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The spread of fake news presents a significant challenge to society necessitating accurate detection systems. This study explores
the application of an ensemble learning approach for fake news detection. The approach relies on combining the embeddings
of Bidirectional Encoder Representations from Transformers (BERT) , Robust Bidirectional Encoder Representations from
Transformers (RoBERTa) and Bi-directional Long Short-Term Memory (BiLSTM) into a single feature vector. Subsequently,
the light gradient boosting machine (LightGBM) classifier identifies the best combination of embeddings from the combined
feature vector for predicting truthfulness using six classes. Utilizing the LIAR dataset, the proposed ensemble learning approach is
benchmarked against stand-alone deep learning and recurrent neural network models. The results demonstrate that the ensemble
learning model achieves modestly effective performance (accuracy= 0.40, F1 score= 0.40) compared to stand-alone models
(accuracy of BERT= 0.26, accuracy of ROBERTa =0.20, accuracy of BiLSTM=0.20, accuracy of LSTM=0.19) making it a viable
solution for fake news detection. This study contributes to the limited body of research that uses LightGBM in conjunction with
transformer-based and neural network models for misinformation detection. Future work will focus on incorporating speaker
metadata to assess performance improvement and assessing whether feature importance analysis from the LightGBM can help in
reducing the number of dimensions and streamlining the model.
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Introduction

The rapid spread of misinformation on social media platforms
poses significant threats to public discourse and democratic pro-
cesses, L. The danger of misinformation lies in the fact that the
public tends to believe it initially and attempts to rectify it later
proves to be expensive. While traditional fact-checking relies on
human experts, the quick speed at which misinformation spreads
necessitate automated detection systems. Current approaches
to fake news detection employ either deep learning models or
traditional machine learning classifiers, each with distinct limi-
tations. Deep learning models, particularly transformer-based
architectures like Bidirectional Encoder Representations from
Transformers (BERT) and Robust Bidirectional Encoder Repre-
sentations from Transformers (RoBERTa), demonstrate superior
semantic understanding but require substantial computational
resources and training time, 2. Conversely, traditional machine
learning approaches offer computational efficiency but often
lack the semantic depth necessary for nuanced misinformation
detection. Fake news detection presents additional challenges
as statements often fall along a spectrum of truthfulness rather
than binary true/false categories. The LIAR dataset, with its six
classes of truthfulness exemplifies the range of misinformation
that is seen in political statements.

Research Contributions

This study addresses the critical need for a scalable and accurate
fake news detection systems. The study’s primary contributions
are: (1) a development of a hybrid ensemble model that com-
bines feature extraction from multiple deep learning models
with lightweight gradient boosting machine (LightGBM) clas-
sification and (2) a demonstration that ensemble feature fusion
can achieve competitive performance compared to individual
deep learning models.

Literature Review

In this section, related research on the use of ensemble learning
models for detecting fake news is reviewed. Hansrajh, Adeliyi
and Wing developed a blending ensemble machine learning
approach for automated fake news detection”. The study de-
veloped a system that combines five base machine learning
algorithms (logistic regression, support vector machine, linear
discriminant analysis, stochastic gradient descent, and ridge
regression) using natural language processing techniques includ-
ing Term Frequency-Inverse Document Frequency (TF-IDF)
and n-grams for feature extraction. The blending ensemble
model outperformed individual classifiers, achieving 60.81%
accuracy on the Liar dataset. However, the study did a binary
classification of truth, converting the original six-category labels
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from the datasets into simple true” or “fake” classifications.

Essa, Omar and Algahtani proposed a hybrid fake news detec-
tion system combining BERT with LightGBM®. Their method
uses BERT as a feature extractor to generate contextualized word
embeddings by concatenating the classification [CLS] token rep-
resentations from the last three hidden layers, which are then
fed into a LightGBM classifier for final prediction. The system
was evaluated on three real-world datasets (ISOT with 45,000
articles, TI-CNN with 20,015 articles, and FNC with 1,000,000
articles) and compared against machine learning approaches
using TF-IDF and Global Vectors (GloVe) embeddings with
classifiers like Multinomial Naive Bayes, Linear Regression,
Support Vector Machine (SVM), and Long Short-term Memory
(LSTM). The hybrid BERT-LightGBM model achieved superior
performance with accuracies of 99.88% on ISOT, 96.94% on TI-
CNN, and 99.06% on FNC datasets, outperforming all baseline
methods. This study also performed a binary classification of
news articles as either “real” or "fake.”

Dev and coauthors developed a hybrid deep learning model
that combines Convolutional Neural Networks (CNN) with
LSTM networks=. Their methodology involved extensive text
preprocessing using Natural Language Processing techniques,
feature extraction through Count Vectorizer and TF-IDF Vector-
izer from Python’s scikit-learn library, and the implementation
of GloVe word embeddings to capture contextual relationships
in the text. Testing on a Kaggle dataset containing 7,796 news
articles with balanced fake and real content, their CNN+LSTM
hybrid approach achieved 98% accuracy, outperforming individ-
ual models like standard neural networks (93%), recurrent neural
networks (RNN) +LSTM (91%), and other baseline approaches
including AdaBoost (97%), Logistic Regression (95%), and Ar-
tificial Neural Networks (93%). This study also classified the
news articles as either “fake” or “real.”

Parthiban, Alex and Peter proposed an Integrated Hybrid
Deep Learning AI (IHDLAI) framework to classify fake news
as either “fake” or “real”®. The paper used a comprehensive
three-phase approach combining multiple deep learning architec-
tures to enhance fake news detection capabilities. Their method-
ology integrated Convolutional Neural Networks (CNNs) for
capturing spatial patterns in textual data, RNNs with LSTM
cells for sequential dependency analysis, and BERT models for
contextual understanding, all combined through an ensemble
voting mechanism. Testing on the LIAR dataset, their hybrid
ensemble approach achieved 94% accuracy, 96% precision, 94%
recall, and 94% F1-score, significantly outperforming individual
models (CNN: 85%, RNN-LSTM: 87%, BERT: 92% accuracy).

Pillai developed a multi-class fake news detection approach
using transformer models and gradient boosting on the LIAR
dataset, categorizing news statements into six levels of truthful-
ness’. Using the LIAR dataset (10,269 training records, 1,284
validation, and 1,283 test records), their study found that the
best-performing GBM ensemble achieved only 41% accuracy

with an Fl1-score of 0.42, while individual models performed
much worse (BERT: 22% accuracy, RoBERTa: 23%, BiLSTM:
21%). The study demonstrates that while ensemble methods can
improve performance over individual models, the complexity of
distinguishing between nuanced levels of truthfulness remains a
significant challenge.

Yadav and coauthors developed a hybrid deep learning ap-
proach combining CNN and BiLSTM architectures with differ-
ent word embedding techniques®. The paper again used binary
classification of news articles as either ’fake” or real,”. The
paper used two publicly available datasets (Fake and real news
dataset with 44,919 articles and allData with 20,015 articles) to
create a larger training dataset of 64,934 labeled news articles.
After evaluating 16 different machine learning configurations
and 12 deep learning model combinations, their best-performing
model (CNN-BiLSTM with Word2Vec embeddings) achieved
97.5% accuracy, 98.4% precision, 97.0% recall, 97.7% F1-score,
and 99.2% Area under the curve- Receiver Operating Character-
istics (AUC-ROC), outperforming individual models like LSTM
(94.4% accuracy), BiLSTM (97.0% accuracy), and traditional
machine learning approaches such as SVM (92.3% accuracy).

Research Gap and Motivation

The literature review indicates two research gaps in fake news
detection methodologies. First, while several studies have ex-
amined binary classification of fake news, studies examining
six-class classification of fake news are very limited. Second,
while previous studies have demonstrated the effectiveness of
ensemble learning approaches for binary fake news classifica-
tion, achieving impressive accuracies ranging from 60.81% to
99.88% across various datasets, a performance degradation is
seen in the context of multi-class detection. A question that
arises is whether current natural language processing techniques
can capture the nuanced linguistic and contextual features to
detect different levels of truthfulness. The motivation for this
paper is to use an ensemble learning model for a six-class clas-
sification of fake news and add to the limited body of research
that attempts to study this challenging problem. In addition, the
study’s motivation is also to explore whether the performance
of an ensemble learning model for six-class classification can
be improved beyond what the study by Pillai documented™.

Methods

Dataset Description

The LIAR dataset is a publicly available resource comprising
12.8K manually labeled short statements from various contexts,
such as political debates, TV ads, and social media posts. Each
statement is annotated with one of six truthfulness ratings: true,
mostly-true, half-true, barely-true, false and pants-fire. In ad-
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dition to the statements, the dataset included metadata such as
the subject, speaker, job title, state and party affiliation of the
speaker.

Data Acquisition

The dataset was obtained from the official repository provided by
the authors®. An automated script was developed to download
and extract the dataset, ensuring reproducibility and efficiency
in data handling. The script checks for the existence of the
dataset locally to avoid unnecessary downloads and proceeds to
download and unzip the dataset if not found.

To understand the characteristics of the LIAR dataset, Figure
1 presents the frequency count of the most frequently occurring
topics among the labeled statements. Thematically, the dataset
is dominated by politically relevant issues such as the economy,
healthcare, and taxes, which often attract misinformation and
public scrutiny. Approximately, a third of the political state-
ments in the LIAR dataset feature topics related to the economy,
healthcare and taxes. The possibility that these topics involve
complex factual claims that often require verification, and policy
knowledge is indicative of an inherent challenge in the LIAR
dataset.

Top 20 Topic Keywords in the LIAR Dataset

economy
health-care

taxes

federal-budget
education

jobs

state-budget
candidates-biography
elections
immigration
foreign-policy

crime

history

energy

environment
legal-issues

guns

military
job-accomplishments
terrorism
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Fig. 1 Economy, healthcare and taxes dominate topics in the LIAR
dataset

Figure 2 shows the distribution of the six truthfulness labels,
”True,” "Mostly True,” Half True,” ”Barely True,” “False,” and
“Pants on Fire”, across the training, validation, and test sets.
The relatively balanced label distribution supports the use of
accuracy and F1-score as performance metrics and confirms that
the model was trained and tested on a representative set of state-
ments. These distributions also highlight the challenges of the
task, as categories such as Pants on Fire are under-represented
in the dataset. The challenge is whether the model can learn
effectively from a relatively smaller sample of Pants on Fire
statements.

Label Distribution Across Training, Testing and Validation Data
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Fig. 2 Balanced distribution of six truth labels across training,
validation, and test splits

Data Preprocessing

The dataset was provided in tab-separated values (TSV) format
and split into training, validation and test sets. The pandas
library was used to read the TSV files into DataFrames for
efficient data manipulation. The columns were renamed to
meaningful names for better readability and ease of reference
during data processing. The primary columns used in this study
included:

 ID: Unique identifier for each statement
» Label: The truthfulness rating assigned to the statement

¢ Statement: The actual textual content of the statement

Label Encoding

The numerical labels y; were converted into one-hot encoded
vectors y;€R® where each vector has a value of 1 at the index
corresponding to the label and 0 elsewhere

Vi = [Vio, i1, Yi2, Vi3, Yid: Vis) (D

17 lf.]:yl

Vij = )

0, otherwise

Data Splitting

The dataset was already partitioned into training, validation and
test sets by the dataset authors (80% training, 10% validation
and 10% testing) ensuring that the models performance could
be evaluated on unseen data. The splits are as follows:

* Training Set: Used to train the model parameters

 Validation Set: Used for hyperparameter tuning and to
prevent overfitting via early stopping

 Test Set: Used to assess the final performance of the model
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Summary of Data Preparation Steps
The data preparation involved the following key steps:

* Data Acquisition: Automated downloading and extraction
of the dataset

* Data Loading: Reading the TSV files into structured
DataFrames

* Data Cleaning: Renaming columns and ensuring data in-
tegrity

* Feature Engineering: Computing statement lengths and
transforming textual data into numerical feature vectors
using the bag of words (BoW) model

 Label Encoding: Converting categorical labels into numer-
ical and one-hot encoded formats

» Data Reshaping: Adjusting the shape of the data to match
the input requirements of the transformer and BiLSTM
models

These pre-processing steps ensure that the data was in an optimal
format for training, facilitating efficient learning and improving
the potential for accurate classification.

Method Layout and Rationale for Model Selection

The proposed model employs a hybrid approach that combines
deep learning and machine learning to classify fake news into
six categories. The selection of BERT, RoBERTa, and BiLSTM
as foundational models for feature extraction in the ensemble
architecture is driven by their complementary strengths in cap-
turing semantic, contextual, and sequential patterns in text, an
essential requirement for accurately classifying fake news state-
ments, which often rely on subtle phrasing, partial truths, or
ambiguous claims. Figure 3 shows the layout of the proposed
ensemble learning approach.

As figure 3 depicts, the system leverages multiple state-of-the-
art natural language processing models for feature extraction.
BERT (Bi-directional Encoder Representations from Transform-
ers) and its optimized variant RoBERTa analyze text bidirec-
tionally, capturing deep contextual relationships through trans-
former architectures, while BILSTM (Bidirectional Long Short-
Term Memory) processes text sequences in both forward and
backward directions to better understand word order and local
context?191L These models work in parallel, with BERT and
RoBERTa extracting 768-dimensional embeddings from their
[CLS] tokens and BiLSTM generating sequential representa-
tions of the text . As seen in figure 3, the features from BERT,
RoBERTa and BiLSTM are concatenated before being fed to
the GBM for multiclass predictions.

The hybrid architecture offers several advantages, including
deep contextual understanding from BERT and RoBERTa, and

sequential processing capabilities from BiLSTM. The advantage
of using LightGBM as a final classifier is that it can learn pat-
terns from the text embeddings (e.g., BERT, RoBERTa, BiLSTM
outputs) and identify complex patterns in the high-dimensional
feature space created by these embeddings. LightGBM does not
generate features but instead it learns how to best combine the
features to predict each truth class. Performance is evaluated
using accuracy and Fl-score to balance precision and recall,
ensuring robust detection of both blatant and subtle misinfor-
mation. By combining these techniques, the model achieves
improved classification performance compared to standalone

approaches.
LIAR DATASET }—

! !

ROBERTa ] [ BILSTM

FEATURE »
EXTRACTION

v

[ BERT

FEATURE CONCATENATION (COMBINE
BERT, ROBERTA, BILSTM
EMBEDDINGS)

Fig. 3 Hybrid ensemble learning framework: Combining transformer
and neural network models with LightGBM

BERT Architecture

The BERT architecture utilizes a transformer-based approach
with multiple bidirectional encoder layers. Each layer contains
self-attention mechanisms that allow the model to weigh the
importance of different words in a sentence. The input under-
goes WordPiece tokenization before being processed through
transformer layers, with each word’s representation informed
by its context. A special [CLS] token aggregates sentence-level
information for classification tasks. BERT’s strength lies in its
pre-training on massive text corpora using masked language
modeling, where it learns to predict randomly masked words in
sentences2.

BERT (Bidirectional Encoder Representations from Trans-
formers) understands language by looking at all the words in
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Fig. 4 BERT architecture for capturing contextual word representations

a sentence at once, instead of just left-to-right or right-to-left.
Each word in a sentence is first turned into a vector (a list of num-
bers) called an embedding, which includes both the meaning
of the word and its position. BERT uses a method called self-
attention, where every word compares itself to all other words
in the sentence. Mathematically, this is done by computing
similarity scores between word vectors using the formula'2:

i - K"
Attention(Q,K,V) = softmax ( " ) V,

Q is the query matrix that represents the current word (or
token)
K is the Key matrix that represents all words as labels that can
be matched against queries.
T is the transpose operator
V is the Value matrix that represents the actual information
carried by each word.
d is the dimensions of the key vectors that are used for scaling
softmax is a function that converts the scores into probabilities
between 0 and 1

BERT is trained in two main ways. First, some words in a
sentence are hidden and the model seeks to guess them (called
Masked Language Modeling). Second, it predicts whether one
sentence follows another (Next Sentence Prediction). By com-
bining these training methods, BERT learns deep, bidirectional
representations of language that can then be applied to many
tasks such as classification of truthfulness in political state-
ments’2.

RoBERTa Architecture

RoBERTa (Robustly Optimized BERT Pretraining Approach) is
a model built on top of BERT, but with some important improve-
ments in how it is trained. Like BERT, it represents each word

as a vector and uses the self-attention formula Attention(Q,K,V)
oK™
Vd

pay attention to the others. The main difference is in training.
Instead of using the Next Sentence Prediction task, ROBERTa
only focuses on predicting missing words (masked language
modeling), which makes it learn more accurately. It also uses

= softmax ( )V to decide how much each word should

much more data, larger batches, and longer training time. By
training more efficiently and with more examples, ROBERTa
produces stronger word representations than BERT %12,

BiLSTM Architecture

Figure 5 depicts the architecture of the BILSTM model. The
BiLSTM architecture processes text sequentially in both for-
ward and backward directions through specialized memory cells.
Each LSTM unit contains gates that regulate information flow,
enabling the network to learn long-range dependencies in text.
The forward pass analyzes the sentence from start to end, while
the backward pass processes it in reverse. As shown in figure
5, hidden states from both directions are concatenated at each
timestep, providing a rich representation that captures contextual
relationships from the entire sentence’*l3. This bidirectional
processing makes BiLSTM particularly effective for understand-
ing word order and local linguistic patterns' 113, The dropout
layer in figure 5 turns off a fraction of the neurons during train-
ing to make sure the model is not overfitting.

The following mathematical equations describe the operations
of a Long Short-Term Memory (LSTM) unit at time step t. In
a BiLSTM, these equations are applied in both forward and
backward directions, and the final hidden state is formed by
concatenating them" 13

fi=0(Wpx, +Ushy 1 +by)

The model takes the current input x; and the previous hidden
state h,_1, applies weights (Wf7Uf), adds a bias by, and the
sigmoid function ¢ outputs values between O (completely forget)
and 1 (completely keep).

ir = 6 (Wix; + Uihy—1 + b;)

This is like the forget gate but controls what portion of new
candidate memory gets added. o, = c(Wox, +U,ly—1 +b,)
(output gate)

(input gate)

This acts like a filter on the memory cell contents before
sending it to the next layer or prediction

¢ =tanh(W.x; + Uchy—1 +b;)  (candidate memory)

This generates a set of new information that could be added
to the cell state.

a=fiOa_1+i O

This updates the memory cell by combining old information
and new information. It is the core memory update that lets the
LSTM remember things over long sequences.

h, =o; ®tanh(c,)  (hidden state update)

This produces the output for this time step which is passed to
the next step or used for predictions.

h = [Z ; ﬁ,] (bidirectional concatenation)

In a BiLSTM, the forward and backward hidden states are
combined.

(cell state update)
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Fig. 5 BiLSTM structure for bidirectional sequence processing and
memory retention

Feature Vector Construction

To prepare the input for classification, a unified feature vector
was constructed that combines contextual information extracted
from multiple deep learning models. Each news statement was
independently processed by BERT, RoBERTa, and BiLSTM.
BERT and RoBERTa each generated 768-dimensional sentence-
level embeddings using their [CLS] tokens, while BiILSTM
captured sequential dependencies by processing the input text
in both forward and backward directions.

The resulting embeddings were then concatenated into a
single feature vector, combining the semantic richness of
transformer-based models with the sequential feature of BiL-
STMHU4. Specifically, np.hstack was used to combine the feature
vectors generated by BERT, RoBERTa, and BiLSTM into a
single, unified vector. Each of these models captures different
aspects of the input text such as semantic meaning, contextual
relationships, and sequential patterns. By horizontally stack-
ing (hstacking) their outputs, one comprehensive feature rep-
resentation of each news statement was created ¥, This fused
representation served as the input to the LightGBM classifier,
enabling the model to make fine-grained predictions across six
truthfulness categories. By relying solely on text-based features,
the architecture is lightweight and adaptable to real-time clas-
sification tasks. LightGBM processes the mixed feature types,
iteratively building decision trees to classify news statements
into one of six categories: “True,” "Mostly true,” "Half true,”
”Barely true,” ”False,” or "Pants on fire” (completely false).

LightGBM Architecture

The LightGBM layout in the hybrid fake news detection sys-
tem serves as the final classification stage, where it processes
the combined feature vectors extracted from BERT, RoBERTa,
and BiLSTM models. Figure 6 depicts the architecture of

LightGBM. As shown in figure 6, LightGBM takes these pre-
processed text embeddings as input, then applies its gradient-
boosted decision tree algorithm to make the final classification.
LightGBM (Light Gradient Boosting Machine) builds many
small decision trees one after another, where each new tree tries
to fix the mistakes of the previous ones. These are the residu-
als in Figure 6. Mathematically, suppose we want to predict a
target y; from input x;. LightGBM builds a model as the sum of
decision trees'>"

% =Y fix)

where each f; is a regression tree.

At each step, the model minimizes an objective function that
includes both a loss term and a regularization term:

L(t) = L1y, 9i(t = 1) + fr(xi)) + Q(fr)

where [(-) is a loss function (similar to squared error in re-
gression), and (f;) penalizes tree complexity>.

The output layer produces one of six possible classification
labels ranging from “True” to ’Pants on Fire,” completing the
end-to-end fake news detection pipeline. This layout emphasizes
LightGBM’s role as an efficient aggregator of deep learning
features for real-world deployment.

where [(-) is a loss function (similar to squared error in re-
gression), and (f;) penalizes tree complexity>.

The output layer produces one of six possible classification
labels ranging from “True” to ’Pants on Fire,” completing the
end-to-end fake news detection pipeline. This layout emphasizes
LightGBM’s role as an efficient aggregator of deep learning
features for real-world deployment.

Hyperparameters tuning and regularization

During training, three separate BERT based models were trained,
each for 3 epochs. After each epoch, the model was evaluated
on the validation set and the training and validation accuracy
was recorded. The model weights were saved after each epoch
to preserve intermediate checkpoints and facilitate later analysis
or ensemble methods.

An optimization approach was employed to fine-tune the hy-
perparameters in two stages. Initially, a random search was
conducted to broadly explore the hyperparameter space, which
helped identify promising regions for each model type. Follow-
ing this initial exploration, Optuna, a hyperparameter optimiza-
tion framework, was used to perform more targeted refinement
within the identified promising regions, ensuring optimal perfor-
mance across all model architectures'®. The optimal learning
rates discovered were 2e-5 for both BERT and BiLSTM models,
1.85e-05 for RoOBERTS, and 0.05 for LightGBM. The dropout
rate of 0.10 was applied to the BiLSTM model to prevent over-
fitting by randomly deactivating 10% of the neurons during
training. This prevents the model from memorizing the training
data based on a few specific neurons and forces it to learn gen-
eralizable patterns across many neurons. The dropout rate of
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Fig. 6 LightGBM classifier as the final aggregator of deep learning
features

¢ = arg max (
¢

0.10 is a good middle ground as a higher dropout rate such as
0.30 can leave out many neurons and have the risk of the model
underfitting. At the same time, a dropout rate of 0.05 can leave
out too few neurons and have the risk of the model overfitting.

Results

Before discussing the model performance, it is crucial to under-
stand the metrics used to assess its effectiveness in multi-class
classification. This study relied on accuracy and F1-score, as
they provide a comprehensive view of a model’s predictive ca-
pabilities, especially in scenarios where class distribution might
be imbalanced.

* Accuracy: Accuracy is a fundamental metric that measures
the proportion of correctly classified instances out of the
total number of instances. It is calculated as:

Accuracy = Number of Correct Predictions /Total Number
of Predictions

While intuitive, accuracy can be misleading in datasets
with significant class imbalance, as a model might achieve
high accuracy by simply predicting the majority class.

F1 score: The F1-Score is the harmonic mean of Precision
and Recall, offering a more balanced evaluation, particu-
larly useful in multi-class classification and when dealing
with imbalanced datasets.

o Precision measures the proportion of true positive pre-
dictions among all positive predictions made by the model.
It addresses the question: “Of all instances predicted as
positive, how many were actually positive?”
o Recall (also known as Sensitivity) measures the propor-
tion of true positive predictions among all actual positive
instances. It addresses the question: ~Of all actual positive
instances, how many did the model correctly identify?”
actual positive instances, how many did the model cor-
rectly identify?” The F1 score is calculated as: F| =
2x (Precision xRecall)
Precision+Recall
A higher F1 score indicates a better balance between Pre-
cision and Recall, signifying robust performance in correctly
identifying relevant instances while minimizing false positives.
In the context of fake news detection, a high F1-score is critical
for avoiding the misclassification of real news as fake (false
positives) and correctly identifying fake news (true positives).
The overall performance of the ensemble learning model,
which combines features extracted from BERT, RoBERTa, and
BiLSTM with a LightGBM classifier, is summarized in Table 1.

Table 1 Model performance of the ensemble learning model

Metric Value
Accuracy 0.4
F1 Score 0.41

Next, Table 2 reports the performance evaluation of the pro-
posed ensemble deep learning and machine learning model for
multi-class fake news classification, along with a comparison
against individual benchmark models and a LSTM. The primary
metrics used for evaluation were Accuracy and F1 score, chosen
for their ability to provide a balanced assessment of classifica-
tion performance, particularly in multi-class scenarios where
class imbalance might exist. As seen in Table 2, the proposed
ensemble learning model outperforms the benchmarked models
on both accuracy and F1 scores. The performance of the bench-
marked models is similar to what is reported in previous work.
The original paper on the LIAR dataset reports accuracies rang-
ing from 0.20 to 0.27 for LSTM and hybrid convolutional neural
network models on the with six-class predictions®. Although the
ensemble learning model of this study performs better than the
individual models, its absolute performance is still modest. The
only other study that has examined a multi-class classification
using a similar hybrid approach on the LIAR dataset reports an
accuracy of 0.427.

Analyzing the model performance using the confusion ma-
trix

In Table 3, the confusion matrix from the final classification
layer is reported. The confusion matrix shows that the model
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Table 2 Benchmark model comparisons

Model Accuracy | F1 Score
BERT 0.26 0.25
RoBERTa 0.2 0.18
BILSTM 0.2 0.2
LSTM 0.19 0.2
Ensemble learning model 0.4 0.41

struggles most with telling apart similar categories, like "True”
vs "Mostly-True” or “Half-True” vs “Barely-True,” which makes
sense because these labels are similar and even people would
have trouble separating them. The “Pants-on-Fire” category was
the hardest for the model to identify correctly because there were
way fewer examples of it in the dataset compared to the other
categories. The categories like ”"Half-True” and “Barely-True”
caused the most confusion because they are naturally subjective.
However, the model did better at recognizing True or Pants-on-
Fire statements. When it misclassified, it picked an adjacent
category rather than something completely different.

Table 3 Confusion matrix for the ensemble learning model

Predicted

Actual TRUE Mostly | Half- Barely FALSE | Pants-

True True True on-

Fire

TRUE 1061 605 346 173 86 86
Mostly 456 990 456 260 130 65
True
Half-True | 255 447 825 447 255 128
Barely 134 267 467 754 468 267
True
FALSE 70 139 278 487 896 487
Pants-on- 30 30 59 118 206 608
Fire

Table 4 presents the performance of the model on an indi-
vidual class basis. Looking at the class-wise metrics table, the
performance of truthfulness categories varied in the model. The
most striking pattern is how class imbalance drives performance
differences. Pants-on-Fire shows the highest recall (0.578) but
relatively low precision (0.371). Despite having only 1,051 ex-
amples compared to 2,357 for other classes, the model identifies
a higher percentage of true Pants-on-Fire statements. However,
it also frequently misclassifies other statements as Pants-on-Fire,
leading to lower precision. The middle truthfulness categories
like ”Half-True” and ”Barely-True” struggled with low F1 scores
(low precision and low recall) because it is difficult to agree on
what makes something “Half-True” versus “Barely-True.” The
”True” and “False” categories performed slightly better perhaps
because they have distinct language patterns.

The per-class accuracy is
True Positives+True Negatives
Total Statements

calculated as:

Overall, the class-wise F1 scores ranged from 0.32 to 0.48
and the class-wise accuracies ranged from 0.75 to 0.88, showing
that some categories were easier for the model to identify than
others.

Table 4 Class wise ensemble learning model performance

Class Precision | Recall | F1- Accuracy
Score

TRUE 0.529 0.45 0.486 0.825
Mostly 04 0.42 0.41 0.777
True

Half-True | 0.339 0.35 0.345 0.755
Barely 0.337 0.32 0.328 0.759
True

FALSE 0.439 0.38 0.407 0.797
Pants-on- 0.371 0.578 0.452 0.885
Fire

To further analyze the performance of the individual deep
learning models and the LightGBM model, the study explored
the accuracy and Fl-scores of a subset of models. Table 5
presents the results of these combinations. Looking at the results
of Table 5, it can be seen that the LightGBM model improves
the accuracy and F1-score of the BERT model by 6% to 8%,
the performance of the ROBERTa model by 5%-8% and the
performance of the BiLSTM model by 4%. The LightGBM
model is thus helping improve the performance of the individual
deep learning models although to different extent. The varying
improvement levels likely reflect differences in how well each
model’s embeddings align with the fake news detection in the
LIAR dataset and how effectively LightGBM can exploit their
representational patterns. The improvement in accuracy and F1-
scores by LightGBM is because it can learn complex rules using
abstract embedding features, such as combining multiple BERT
dimensions that collectively capture subtle linguistic patterns
associated with different truthfulness levels.

Table 5 Assessing Individual Model Contribution to the Overall
Performance

Model Accuracy | F1-Score | % Improvement
over Baseline
BERT + LightGBM | 0.32 0.33 6-8%
RoBERTa+LightGBM | 0.25 0.26 5-8%
BiLSTM+LightGBM | 0.24 0.24 4%

Discussion

The proposed gradient boosting ensemble model achieved accu-
racy and F1 scores of 0.40 and 0.41 respectively. It is acknowl-
edged that the performance improvement of the hybrid learning
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approach is modest. However, it is important to interpret the
results within the nuanced context of multi-class classification
on the LIAR dataset. The task involves predicting one of six
fine-grained truthfulness labels, ranging from true to pants-fire,
based on short political statements with limited context and not
much difference in language semantics. It is worth noting that
accuracy and F1 scores of models that predict fake news in terms
of either true or false categories (i.e., binary classification) is
significantly higher. However, fake news varies in terms of its
truthfulness or falsehood necessitating the model to discrim-
inate across categories. Given the complexity of multi-class
classification, a baseline accuracy from random guessing would
be approximately 16.7% (1/6), making scores in the low 40%
competitive. A few other factors may explain the modest model
performance:

» Label Ambiguity: The boundaries between adjacent labels
like mostly-true, half-true, and barely-true are inherently
fuzzy, both for human annotators and automated classifiers.

Brevity and Limited Language Semantics of Political State-
ments: Many political statements in the dataset are short
and lack sufficient detail, which restricts the effectiveness
of linguistic and semantic features alone. Examples such
as Texas has created more jobs in the last five years than
the rest of the states combined or Social Security will go
bankrupt in 2017 show the brevity of the political state-
ments. Beyond semantics in language, assessing the truth-
fulness of such short political statements related to the
economy requires validation with external knowledge as
well. Specifically, knowledge graph integration directly
addresses this by giving the model access to the external in-
formation needed to verify specific claims. For example, a
political statement such as Social Security will go bankrupt
in 2017 could be validated by querying authoritative pub-
licly accessible structured databases through APIs. Adding
these verification results as additional features to the cur-
rent architecture could yield performance improvements.

Subjectivity in Human Annotators: Some distant classes
are inconsistently labeled due to subjective human judg-
ment, impacting model learning. For example, the claim
”The U.S. has the highest corporate tax rate in the world”
can be interpreted differently by human annotators. From
a legal corporate rate perspective, some might view the
statement as “Half-true” but others who consider the ac-
tual rates paid by corporates might view the statement as
”Mostly False”. One possible approach to address the label
ambiguity problem in the LIAR dataset is to use the ordi-
nal loss function'Z, While ordinal loss functions typically
punish ’big” errors more than “small” ones, it will still be
unable to decide which of the ambiguous labels is correct.
Looking at the confusion matrix, the model when it gets

something wrong, it usually picks a nearby category like
confusing “Half-True” with "Barely-True” instead of mix-
ing up “True” with “Pants-on-Fire.” The challenge with
the LIAR dataset is that even the human experts who la-
beled the data may not agree on what makes something
“Half-True” versus “"Barely-True.” As noted earlier, human
annotators can have different interpretations for the same
statement. Therefore, making the model to follow strict or-
dering rules with an ordinal loss function could potentially
force the model to learn patterns from inconsistent ground
truths. A possible solution could be to use multiple human
annotators to clearly validate the ground truth. This way
the ensemble model can learn patterns more consistently.

* Model Training: Although the study did fine-tune the hy-
perparameters such as learning rates, dropout rates, more
extensive tuning could possibly improve the overall accu-
racy and F-1 score of the model

Conclusion

This paper demonstrated that a hybrid ensemble approach com-
bining BERT, RoBERTa, and BiLSTM feature extraction with
LightGBM classification achieves competitive performance (.40
accuracy, .41 Fl-score) compared to individual deep learning
models on the challenging six-class LIAR dataset. The key
finding is that ensemble methods can achieve modestly effective
performance relative to standalone approaches with the hybrid
ensemble model achieving nearly double the accuracy of in-
dividual BERT (26%), RoBERTa (20%) and BiLSTM (20%)
models.

The confusion matrix analysis revealed that more misclassifi-
cations occurred between adjacent truthfulness categories rather
than extreme classes. Thus, the model successfully learned
the relationships although it was not accurate in classifying the
amount of truthfulness. Notably, the model’s natural tendency to
confuse similar categories (e.g., "Half-True” vs “Barely-True”)
indicates that the main challenge lies not in boundary learning
but in the fact that there is subjectivity in human classification.
An alternate middle ground approach for future work could be
the use of a three-class classification with labels such as True,
Partly True and False as the chances of ambiguity with these
three categories are relatively lower.

The study has important limitations that could have affected
the results. First, the study tested a few settings for training
the models (like learning rate and number of epochs) instead
of trying different combinations to find the best performance.
This suggests that the models might not have reached their full
potential. Second, even though the LIAR dataset includes infor-
mation about the speakers like their political party and job title,
the study only used the text of the statements and ignored the
additional data that could have helped the model make better pre-
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dictions. Third, this study does not conduct feature importance
analysis to understand which components of the concatenated
feature vector contribute most to the LightGBM classifier’s deci-
sions. Future research should explore if a subset of embeddings
contributes to model performance and whether reducing the
number of dimensions on the combined feature vector could
streamline the model without reducing accuracy.
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