machine learning models alongside traditional finan-
cial indicators. As shown in the feature sets, models receive both
the adjusted closing price and the calculated sentiment score
as input variables. For multivariate models like XGBoost and
LSTM, sentiment scores are treated as lagged features (up to 4
lags) and processed through the same gradient boosting frame-
work or neural network as the price data. This approach allows
models to learn the correlation between sentiment signals and
price movements, with the weighted sentiment formula ensur-
ing that strong emotional signals (positive or negative) receive
emphasis while neutral sentiment provides minimal influence.

The following Table (Table 6) displays the RMSE for all the
feature sets for TSLA, which shows a significant increase in
accuracy upon adding the sentiment scores.

Bold values indicate best performance per model. Percentage
improvements represent the proportional decrease in prediction
errors when sentiment features are added compared to using
stock prices alone.

For this analysis, we consider RMSE improvements >5% as
meaningful, while improvements >20% are considered substan-
tial.

The results from Table 6 highlight that sentiment analysis can
significantly enhance predictive accuracy for stocks with high
levels of public discourse, such as TSLA. The ARIMA model
demonstrated the most substantial improvement, with the RMSE
decreasing from 40.59 to 17.41 when incorporating sentiment
scores derived from Zero-Shot Text Classification, representing
a remarkable 57.1% improvement. Similarly, ARIMA integrated
with VADER reduced the RMSE from 40.59 to 20.45, a 49.6%
improvement.

Although the improvements in predictive accuracy for XG-
Boost and LSTM were less pronounced, there was still a slight
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Table 6
Feature Set (TSLA) RMSE of

ARIMA
RMSE of
XGBoost

RMSE of
LSTM

Adj Close 40.59 1.07 12.06
Adj Close, Positive
LLM

19.65 1.05 15.83

Adj Close, Positive
VADER

20.41 1.074 15.26

Adj Close, Neutral
LLM

21.41 1.069 14.42

Adj Close, Neutral
VADER

20.94 1.071 13.25

Adj Close, Negative
LLM

18.31 1.07 14.64

Adj Close, Negative
VADER

20.32 1.07 11.37

Adj Close, Senti-
ment Score LLM

17.41 1.063 11.21

Adj Close, Senti-
ment Score VADER

20.45 1.067 14.3

reduction in RMSE for both models when incorporating senti-
ment scores. For instance, the RMSE of XGBoost decreased
from 1.07 to 1.063, a minor 0.655% improvement, while the
RMSE of LSTM decreased from 12.06 to 11.21, a sizeable
7.05% improvement. This suggests that while sentiment analy-
sis has a more profound impact on simpler time series models
like ARIMA, it still provides minor benefits to more complex
models like XGBoost and LSTM, given that there is an adequate
amount of sentiment volume.

While ARIMAs absolute RMSE remains higher than that
of the other models, the relative improvement indicates it still
benefits from an integration with sentiment analysis.

Bold values indicate best performance per model. Percentage
improvements represent the proportional decrease in prediction
errors when sentiment features are added compared to using
stock prices alone.

The results from Table 7 indicate that sentiment analysis has
a noticeable impact on the predictive accuracy of the ARIMA
model for AAPL, though it decreases the accuracy for other
models such as XGBoost and LSTM. For ARIMA, incorporating
the sentiment scores derived from Zero-Shot Text Classification
reduced the RMSE from 31.18 to 9.11, an unexpected 70.8%
improvement.

In contrast, the impact of sentiment analysis on XGBoost
and LSTM was negative. Despite XGBoosts RMSE remaining
stable across all feature sets, hovering around 0.80, it increased
to 0.81 upon adding the sentiment scores of both VADER and
Zero-Shot Text Classification. This suggests that XGBoost, with
its ability to capture complex, non-linear patterns in the data,

Table 7
Feature Set (AAPL) RMSE

of
ARIMA

RMSE
of XG-
Boost

RMSE
of
LSTM

Adj Close 31.18 0.805 3.76
Adj Close, Positive
LLM

9.11 0.8 3.44

Adj Close, Positive
VADER

9.23 0.801 5.15

Adj Close, Neutral
LLM

9.2 0.805 4.64

Adj Close, Neutral
VADER

9.16 0.802 4.27

Adj Close, Negative
LLM

9.07 0.809 4.36

Adj Close, Negative
VADER

10.02 0.81 4.74

Adj Close, Senti-
ment Score LLM

9.08 0.81 4.62

Adj Close, Senti-
ment Score VADER

9.48 0.81 4.02

treats the sentiment scores as irrelevant noise. This leads to
a decrease in predictive accuracy, preventing the model from
achieving its highest potential. For LSTM, the results were more
nuanced. While the RMSE for Zero-Shot Text Classification
sentiment features was higher than that for VADER (4.62 vs.
4.02), this suggests an inverse correlation between the accuracy
of sentiment extraction and its impact on LSTM’s predictive
performance. In other words, more accurate sentiment scores
from LLMs appear to be misleading to LSTM, perhaps due to
the added complexity or misalignment between sentiment and
stock price movements, leading to an overall decrease in model
accuracy.

For a stock with a moderate number of tweets like AAPL,
sentiment analysis can have both positive and negative impacts
on predictive accuracy. While incorporating the sentiment scores
significantly improved the performance of simpler models like
ARIMA, their effect on more complex models such as XGBoost
and LSTM was negative. These results highlight the critical role
that the volume of public sentiment plays in the effectiveness
of sentiment analysis. Stocks with higher public discourse,
like TSLA, provide more reliable sentiment signals, which can
enhance model predictions, whereas those with moderate levels
of discourse may lead to more ambiguous or misleading results,
especially for more sophisticated models.

Table 8 displays the RMSE for all the feature sets for F,
which shows a significant decrease in accuracy upon adding the
sentiment scores:

Bold values indicate best performance per model. Percentage
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Table 8
Feature Set (F) RMSE

of
ARIMA

RMSE
of XG-
Boost

RMSE
of
LSTM

Adj Close 5.54 0.87 1.43
Adj Close, Positive
LLM

5.87 0.87 1.91

Adj Close, Positive
VADER

10.47 0.87 1.8

Adj Close, Neutral
LLM

6.06 0.87 1.04

Adj Close, Neutral
VADER

7.91 0.87 1.38

Adj Close, Negative
LLM

7.27 0.87 0.78

Adj Close, Negative
VADER

7.46 0.87 1.58

Adj Close, Senti-
ment Score LLM

5.41 0.87 2.023

Adj Close, Sen-
timent Score
VADER

7.49 0.87 1.419

improvements represent the proportional decrease in prediction
errors when sentiment features are added compared to using
stock prices alone.

Building upon the analysis of Apple (AAPL), the results for
Ford (F) shown in Table 8 further emphasize the importance
of the volume of public sentiment on the effectiveness of senti-
ment analysis. For ARIMA, the RMSE decreased from 5.54 to
5.41 when adding sentiment scores derived from Zero-Shot Text
Classification, representing a minor improvement. However,
this is a far smaller improvement compared to the more substan-
tial gains observed for both TSLA and AAPL, indicating that
no matter how accurate the models used for sentiment analysis
are, a moderate volume is at least required for significant im-
provements in model performance. Furthermore, upon adding
sentiment scores derived from VADER, it resulted in a slight
increase in RMSE, from 5.54 to 7.49, indicating that inaccuracy
in sentiment analysis when there is already a scarce amount of
sentiment data is detrimental for the overarching accuracy of the
model.

In the same vein, Zero-Shot Text Classification consistently
outperformed VADER across the other stocks, indicating that the
sentiment analysis method chosen and its accuracy are crucial.
Transformer-based models like Zero-Shot Text Classification
excel in capturing context, nuance, and even sarcasm in tweets,
resulting in more accurate sentiment extraction. Consequently,
these sentiment features significantly improve predictive perfor-
mance, particularly for models such as ARIMA, XGBoost, and

LSTM when applied to high-discourse stocks.
For XGBoost, there were no significant changes in RMSE in

all feature sets, likely because the volume of sentiment was so
low that the noise was not large enough in volume to change
the accuracy, whereas in the case of AAPL, the amount of pub-
lic discourse was greater, therefore reducing the accuracy of
XGBoost. This also supports our hypothesis, which states that
sentiment analysis is most useful for stocks with high public dis-
course. Likewise, the inverse relationship between the accuracy
of tweets analyzed in sentiment analysis and the performance of
LSTM persists.

Furthermore, the mathematical integration of sentiment scores
as additional features demonstrates that the effectiveness of sen-
timent analysis depends critically on discourse volume. For
high-discourse stocks like TSLA, the lagged sentiment features
provide meaningful predictive signals that enhance model ac-
curacy, with XGBoost and LSTM able to learn complex re-
lationships between sentiment patterns and price movements.
However, for low-discourse stocks, sparse sentiment data intro-
duces noise that degrades performance, particularly in simpler
models like ARIMA that treat sentiment linearly.

Feature Correlation

To understand feature relationships for our models, we examined
correlations between sentiment features and adjusted closing
prices across all three stocks.

Figure 3 presents correlation heatmaps that reveal distinct
patterns across discourse levels that explain our model perfor-
mance differences. For Tesla (Figure 3a), sentiment features
show meaningful differentiation in their relationships with ad-
justed close prices. Positive LLM correlates at 0.84, Negative
LLM at 0.84, while Positive VADER shows 0.87 and Nega-
tive VADER at 0.96. This variation in correlation coefficients,
ranging from 0.84 to 0.96, shows that different sentiment fea-
tures capture distinct aspects of market behavior. The diversity
in these correlations means each feature provides unique in-
formation to the models, which allows them to learn different
patterns and relationships, resulting in substantial accuracy im-
provements as the varied correlation patterns enable the models
to extract complementary signals from multiple dimensions of
sentiment.

For Apple (Figure 3b), correlations show reduced differentia-
tion than Tesla, as the correlations are clustered from the range
of 0.92 to 0.97. This smaller variation in correlation coefficients
limits the unique information each sentiment feature can provide,
resulting in more modest accuracy improvements compared to
Tesla. It also explains why Apple shows smaller improvements
from sentiment analysis.

For Ford (Figure 3c), correlations cluster tightly around 0.97
1.00 across all sentiment features. Unlike the other stocks,
Positive LLM, Positive VADER, Negative LLM, and Nega-
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TSLA

AAPL

F
Fig. 3 Correlation heatmaps for (a) Tesla, (b) Apple, and (c) Ford
showing relationships between sentiment features and adjusted closing
prices.

tive VADER all show nearly identical correlations with adjusted
close prices. This uniformity in the correlations indicates that
a sparse volume of tweets fails to generate meaningful senti-
ment differentiation. These near-perfect correlations suggest
the sentiment features are essentially capturing the same under-
lying price patterns rather than independent sentiment signals,
meaning they become redundant with the price data itself. This
redundancy explains why our models show either minimal in-
creases or even slight decreases in accuracy for Ford, caused by
the sentiment features mirroring the stock price data too closely,
which creates noise rather than a signal and confuses the models
that expect independent predictive information. This inevitably
leads to overfitting on false correlations.

Furthermore, Fords sentiment analysis may be unreliable
due to extremely low tweet volume (31 tweets across a year).
This scarcity of public sentiment implies that several trading
days would lack any sentiment data, which would lead to noise

propagation, meaning that all sentiment-derived predictions for
Ford should be interpreted cautiously.

The correlation heatmaps confirm our hypothesis, as they
show that a high volume of discourse enables diverse sentiment
signals that enhance prediction, while low volumes of discourse
produce redundant signals that do not offer any predictive ad-
vantage.

Confounding Variables

Several external factors beyond just sentiment could have influ-
enced the results during the time in which the study was con-
ducted (September 2021 to September 2022). This is because
the timeframe chosen included major events such as changes in
the Federal Reserves interest rate, concerns about inflation, the
long-term impact of COVID-19, which still impacted markets,
and the acquisition of Twitter by Elon Musk. For Tesla specifi-
cally, its CEO, Elon Musk’s tweets and business announcements
create a unique externality, in which his statements can instantly
affect both general public sentiment and stock prices, making it
difficult to distinguish between cause and effect.

While no study can fully isolate the effects of sentiment analy-
sis from these systematic confounding variables, the differential
performances across low, moderate, and high discourse stocks
suggest that sentiment volume itself plays a notable role beyond
these confounding factors.

Additionally, our study lacks comparison with modern and
established baseline methods in financial sentiment analysis and
stock prediction. These industry-standard approaches, including
analyst consensus forecasts, traditional econometric models,
or established sentiment analysis benchmarks, would provide
more information to critically evaluate the performance of the
models. The lack of these comparisons limits our ability to make
a generalized conclusion of our findings relative to existing
market prediction methods.

Conclusion

This study demonstrates that sentiment analysis can significantly
enhance the accuracy of stock price predictions, but its effec-
tiveness relies on the level of public discourse surrounding the
stock. For stocks like TSLA, which have tens of thousands
of Tweets about them in one single year, sentiment features
derived from Zero-Shot Text Classification led to a substantial
57.1% improvement in ARIMAs accuracy and a considerable
21.6% average improvement in accuracy for the three models.
This validates the hypothesis that sentiment analysis is most
beneficial when the volume of public sentiment is high. On the
other hand, for stocks with less than 1000 tweets, like Ford, the
impact of sentiment analysis was negligible, even detrimental
for some models, which highlights the limitations and reliability
of sentiment analysis when used for smaller stocks.
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Furthermore, this study also emphasizes the importance of
model choice, while ARIMA showed the most improvements
due to the addition of sentiment analysis, XGBoost consistently
had the highest accuracy due to its ability to capture complex
and nonlinear trends in the dataset. This underscores the need
for careful integration of sentiment analysis, particularly for
complex models like LSTM, which may struggle with nuanced
inputs from advanced sentiment models. Not to mention that
the model used to conduct sentiment analysis is also vital for
accuracy, as Zero-Shot Text Classification consistently outper-
formed VADER due to its transformer architecture and ability
to understand context and nuances within tweets.

These findings have significant implications for financial fore-
casting. They suggest that hybrid models combining sentiment
analysis and market data are most effective for stocks with high
levels of public attention, wherein the public discourse provides
meaningful signals. However, for stocks with limited public sen-
timent, traditional quantitative models will remain more stable.

Nevertheless, this study is not without limitations; the reliance
on tweets as a measure of public sentiment is incomplete as it
excludes other sources like news articles and broader public
forums. Additionally, the analysis was limited to three stocks
over a one-year period (2021-2022), which may not capture the
full spectrum of market dynamics across different sectors and
time periods. Specifically, this one-year period analysis raises
concerns about potential overfitting to specific market conditions
or temporal bias, as the models were not trained or validated
across different market cycles or economic environments, which
limits our ability to deduce general rules or trends observed as
they may not apply to varying markets.

In the same vein, this study focuses on next-day predictions
only, without exploring long-term forecasting accuracy, lag ef-
fects of sentiment, or cross-validation across different time peri-
ods. This limits our insight into the long-term effects of senti-
ment. Future research should explore multi-horizon forecasting
to understand the persistence of sentiment and patterns over
longer time periods than one day. Furthermore, future research
could also expand the dataset to include more diverse stocks
and explore alternative sentiment sources such as news articles,
public forums, or other social media applications. Moreover,
future research should also consider exploring other dynamics
of sentiment, such as momentum or decay, as it would provide
deeper insights into how these factors impact the predictive
accuracy of the models.

From an ethical perspective, this research raises important
ethical issues, most notably regarding the enabling of market
manipulation through sentiment analysis, particularly due to the
prevalence of automated bot accounts on social media. Not to
mention that using social media content for financial predic-
tions raises data privacy issues. Lastly, sentiment-based trading
systems create unfair advantages for individuals and institu-
tions with advanced analytics capabilities that can capture large

amounts of public sentiment over retail investors. This stark
inequality could contribute to market instability.

Additionally, developing adaptive models that automatically
weight or filter sentiment features appropriately based on the
volume of public discourse available thresholds could optimize
performance across stocks with varying levels of public atten-
tion.

The implementation of the models and the dataset is
publicly available in the following GitHub Repository:
https://github.com/nigamanthsrivatsan/HybridStockForecasting

In conclusion, the study contributes to the understanding of
how sentiment analysis interacts with traditional forecasting
models, providing a framework for combining qualitative and
quantitative data in financial prediction. Demonstrating the im-
portance of public discourse volume and model selection paves
the way for more nuanced approaches to market forecasting.

Abbreviations

• NLP: Natural Language Processing

• VADER: Valence Aware Dictionary and sEntiment Rea-
soner

• LLM: Large Language Models

• MLM: Masked Language Modeling

• ARIMA: AutoRegressive Integrated Moving Average

• AR: AutoRegressive

• MA: Moving Average

• EMA: Exponential Moving Average

• ADF: Augmented Dickey-Fuller

• RMSE: Root Mean Squared Error

• MAE: Mean Absolute Error

• LSTM: Long Short-Term Memory

• RNN: Recurrent Neural Network

• XGBoost: Extreme Gradient Boosting

• AI: Artificial Intelligence
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