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This study explores the extent to which machine learning can predict an individual’s likelihood of believing and sharing online
right-wing misinformation based on different demographic and personality features. Using data from a 2020 survey of over 2500
respondents, we build Random Forest and XGBoost machine learning models with various classification approaches. Our top
models achieved F1-scores 0.80 %+ 0.02 for predicting sharing and 0.73 4 0.04 for predicting belief. Model analysis reveals
that high levels of conservatism, low levels of openness, US residency, and having previously shared misinformation are strong
predictors of belief and sharing. While men are more likely to share than women, their likelihood of belief is relatively the same.
Younger age increases likelihood of belief, but age didn’t affect sharing behaviour. Media literacy and post characteristics (i,e.,
authoritativeness, consensus) have minimal impact on the model’s predictions. This study presents a unique approach of using Al
to predict interactions with misinformation based primarily on an individual’s characteristics, highlighting the potential of using
Al to inform targeted interventions.
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Introduction

While there once may have been clarity, many scholars have
painted contemporary politics as being post-truth’. That is, it
becomes increasingly difficult to distinguish fact from fiction,
especially considering the widespread dissemination of fake
news and misinformation. Fake news, now synonymous with
false information, is defined by the Collins English Dictionary
as “false, often sensational, information disseminated under the
guise of news reporting”.

Social media has become a powerful tool for misin-
formation dissemination due to factors such as confirma-
tion bias, accessibility, and believability I In a 2023
survey. https://today.yougov.com/politics/articles/45855-
americans-distinguish-real-fake-news-headline-poll), over 50%
of adults reported seeing false information on a daily basis. The
pervasiveness of false information has recently surged as a re-
sult of the COVID-19 pandemic. The internet saw a rise in
public panic and buy-in to false information such as the use
of industrial bleach as a cure, a phenomenon now coined as
an infodemic’?. Misinformation has become a pressing issue
condemned by numerous organizations, including the European
Union, which has addressed fake news as potentially “threat-
eningdemocracies, polarizing debates, and putting the health,
security, and environment of the EU at risk”™.

Considering the ubiquity of misinformation and its detrimen-

tal impacts, it thus becomes paramount to understand the factors
that contribute to the likelihood that an individual will share
and/or believe it.

The design of social media platforms contributes to the spread
of misinformation. Ceylan, Anderson, and Wood’s 2023 re-
search suggests that misinformation sharing is largely habitual,
arising from the accessibility of sharing features (ie. the arrow
below the post). A lack of negative consequences for sharing
misinformation, and the lack of reward structures for engag-
ing with factual information, is also a factor causing habitual
misinformation-sharing to arise.”. Social media algorithmic
designs contribute to the political polarization and construction
of echo chambers, which has been found to increase the spread
of misinformation, for instance in the dissemination of health
misinformation in the midst of COVID-199.

The spread of misinformation can be explained by a number
of psychology theories. The framework of Motivated Reasoning
suggests that misinformation can be used to confirm preexisting
beliefs or directional goals”. Social Identity Theory suggests
that group affiliations may also motivate unconscious misinfor-
mation sharing®. Studies find that ideologically extreme internet
users are more likely to share and believe content aligning with
their own ideology®. A 2023 study suggests that misinformation
was more likely to be shared if viewers had been exposed to it
in the past?.

Recent advances in misinformation research have utilized
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transformer-based modelling, many which use natural language
processing (NLP) approaches. Alghamdi, Lin and Luo (2023)19
built Bidirectional Encoder Representations from Transformers
(BERT) and neural network structures to detect COVID-19 mis-
information based on textual features, achieving a high level
of predictive power. Similarly, Ahmad et al. (2020)!' used
various ensemble methods and machine learning models to clas-
sify fake news articles to >90% accuracy. A literature review
by Rini Anggrainingsih, Hassan and Datta (2024)12 describes
that transformers excel at identifying misinformation on plat-
forms as they convert textual data to numerical data. While NLP
misinformation-text related research is abundant, there have
been far fewer transformer-based studies investigating the per-
spective of viewer behaviour when exposed to false information,
with a general research gap in terms of understanding: “under
which circumstance are individuals more vulnerable to misinfor-
mation and/or fake news?”13. This question is worthy of study
as it provides actionable insights for online interventions.

To answer this question, a recent study, Buchanan (2020
used linear regression analysis on psychology study data to ana-
lyze factors impacting misinformation resharing, finding that be-
lief that the stories were likely true and prior familiarity with the
stories were the biggest predictors of sharing the right wing false
information. There are a number of key limitations of Buchanan
(2020)’s% work: the research only examined the Likelihood of
Sharing misinformation, not factors influencing whether misin-
formation is perceived as true. Additionally, Buchanan (2020)14
relies on hypothesis testing and multi-regression analysis, lack-
ing predictive power (R2 = 42%). Finally, in treating likelihood
of believing as an input variable to model against Likelihood of
Sharing, we also see potential data leakage.

Based on the above limitations, we utilize the same dataset
as Buchanan (2020)"# in this study to gather new insights. We
aim to build a machine learning model that can take a variety
of features, such as personality and media literacy, to predict
the likelihood of an individual to share and believe right-wing
misinformation on social media. We will also use the model to
understand and quantify the contribution of the various features
that influence an individual’s interactions with misinformation.

We build on Buchanan (2020)’s work in a few essential ways:

)14

1. Buchanan (2020) relies on simple linear multi-regression
methods. Comparatively, we aim to build models with
predictive capacity that can be generalized to new data.
Regression analysis also often assumes linear relationships,
whereas machine learning algorithms can capture more
complex, nonlinear relationships. Our machine learning
method can thus yield unique insights and predictive capa-
bilities beyond Buchanan’s regression analysis.

2. We treat likelihood of belief and Likelihood of Sharing
as independent outcomes to avoid the possibility of data
leakage and to explore how each can be predicted without

relying on information about the other variable.

3. We will investigate methods to handle data imbal-
ance between believers/non-believers as well as between
sharers/non-sharers.

4. Finally, we conduct feature importance analysis to provide
information on both local and global rigorous and inter-
pretable estimates of feature importance, which regression
coefficients cannot provide.

Dataset

In our study, we employed an open access dataset'#. The study
was conducted over a series of 4 online surveys. Participants in
each study were shown 3 different pieces of right-wing misinfor-
mation, specifically on topics regarding terrorism and immigra-
tion. Participants rated their Likelihood of Sharing the post and
the likelihood the message was accurate and truthful. Although
Buchanan (2020)4"s study explored the impact of misinforma-
tion on different social media platforms (Facebook, Instagram,
Twitter), they found no significant statistical difference in misin-
formation sharing and belief behaviour between platforms. We
thus combined the data from different social media platforms to
increase statistical power. We acknowledge that this approach
introduces the possibility of obscuring subtle, platform-specific
variations that could influence user behaviour. The survey in-
cluded questions on participants’ demographic features, as well
as questions measuring the individual based on the New Me-
dia Literacy Scale L the Social and Economic Conservatism
Scale'l®, and a Five-Factor personality questionnaire"”.

Our dataset has 2634 rows and 119 columns, of which only
2579 rows were kept due to missing data. Missingness was
generally limited (<1% for all variables), though slightly more
prevalent in the New Media Literacy Scale variable. After con-
firming no evident patterns in these missing responses across
demographic groups, we opted for deletion rather than impu-
tation given the small overall proportion of incomplete cases
(2.1%) and the challenges of reliably imputing subjective scale
responses. Each row represents a unique participant. Of the 119
columns, 19 were kept as input columns as shown in Table 1.
The 19 variables in Table 1 contain key demographic features
and aggregates of certain survey questions, allowing for better
interpretability of results. The target columns of this experiment
were the Likelihood of Sharing, and the likelihood of believing
misinformation.

Likelihood of Sharing is a measure of the likelihood a user
would share the post containing misinformation. Of the 3 posts
participants were shown, they were asked to rate the Likelihood
of Sharing each post on a scale of 1 to 11, this variable is a sum
of those 3 responses. Likelihood of believing is a measure of
how much the user believed the post’s information to be accurate
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and truthful on a scale of 3 to 15. Of the 3 posts participants
were shown, they were asked to rate the likelihood of believing
the post on a scale of 1 to 5, this variable is a sum of the 3
responses. Table 1 consolidates the description and ranges of all

input and output variables used in our study.

Table 1 Input features and output target descriptions

Variable Name

Description

Range

Likelihood of Shar-
ing (output)

Total self-reported Likelihood Rating of Shar-
ing 3 Sample Misinformation Items

3-33

Likelihood of believ-
ing (output)

Total self-reported Likelihood Rating of Believ-
ing 3 Sample Misinformation Items

3-15

Gender

The gender of the respondent: 1 (Male), 2 (Fe-
male), 3 (Other), 4 (Prefer not to say)

Country

Country of residence: 1 (US), 2 (UK)

Education

1 (Less than High School), 2 (High School / Sec-
ondary School), 3 (Some post-school College or
University education), 4 (College or University
undergraduate degree), 5 (Master’s Degree), 6
(Doctoral Degree), 7 (Professional Degree (JD,
MD))

Age group

Age band the participant falls into: 1 (18-29), 2
(30-39), 3 (40-49), 4 (50-59), 5 (60-69), 6 (70+)

Occupation

Self-described occupational status. 1 (Em-
ployed for wages), 2 (Self-employed), 3 (Unem-
ployed but looking for work), 4 (Home-maker),
5 (Student), 6 (Retired), 7 (Unable to work for
health or other reasons)

Political orientation

Participants self-described political orientation
1 (left), 2 (centre), 3 (right)

sm-_usage

Participants estimate of how frequently they
visit or use a social media platform. 1 (Sev-
eral times a day), 2 (About once a day), 3 (A
few times a week), 4 (Every few weeks), 5 (Less
often), 6 (Not at all)

shared _found_later

‘Whether the participant had in the past shared
political misinformation they didn’t realise was
false at the time: 0 (no), 1 (yes)

shared_while_knowing

‘Whether the participant had in the past shared
political misinformation they knew was false at
the time: 0 (no), 1 (yes)

Authoritative

Experimental manipulation: participants were
exposed to posts from sources of various credi-
bility: 0 (unauthoritative), 1 (authoritative)

Consensus

Experimental manipulation: markers of high or
low consensus associated with the number of
likes on a post: 0 (no consensus), 1 (consensus)

Openness

One of the 5 factor personality traits: how open-
minded, creative, and insightful an individual
is.

Neuroticism

One of the 5 factor personality traits: how
moody, sad, or emotionally unstable an indi-
vidual is

Extraversion

One of the 5 factor personality traits: how as-
sertive, gregarious, outgoing an individual is.

Conscientiousness

One of the 5 factor personality traits: how re-
sponsible, goal-directed, rule-following an indi-
vidual is.

Agreeableness

One of the 5 factor personality traits: how kind,
cooperative, considerate, polite an individual is.

7-35

Conservatism

The level of an individuals social and economic
conservatism.

0-1200

Total NMLS

The individual’s new media literacy score mea-
sures their ability to access, analyze, evaluate
and communicate media information.

35-175

Some limitations of the data stem from the survey’s exper-
imental design. As respondents were only exposed to three

specific pieces of right-wing misinformation, we cannot provide
definitive insight into how people interact with left-wing misin-
formation, or misinformation in general. In addition, reference
bias, defined as “systematic error arising from differences in the
implicit standards by which individuals evaluate behavior”18,
could affect the reliability of some self-reported data. Further-
more, as the data was collected in 2019-2020, our research
doesn’t account for how misinformation may have evolved since
then, for example with the rise of Al deep fakes. Finally, the
respondents were all from the United States and the United
Kingdom, so the data does not accurately reflect on the entire
world.

Contextual factors are also important to note. The misinfor-
mation posts shown to subjects were presented in the form of
news headlines, which may not generalize to other forms of
online content. Users in the experiment were also told, contex-
tually, that “a friend of yours recently shared this, commenting
that they thought it was important and asking all of their friends
to share it”. The framing of this post as being from a friend
may generate a social desirability bias-driven response due to
an artificial signal of trust!?. Other contexts of receiving misin-
formation, for instance from an unknown source, may bring rise
to differing user behaviour.

Exploratory Data Analysis

In this section, we explore the distribution of data, and under-
stand the relationships between variables. The trends observed
in this section are solely based on the given dataset.

Figure 1 shows the kernel density estimation (KDE) distribu-
tions of our target variables, Likelihood of Sharing and likeli-
hood of believing. As shown, Likelihood of Sharing is positively
skewed, with a mode value of 3, a median value of 5, and an
average value of 8.99 (Figure 1A). This indicates that the major-
ity of respondents are unlikely to share. Likelihood of believing
is also skewed positively, but less so than Likelihood of Shar-
ing. Likelihood of believing has a mode of 3, average of 6.7,
and median of 6 (Figure 1B). This shows that the majority of
respondents believe that the posts are unlikely to be true.

(A) Likelihood of Resharing Distribution (B) Likelihood of Believing Distribution

Density

H
=
Density
(
)

o s 2 > » 2 4 o s o 2

Likelihood of Resharing Misinformation Likelihood of Believing Misinformation

Fig. 1 Likelihood of Sharing and the likelihood of believing
misinformation distributions

Figure 2 shows the Spearman correlation between variables.
The correlation matrix reveals that Likelihood of Sharing and
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Likelihood of Believing are correlated with each other with a
correlation coefficient of 0.63.

Likelihood of Sharing does not share high correlation coeffi-
cients with any input features. Among the highest correlation
pairs are Likelihood of Sharing and country (0.36), Likelihood
of Sharing and conservatism (0.32), Likelihood of Sharing and
shared_while_knowing (0.28) and Likelihood of Sharing and
shared_found_later (0.27). Likelihood of Believing is also not
highly correlated with any input variable. The highest correla-
tion pairs are Likelihood of Believing and conservatism (0.35),
Likelihood of Believing and country (0.28), and Likelihood of
Believing and openness. (-0.26)

No collinearity between the input features is observed in this
dataset. The highest correlation pairs include: conservatism and
openness (-0.41), shared_while_knowing and shared_found_later
(0.36), neuroticism and extraversion (-0.37), agreeableness and
conscientiousness (0.49), agreeableness and neuroticism (-0.34).

Spearman Correlation Heatmap
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Fig. 2 Spearman correlation matrix between variables

The relationships between Likelihood of Sharing and a few
key variables are shown in Figure 3. For Figures 3A-3D, we plot
the percentiles of likelihood of believing, openness, neuroticism,
and conservatism against Likelihood of Sharing to better visual-
ize the relationships. We calculate the percentile ranking of the
traits, convert them into percentages, then calculate the mean
Likelihood of Sharing for each percentile increment. For Figures
3E-3H, the mean Likelihood of Sharing is plotted against input
categorical variables gender, sm_usage, shared_found_later, and
shared_while_knowing.

Figure 3B shows that openness and Likelihood of Sharing
have a generally negative relationship, whereas the relationships
between Likelihood of Sharing and Likelihood of Believing
(Figure 3A) and conservatism (Figure 3D) are positive. The
relationship between Likelihood of Sharing and neuroticism

is ambiguous (Figure 3C). Figure 3E also reveals that men
are more likely to share than women. Additionally, Figure 3F
suggests that those who use social media less often are more
likely to share the misinformation. Finally, those who had
previously knowingly or unknowingly shared misinformation
are shown to be more likely to share misinformation than those
who hadn’t (Figure 3G-H).

Row 1: Continuous Traits

of Resharing by () Mean Likelihood of Resharing by

(D) Mean Likelihood of Resharing by

Liketihood of Befieving Percentie Openness percentie Conservatism ercentie

Row 2: Categorical Traits

(F) Mean Likelihoo of Resharing by
am usage

(6) Mean Likelihood of Resharing by (6) Mean Likelihood of Resharing by
Gender shared found later

Fig. 3 Relationships betwéen Likelihood of Sharing and key input
variables

(H) Mean Likelihood of Resharing by
Shared. while knowing

Mean Likeinood of Resharing

Mean Likelinood of Resharing

snared_uhile_knowing

Figure 4 illustrates the relationships between Likelihood of
Believing and other key variables. Likelihood of Believing
shares a negative relationship with openness (Figure 4A) and
agreeableness (Figure 4B), and has a positive relationship with
conservatism (Figure 4C). Additionally, the data suggests that
men are slightly more likely to believe right wing misinforma-
tion than women (Figure 4D), and that individuals who use
social media less frequently are more likely to believe the mis-
information (Figure 4E). Furthermore, there is a negative rela-
tionship between Likelihood of Believing and age (Figure 4F),
with those in the older age group being less likely to believe the
right-wing misinformation. Finally, those who had previously
unknowingly shared misinformation are found to be more likely
to believe the provided misinformation (Figure 4G).

We also plot the relationships between key input variables
(Figure 5) to further understand the dataset. We found that
openness and conservatism have a negative relationship. Those
more right leaning were found to have lower levels of open-
ness (Figure SA-B). Country and conservatism were also found
to have a relationship within this dataset (Figure 5C), where
those from the US had a higher mean conservatism rating as
opposed to those from the UK. Agreeableness and extraversion
were found to have a slightly positive correlation (Figure 5D).
Neuroticism and extraversion (Figure SE) as well as neuroticism
and conscientiousness display a negative relationship (Figure
5F)
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Row 1: Continuous Traits
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Fig. 5 Relationships between input variables

Methodology

Data Pre-Processing

Due to the data’s self-reported nature, users’ exact numeric re-
sponses may be subject to reference bias. Treating this as a
classification problem allows for increased interpretability and
aligns more with real-world goals of targeting users for inter-
vention. We acknowledge the risk of information loss through
dichotomization, but decided on this method for its practical
applicability for decision making.

The next question that arises is: where should the thresh-
olds be drawn? As there is no universal method of selecting
thresholds, and thus follow through with multiple approaches
as shown in Table 2. For each output variable, we split the data
into 2 classes as well as 3 classes. When splitting into 2 classes,
we attempt two different thresholds. One threshold is chosen
based on the mean value of all responses (mean Likelihood of
Sharing is 9, mean Likelihood of Believing is 6). This is be-
cause it represents the central tendency of data and aligns with
common practice in ordinal data analysism'. The other threshold

is chosen based on the midpoint value of the range as it provides
a neutral reference for classification and ensures an equal-range
splitlz_2|

When splitting the data into 3 categories, we set thresholds
by evenly splitting the range into thirds to maintain equal-width
intervals to maintain balance in analysis, an important factor in
data analysis as research has shown23. The purpose of introduc-
ing a “neutral” class was to understand the factors determining a
user’s ambivalence towards a piece of misinformation, as these
stakeholders could be crucial targets for online intervention.

Table 2 Threshold choices and their descriptions

Target Variable Threshold(s) Description
Likelihood of | <9: unlikely to share Threshold is cho-
Sharing,  Likeli- | >9: likely to share sen based on mean

hood of Sharing
(range 3-33)

value of Likelihood
of Sharing

Threshold is cho-
sen based on mid-
point of Likelihood
of Sharing range

<15: unlikely to share
>15: likely to share

Two thresholds are
chosen to divide the
Likelihood of Shar-
ing scale into three
equal parts

<13: unlikely to share
13 < and <23: neutral
>23: likely to share

Likelihood of
believing, Likeli-
hood of Believing
(range 3-15)

Threshold is chosen
based on mean value
of likelihood of be-
lieving

<6: dont believe to be true
>6: believe to be true

Threshold is chosen
based on midpoint
of likelihood of be-
lieving range

<8: dont believe to be true
>8: believe to be true

<7: dont believe to be true
7< and <11: neutral
>11: believe to be true

Two thresholds are
chosen to divide the
likelihood of believ-

ing scale into three
equal parts

Models and Evaluation Metrics

Hyperparameter tuning

To achieve the best model performance, we tune the models
according to their various hyperparameters. Hyperparameters
are important properties that define the machine learning pro-
cess, influencing factors such as model complexity and learning
rate. In this process, we use grid search, a method that tries
every possible combination of hyperparameters, to find optimal
results2%, We implement grid search with parameters stratified
cross_validation=3" and weighted F1 scores to address the data
imbalance.

For Random Forest, we adjust three key hyperparameters
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(Table 3): n_estimators, which is the number of decision trees in
the forest; min_samples_split, which sets the minimum number
of samples required to split an internal node; and max_features,
which defines the maximum number of features to consider
for the best split. Increasing n_estimators generally enhances
accuracy but may lead to longer training times. Modifying
max_features influences the diversity of trees, and adjusting
min_samples_split can help prevent overﬁtting. With 18 input
features, we intentionally chose a wide range for max_features
(117) to ensure we did not overlook potential sweet spots for op-
timal performance. This range inherently includes common de-
fault values such as sqrt(n_features) (c4.24) and log2(n_features)
(~4.17), as well as other potential configurations that might bet-
ter suit our dataset. By exploring this broader range, we aimed
to maximize the robustness of our hyperparameter search.

For XGBoost, we adjust four key parameters: eta, which con-
trols the learning rate; subsample, which specifies the fraction
of samples used for training each tree; colsample_bytree, which
determines the fraction of features to consider for each tree; and
n_estimators, which is the total number of trees in the model (Ta-
ble 3). Tuning these parameters can significantly affect model
performance. Decreasing eta can lead to more gradual learn-
ing, potentially improving accuracy but requiring more trees.
Adjusting subsample helps prevent overfitting by introducing
randomness, while modifying colsample_bytree influences tree
diversity, enhancing the model’s ability to generalize to new
data (27). These details of model parameters and their ranges
are summarized in Table 3.

Table 3 Model hyperparameters and their ranges

Model Parameter Description Range/Values
n_estimators number of decision | 100, 500
trees
Random For- | min_samples_split | minimum number | 20-120, incre-
est Classifier of samples required | ments of 10
to split an internal
node
max_features maximum number | 1-17
of features to con-
sider when looking
for the best split
eta step size shrinkage | 0.01,0.05,0.1,
used to prevent over- | 0.2,0.3
fitting
subsample ratio of subsample | 0.5-1.0, incre-
size to the training | ments of 0.1
data size
XGBoost colsample_bytree | subsample ratio of | 0.5-1.0, incre-
Classifier columns when con- | ments of 0.1
structing each tree
n_estimators number of trees in | 50, 100, 500
the model

Handling Class Imbalance

After thresholding Likelihood of Sharing and Likelihood of
Believing into different classes, we encounter class imbalances.
In this section, we explore the different imbalances and discuss
methods used to handle the imbalance.

Figure 6 shows the count distribution of the Likelihood of
Sharing for the 3 different classification approaches. In Figures
6A-C, the “unlikely” class is the majority class. In Figure 6A,
the “unlikely” class is roughly two times the size of “likely”.
For 6B, the “unlikely” class size roughly doubles. In Figure 6C,

“unlikely” is the majority class, followed by the “Neutral” class,

followed by the “Likely” class.

Likelihood of Resharing Counts by Classification Threshold

(A) <=9 Unlikely, >9 Likely (B) <=15 Unlikely, >15 Likely (C) <13 Unlikely, 13-22 Neutral, >=23 Likely

| . E |
uuuuuuuuuuuuu [ Uity Likely

y y
Categories Categores Categories

Fig. 6 Count distributions of Likelihood of Sharing categories for a
given threshold

Figure 7 shows the count distribution of likelihood of believ-
ing for the 3 different classification approaches. In Figure 7A,
the “likely” class is the majority class. In 7B, the “unlikely”
class is the majority class. In 7C, the “unlikely” class takes
majority, and is roughly 1.5 times the size of the “neutral” class,
and 4 times the size of the “likely” class.

Likelihood of Believing Counts by Classification Threshold

(A) <6 Unlikely, >=6 Likely

(B) <8 Unlikely, >=8 Likely (C) <7 Unlikely, 7-11 Neutral, >=11 Likely

nnnnnn

c

Fig. 7 Count distribution of Likelihood of Believing categories

When building the models, we implement different methods
to handle class imbalances. The first approach was using the
full dataset while applying the code class_weight=balanced’
for Random Forest and scale_pos_weight=number of sam-
ples/(2*number of minority class samples)’ for XGBoost.
Class_weight’ adjusts weights inversely proportional to class fre-
quencies to improve the model’s attention and thus performance
on minority classes??. Scale_pos_weight adjusts the contribution
of each class to the loss function during training to avoid bias
towards the majority class.

The next approach was undersampling. This sampling tech-
nique keeps all the data of the minority class but reduces the
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size of the majority class. A disadvantage of this approach is its
loss of relevant information that could reveal patterns2®.
Finally, we attempt a combination of undersampling and over-
sampling to retain more majority class diversity while still reduc-
ing data imbalance’””. We first undersample the majority class to
1.5 *size of the minority class, a common ratio used within over-
and under-sampling hybrid approaches*®. We then oversample
the minority class to the same level using the Synthetic Minority
Oversampling Technique (SMOTE), a technique that generates
synthetic samples through an interpolation of the original dataS.
Categorical variables (e.g. ‘Country’) inherit categorical val-
ues from the nearest minority-class neighbours®. Although
SMOTE mitigates bias towards the majority class, it also risks
introducing noise, causing the model to overfit to synthetic data.
SMOTE can lead to overfitting, particularly when synthetic sam-
ples are generated in sparse or noisy regions of feature space.
The model may learn patterns that are not generalizable to un-
seen data. The synthetic samples may not represent realistic or
meaningful data points, especially in cases where the minority
class has complex distributions or overlaps significantly with

the majority class. This can blur decision boundaries">.

Feature Importance Analysis

While one aim of this study was to build a predictive model, we
also conduct feature importance analysis to gain insight into how
each variable contributes to the model’s predictions, potentially
revealing meaningful patterns. Specifically, we will examine
the SHAP (SHapley Additive exPlanations) values of the best
performing models for the prediction of the output variables.
SHAP uses a game-theory approach to assign a numerical value
to each feature, illustrating how much that feature influenced the
model’s final predictions®?. This structured approach enables us
to understand feature importance within the model in a clear and
interpretable way. By leveraging SHAP, we can better commu-
nicate the model’s behavior to stakeholders and use the insights
gained to refine our features and improve model performance.

Results

Models Analysis

The two tables below summarize the results from applying three
different thresholds using undersampled data. Results regarding
original data with class weight balancing and with the under-
sampling/SMOTE hybrid can be found in the appendix for sim-
plification. All tables include information regarding precision
and recall, but the discussion will be focused on F1 scores. We
include results for baseline logistic regression models to con-
textualize performance gains. The tables also display the best
parameters, found using grid search, for Random Forest and
XGBoost models.

Models for Likelihood of Sharing

Table Al presents the results of predicting sharing likelihood
using the original dataset with class weight balancing. The Ran-
dom Forest model excels with a threshold of 9, achieving an F1
test score of 0.79 &£ 0.03 for “unlikely to share” and 0.64 4 0.06
for “likely to share,” with minimal difference compared to XG-
Boost, which scores 0.78 £ 0.03 and 0.65 £ 0.05, respectively.
Both models show noticeable overfitting for the “likely to share”
class, with Random Forest dropping from a training AUC score
0of 0.93 4= 0.01 to 0.80 £ 0.04, while XGBoost falls from 0.97 +
0.01 to 0.79 +£ 0.04. McNemar’s test comparing the XGBoost
and RF models found no significant statistical difference be-
tween them (chi-squared=0.82, p-value=0.53). At threshold 15,
XGBoost and Random Forest perform similarly for both class
predictions. McNemar’s test suggested no significant statistical
difference between models (chi-squared=0.039, p-value=0.84).
Despite better performance for “unlikely to share” at threshold
15 than at threshold 9, both models perform worse for “likely
to share” compared to threshold 9 and demonstrate increased
overfitting. Finally, with the two threshold approach, both mod-
els struggle with predicting the “neutral” and “likely to share”
categories, likely due to data imbalance. Overall, both models
exhibit overfitting, with XGBoost demonstrating more severe
overfitting.

Table 4 presents the results for predicting Likelihood of Shar-
ing using undersampled data. All results for threshold 9 and
15 outperform those from the original dataset (Table Al) in
predicting the “likely to share” class. The top-performing model
is the Random Forest with a threshold of 15, achieving F1
test scores of 0.83 £ 0.03 for “unlikely to share” and 0.80
+ 0.02 for “likely to share.” In comparison, the XGBoost
model at threshold 15 scores slightly lower, with F1 scores
of 0.76 £ 0.03 and 0.78 + 0.06 for “unlikely” and “likely to
share,” respectively. McNemar’s test comparing the models
for both thresholds suggest statistically significant difference
(threshold 9: chi-squared=12.99, p-value=0.0003. Threshold
15: chi-squared=24.51, p-value=0.0146). While Random Forest
slightly outperforms XGBoost for the two-threshold approach
(AUC=0.81 £ 0.04 vs. 0.79 +£ 0.04), both models struggle
significantly with predicting categories “neutral” and “likely
to share,” with F1 scores below 0.50. The uncertainty values
for these categories are also significant. For instance, the RF
“neutral” category test F1 score is 0.32 £ 0.08, constituting an
uncertainty of 25%. The XGBoost models across thresholds
struggle with overfitting, reaching training AUC scores of 1.00
=+ 0.00 while dropping to test AUC scores of ~0.80.
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Table 4 Summary of evaluation metrics for Likelihood of Sharing using undersampled dataset

Threshold Model Train/Test Class Precision Recall F1 AUC Sample
Approach Counts
Mean threshold | Logistic Regres- | Train Unlikely 070 = | 0.77 0.73 0.79 £ | 675
<9: unlikely to | sion (Baseline) to Share 0.03 0.03 0.02 0.02
share >9: likely
to share
Likely to | 0.74 £ | 0.67 0.70 675
Share 0.03 0.03 0.03
Test Unlikely 080 =+ | 0.76 0.78 0.77 £ | 347
to Share 0.04 0.04 0.04 0.04
Likely to | 0.60 + | 0.67 0.63 169
Share 0.06 0.07 0.05
Random Forest Train Unlikely 0.88 + | 0.89 0.89 096 + | 675
to share 0.03 0.02 0.02 0.01
’max _features’: 4, Likely to | 0.89 £ | 0.88 0.88 675
’min_samples_split’: share 0.02 0.02 0.02
20, ’n_estimators’:
500
Test Unlikely 083 + | 0.73 0.78 079 £ | 347
to share 0.05 0.05 0.04 0.04
Likely to | 0.60 £ | 0.73 0.66 169
share 0.06 0.07 0.05
XGboost Train Unlikely 099 + | 093 0.96 1.00 £ | 675
to share 0.01 0.02 0.01 0.00
’colsample_bytree’: Likely to | 094 £ | 0.99 0.96 675
0.5, ’eta’: 0.01, share 0.02 0.01 0.01
’n_estimators’:
1000, *subsample’:
0.7
Test Unlikely 084 + | 0.59 0.69 0.78 £ | 347
to share 0.04 0.05 0.04 0.04
Likely to | 0.52 £ | 0.80 0.63 169
share 0.06 0.06 0.05
Midpoint thresh- | Logistic Regres- | Train Unlikely 075 + | 0.80 0.78 0.86 £ | 417
old <15: un- | sion (Baseline) to Share 0.04 0.04 0.03 0.02
likely to share
>15: likely to
share
Likely to | 0.79 £ | 0.74 0.76 417
Share 0.04 0.04 0.03
Test Unlikely 090 =+ | 0.78 0.84 079 £ | 412
to Share 0.03 0.04 0.03 0.05
Likely to | 0.47 £ | 0.69 0.56 104
Share 0.07 0.08 0.07
Random Forest Train Unlikely 0.82 =+ | 0.82 0.82 090 £ | 417
to share 0.04 0.04 0.03 0.02
max_features: 2, Likely to | 0.82 + 0.82 0.82 416
min_samples_split: share 0.04 0.03 0.03
70, n_estimators:
500
Test Unlikely 090 + | 0.77 0.83 080 £ | 412
to share 0.03 0.04 0.03 0.05
Likely to | 0.83 £ | 0.78 0.80 104
share 0.04 0.08 0.02
XGboost Train Unlikely 1.00 + | 1.00 1.00 1 417
to share 0.00 0.00 0.00
’colsample_bytree’: Likely to | 1.00 £ | 1.00 1.00 416
0.6, ’eta’: 0.2, share 0.00 0.00 0.00
’n_estimators’:
500, ’subsample’:
0.7
Test Unlikely 090 =+ | 0.65 0.76 076 £ | 412
to share 0.04 0.04 0.03 0.05
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Likely to | 0.76 0.81 0.78 104
share 0.06 0.05 0.06
Multiple thresh- | Logistic Regres- | Train Unlikely 0.64 0.72 0.68 198
olds <13: wun- | sion to share 0.06 0.06 0.05
likely to share
13< and <23:
neutral >23:
likely to share
Neutral 0.48 0.39 0.43 0.79 198
0.08 0.07 0.07 0.03
Likely to | 0.64 0.68 0.66 198
share 0.07 0.07 0.06
Test Unlikely 0.89 0.69 0.78 0.78 377
to share 0.04 0.05 0.03 0.04
Neutral 0.27 0.36 0.31 89
0.08 0.10 0.08
Likely to | 0.32 0.68 0.43 50
share 0.09 0.13 0.10
Random Forest Train Unlikely 0.78 0.86 0.81 0.93 199
to share 0.05 0.05 0.04 0.01
max_features: 1, Neutral 0.81 0.68 0.74 198
min_samples_split: 0.06 0.07 0.05
30, n_estimators:
500
Likely to | 0.80 0.85 0.83 198
share 0.05 0.05 0.04
Test Unlikely 0.88 0.72 0.79 0.81 377
to share 0.04 0.04 0.03 0.04
Neutral 0.29 0.35 0.32 89
0.09 0.10 0.08
Likely to | 0.36 0.74 0.48 50
share 0.10 0.12 0.10
XGboost Train Unlikely 0.98 1.00 0.99 1.00 199
to share 0.02 0.00 0.01 0.00
’colsample_bytree’: Neutral 1.00 0.98 0.99 198
0.5, ’eta’: 0.01, 0.00 0.02 0.01
’n_estimators’:
500, ’subsample’:
0.8
Likely to | 0.99 0.99 0.99 198
share 0.01 0.01 0.01
Test Unlikely 0.90 0.67 0.77 0.79 377
to share 0.03 0.05 0.04 0.04
Neutral 0.31 0.47 0.37 89
0.08 0.10 0.08
Likely to | 0.35 0.68 0.46 50
share 0.10 0.14 0.10
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Table A2 displays the results after implementing a combination of under-
sampling and oversampling data balancing techniques. At threshold 9, Random
Forest achieves an F1 test score of 0.78 + 0.04 for “unlikely to share” and 0.63
=+ 0.06 for “likely to share,” with results similar to XGBoost, which scores 0.76
4 0.04 and 0.64 £ 0.06, respectively. McNemar’s test comparing the models
found no significant statistical difference (chi-squared=0.37, p-value=0.54). At
threshold 15, the models excel at predicting “unlikely to share,” boasting scores
0of 0.84 £ 0.03 and 0.81 £ 0.03 for Random Forest and XGBoost respectively.
Both models struggle with predicting “likely to share,” achieving F1 scores
slightly above 0.50. McNemar’s test found no significant statistical difference
(chi-squared=0.019, p-value=0.892). With two thresholds, both models struggle.
While excelling at predicting the “unlikely” category (Random Forest scores
0.80 & 0.03, XGBoost scores 0.76 =+ 0.04) both models struggle with predicting
the “likely” and “neutral” categories (“neutral”: RF scores 0.37 £ 0.08 and
XGBoost scores 0.39 £ 0.07). Both models show noticeable overfitting across
thresholds, with XGBoost more prone (dropping from AUC train score of 1.00
=+ 0.00 to ~0.80 test scores)

The ROC curves for the Random Forest and XGBoost classifiers for the high-
est performing models for predicting sharing (undersampled data, threshold 15)
are presented in Figure 8. Both models demonstrated comparable discriminative
performance, with Random Forest achieving an area under the curve (AUC)
of 0.80 (95% CI: 0.75-0.85) and XGBoost achieving an AUC of 0.76 (95%
CI: 0.71-0.81) a non-significant difference as demonstrated by overlapping
confidence intervals. However, the precision-recall curves demonstrate more
pronounced differences, particularly in the high-precision/low recall regions,
where Random Forest maintained higher performance, a result which can be
supported by the McNemar test (p-value=0.015).

Pracision-Recall Curve Comparison
Likelihood of Sharing (Undersampled, Threshold 16)

ROC Curves
Likelihood of Sharing (Undersampled, Threshold 16)

— Random Forest (AP = 0.55)
— XGBoost (AP = 0.57)

— Random Forest (AUC = 0.80)
—— XGBoost (AUC = 0.78)

Fig. 8 ROC Curves and Precision-Recall Curves for Random Forest
and XGBoost (“Likelihood of Sharing”, undersampled data, threshold
16)

Models for Likelihood of Believing

Table A3 presents the results of predicting believing likelihood using the original
dataset with class weight balancing. The Random Forest model excels with a
threshold of 6, achieving an F1 test score of 0.61 3= 0.06 for “unlikely to believe”
and 0.73 £ 0.04 for “likely to believe,” slightly outperforming XGBoost, which
scores 0.62 4+ 0.05 and 0.72 + 0.04, respectively. At threshold 8, Random
Forest marginally outperforms XGBoost for both classes. Both models struggle
to predict “likely to believe” (0.55 £ 0.06 for Random Forest, 0.54 £ 0.06 for
XGBoost). Despite better performance predicting for “unlikely to believe” at
threshold 8 compared to threshold 6, both models perform worse in predicting
“likely to believe.” With two thresholds, both models struggle with the “neutral”
and “likely to believe” categories, likely due to data imbalance. Random Forest
scores 0.69 £ 0.04 for “unlikely to believe,” while XGBoost scores 0.73 + 0.04,
but Random Forest outperforms XGBoost in the “likely to believe” categories
(0.41 £ 0.09 vs. 0.35 £ 0.12). F1 scores for the “neutral” class are 0.40 &+ 0.07
and 0.41 £ 0.07 for RF and XGboost respectively. Both models show noticeable
overfitting across all thresholds. For instance, for threshold 6, Random Forest
drops from a training AUC score of 0.97 & 0.01 to 0.74 % 0.04, and XGBoost’s
AUC scores drop from 0.95 + 0.01 to 0.74 £ 0.04 between train and test.

McNemar’s tests for both thresholds found no statistically significant difference
between the models (threshold 6: chi-squared=0.2, p-value=0.65, threshold 8:
chi-squared=1.29, p-value=0.26).

Table 5 presents the results of predicting Likelihood of Believing using the
undersampled dataset. The best performing model below is the Random Forest
model with a threshold of 6, achieving an F1 test score of 0.61 £+ 0.05 for
“unlikely to share” and 0.67 4= 0.04 for “likely to share,” slightly outperforming
XGBoost, which scores 0.63 £ 0.05 and 0.64 £ 0.05, respectively. Both models
exhibit significant overfitting, as indicated by training AUC scores exceeding 0.9
for both classes, which decline by more than 0.2 on the test data. McNemar’s
test suggested no significant difference between the models (chi-squared=0.46,
p-value=0.5) At threshold 8, Random Forest outperforms XGBoost for "unlikely
to believe” (0.69 & 0.04 vs. 0.59 % 0.05) and perform the same for "likely to
believe” (a mean of 0.57). Compared to threshold 6, Random Forest shows
slightly lower results for “unlikely”, while results slightly improved for “likely,”
while XGBoost performs worse for both classes. McNemar’s test found a
significant difference between Random Forest and XGBoost predictions (chi-
squared=12.01, p-value=0.03). With two thresholds, both models struggle with
the “likely to believe” and “neutral” categories. Both models share similar F1
scores for all three categories with overlapping confidence intervals. Random
Forest achieves 0.67 £ 0.04, 0.46 £ 0.07, 0.43 £ 0.09 for “unlikely,” “neutral,”
and “likely” categories, respectively, while XGBoost achieves 0.65 + 0.05, 0.44
=+ 0.07, 0.40 & 0.08 for the three categories, respectively. Compared to multiple
thresholds from Table A3 (original data), though the performance on predicting
“neutral” and “likely to believe” increased, the F1 score for predicting “unlikely
to believe” decreased.
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Table 5 Summary of evaluation metrics for likelihood of believing using undersampled dataset

Threshold Approach Model Train/Test | Class Precision Recall F1 AUC Sample Counts
Logistic Regression Train Unlikely to Be- | 0.65 + 0.66 £ 0.65 =+ 072 £ 842
(Baseline) lieve 0.03 0.03 0.03 0.02
Mean threshold Likely to Be- | 0.65 + [ 064 £ | 065 =+ 841
lieve 0.03 0.03 0.03
<6: unlikely to believe Test Unlikely to Be- [ 0.56 £+ [ 0.71 + 1063 £ [ 074 £ 210
lieve 0.06 0.06 0.05 0.04
>6: likely to believe Likely to Be- [ 0.76 + 0.61 + 0.68 =+ 211
lieve 0.06 0.05 0.05
Random Forest Train Unlikely tobe- | 0.91 + [ 091 £ [ 091 £ [ 097 =< 842
lieve 0.02 0.02 0.01 0.01
max_features: 4, Likely to be- 091 + 091 + 091 + 841
min_samples_split: lieve 0.02 0.02 0.01
20, n_estimators:
1000
Test Unlikely to be- | 0.55 £ [ 069 £ [ 061 £ |[073 £ [ 210
lieve 0.06 0.06 0.05 0.04
Likely to be- [ 0.75 £ [ 061 £ [ 067 =+ 211
lieve 0.05 0.06 0.04
XGBoost Train Unlikely to be- | 0.91 + 099 £ 095 =+ 099 £ 842
lieve 0.02 0.01 0.01 0.00
colsample_bytree: Likely to be- [ 0.99 + 090 £ 094 £ 841
09, eta: 0.01, lieve 0.01 0.02 0.01
n_estimators: 1000,
subsample: 0.5
Test Unlikely to be- | 0.54 £ [ 077 £ [ 063 £ [ 072 £ [ 210
lieve 0.05 0.06 0.05 0.05
Likely to be- | 0.78 + [ 054 £ | 064 =L 211
lieve 0.05 0.05 0.05
Midpoint threshold Logistic Regression Train Unlikely to Be- | 0.68 + 072 £ 070 =+ 0.76 £ 772
(Baseline) lieve 0.03 0.03 0.03 0.02
<8: unlikely to believe Likely to Be- [ 0.70 + 0.66 £ 0.68 £ 772
lieve 0.03 0.03 0.03
>8: likely to believe Test Unlikely to Be- [ 0.72 £ [ 063 £ ] 067 £ ] 070 =+ 323
lieve 0.05 0.05 0.04 0.05
Likely to Be- | 0.49 £ [ 059 £ [ 053 =£ 193
lieve 0.06 0.07 0.05
Random Forest Train Unlikely to be- | 0.84 + [ 084 £ | 084 <+ [ 091 £ [ 772
lieve 0.03 0.03 0.02 0.01
max_features: 2, Likely to be- 0.84 + 0.84 + 0.84 + 772
min_samples_split: lieve 0.03 0.03 0.02
30, n_estimators: 500
Test Unlikely to be- | 0.75 + [ 064 £ | 069 £+ [ 070 =+ 193
lieve 0.05 0.05 0.04 0.05
Likely to be- [ 0.52 + [ 064 £ | 057 £ 193
lieve 0.06 0.07 0.06
XGBoost Train Unlikely to be- | 0.96 + 0.74 £ 0.83 £ 096 =+ 772
lieve 0.01 0.03 0.02 0.01
colsample_bytree: Likely to be- [ 0.79 + 097 £ 087 =+ 772
0.6, eta: 0.01, lieve 0.02 0.01 0.02
n_estimators: 500,
subsample: 0.5
Test Unlikely to be- | 0.75 £ [04 £ [05 £ [070 =+ 193
lieve 0.06 0.06 0.05 0.05
Likely to be- | 0.46 + [ 074 £ | 057 =+ 193
lieve 0.06 0.06 0.05
Logistic Regression Train Unlikely to | 0.54 + [ 058 £+ | 056 + | 074 £ | 293
share 0.05 0.06 0.05 0.02
Train Neutral 0.45 + [ 040 £ [ 042 £ 293
0.06 0.06 0.06
Multiple thresholds Likely to share | 0.62 + [ 063 £ | 062 =+ 293
0.06 0.06 0.05
<7: unlikely to believe Test Unlikely to 0.71 + 0.60 £ 0.65 =+ 0.73 £ 273
share 0.06 0.06 0.05 0.03
7 < and <11: neutral Neutral 0.46 + 0.39 + 0.42 + 170
0.08 0.07 0.07
>11: likely to believe Likely to share 0.33 + 0.64 £ 044 £ 73
0.08 0.11 0.09
Random Forest Train Unlikely to be- | 0.86 + 0.89 £ 087 =+ 097 £ 293
lieve 0.04 0.04 0.03 0.01
max_features: 10, Neutral 0.91 + 084 + 0.88 + 292
min_samples_split: 0.03 0.04 0.03
20, n_estimators: 500
Likely to be- | 0.85 + [ 089 £ [ 087 £ 293
lieve 0.04 0.04 0.03
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Test Unlikely to be- | 0.75 + | 061 £ | 067 £ | 073 £ | 273
lieve 0.06 0.06 0.04 0.04
Neutral 0.48 £ [ 044 £ ] 046 £ 170
0.08 0.08 0.07
Likely to be- [ 0.33 + [ 062 £ [ 043 £ 73
lieve 0.08 0.11 0.09
XGBoost Train Unlikely to be- [ 1.00 + .00 £ .00 =+ 1.00 £ [ 293
lieve 0.00 0.00 0.00 0.00
colsample_bytree: Neutral 1.00 + 1.00 =+ 1.00 =+ 292
0.5, learning_rate: 0.00 0.00 0.00
0.01, n_estimators:
1000, subsample: 0.7,
random_state: 1
Likely to be- | 1.00 ES 1.00 + 100 + 293
lieve 0.00 0.00 0.00
Test Unlikely to be- | 0.75 + 0.58 =+ 0.65 =+ 0.71 + 73
lieve 0.06 0.06 0.05 0.04
Neutral 0.44 + [ 044 £ | 044 <L 74
0.07 0.07 0.07
Likely to be- [ 0.31 £ [ 056 £ [ 040 =+ 73
lieve 0.08 0.11 0.08
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Table A4 summarizes the results of predicting Likelihood of Believing using a combi-
nation of undersampling and oversampling. At a threshold of 6, the Random Forest model
performs slightly better in predicting both classes, achieving scores of 0.60 % 0.06 for
“unlikely to believe” and 0.72 + 0.04 for "likely to believe,” compared to 0.58 £ 0.05 and
0.69 + 0.04, respectively, for XGBoost. McNemar’s test found no significant difference
between the two models (chi-squared=2.05, p-value=0.15) At a threshold of 8, the Random
Forest model outperforms XGBoost for the “unlikely” class, scoring 0.73 £ 0.04 as opposed
to 0.70 £ 0.04, whereas it scores lower for the “likely” class (0.54 £ 0.06 vs. 0.58 + 0.05).
Compared to the threshold of 6, both models show improvement in predicting “unlikely
to believe” by approximately 0.10, but their performance in predicting "likely to believe”
declines by about 0.10. McNemar’s test found no significant difference between the two
models (chi-squared=0.42, p-value=0.52). For both thresholds, both models struggle with
the "neutral” class, each scoring below 0.5. Random Forest slightly outperforms XGBoost
in predicting “unlikely to believe” (0.62 £ 0.05 vs. 0.61 =+ 0.05 as well as in predicting
“likely to believe” (0.42 & 0.09 vs. 0.37 £ 0.10). All Random Forest and XGBoost models
in Table A4 exhibit significant overfitting, with training AUC scores ranging from 0.97 to
1.00, which drop by more than 0.20 in testing.

The ROC and precision-recall curves for the Random Forest and XGBoost classifiers
for predicting belief (original data with class weight balancing, threshold 6) are presented
in Figure 9. Both models demonstrated comparable discriminative performance, with
Random Forest achieving an area under the curve (AUC) of 0.73 (95% CI: 0.69-0.77) and
XGBoost achieving an AUC of 0.72 (95% CI: 0.68-0.76). The curves largely overlapped
across all thresholds, indicating similar ability to distinguish between positive and negative
cases. Given the negligible difference in AUC values, as well as McNemar’s test results
(p-value=0.65), both approaches appear equally effective for this prediction task.

Precision-Recall Curve Comparison
Likelihood of Believing (Original Data with Class Weights, Threshold 6)

ROC Curve Comparison

Likelihood of Believing (Original Data with Class Weights, Threshold 6)

o — Random Forest (AP = 0.78)
— XGBoost (AP = 0.79)

Precision

a2 — Random Forest (AUC = 0.73)
o0 — XGBoost (AUC = 0.72)

False Positive Rate Recall

Fig. 9 ROC Curves and Precision-Recall Curves for Random Forest
and XGBoost (Likelihood of Believing, original data with class weight
balancing, threshold 6)

Feature Importance Analysis

)

In this section, the SHAP results of the top models for predicting “Likelihood of Sharing’
and “likelihood of believing” will be discussed. For “Likelihood of Sharing”, we will
examine SHAP values of the Random Forest using threshold 15 and undersampled data
(Table 5). For “likelihood of believing”, we examine the SHAP values of the Random
Forest model using the threshold 6 and original dataset (Table A3). Specifically, results
below display predictions for the positive class, “likely to share/believe”.

Figure 10 displays the mean SHAP value of every input variable for predicting “likely
to share.” Figure 10A illustrates that the highest contributing variables to the model’s pre-
dictions are country, conservatism, shared_found_later and gender, while the least impactful
variables are consensus, authoritative, and age_group.

Figure 10B illustrates the relationship between input feature value and the impact on
the model’s prediction. Figure 10B suggests a country value of “UK” is associated with a
higher Likelihood of Sharing misinformation than respondents. Figure 10B also reveals
that high levels of conservatism and having previously knowingly or unknowingly shared
misinformation are associated with a higher prediction of sharing. Additionally, a female
gender is associated with a low prediction of sharing. Of the 5 factor personality traits,
openness has the highest impact on the model’s prediction, with lower openness correlating
with a higher prediction of sharing. This could be due to confounding between openness
and conservatism, as explained by the negative relationship found in data-preprocessing
(Figure 5A). Higher levels of extraversion and conscientiousness are linked with higher
model predictions, while higher levels of neuroticism and agreeableness correlate with
lower predictions. More frequent social media use is associated with a positive model
prediction. Though the magnitude of impact is marginal, lower levels of education, greater
age, and higher levels of consensus and authoritativeness are associated with positive model
output.

Figure 11A shows the mean SHAP values for each input variable influencing the
prediction of "likely to believe” using our top-performing model. This figure highlights that
conservatism, openness, and country are the most significant factors affecting the model’s
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Fig. 10 SHAP Analysis on best performing model for the prediction of
“likely to share”

prediction of belief, whereas consensus, authoritative, and gender have the lowest influence
on the model’s predictions.

Figure 11B illustrates the relationship between input feature values and their influence
on the model’s prediction of "likelihood of believing.” Consistent with findings related
to “Likelihood of Sharing,” we observe that higher levels of conservatism are linked
to an increased model prediction of belief. Variables such as shared_found_later and
shared_while_knowing show similar effects as those found in Figure 10B, indicating that
having previously shared content, whether knowingly or unknowingly, is associated with
higher likelihood of belief. Country of origin plays a significant role; originating from the
UK is correlated with a lower likelihood of belief than originating from the US. Additionally,
lower levels of education correlate with a higher likelihood of belief and, interestingly,
younger age is linked with increased susceptibility to misinformation. In contrast to
the “Likelihood of Sharing,” gender appears to have a minimal impact on the model’s
predictions. While higher levels of extraversion and lower levels of agreeableness may
somewhat correlate with a greater likelihood of belief, the relationship is not distinctly
clear. The effects of neuroticism, occupation, social media usage, conscientiousness, and
consensus remain ambiguous.
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Fig. 11 SHAP Analysis on best performing model for the prediction of
“likely to believe”

Discussion

In this study, we trained and tested Random Forest and XGBoost models to predict 2 output
variables: the likelihood of an individual sharing and believing right-wing misinformation.
Through a systematic study examining the effect of different classification thresholds
and sampling methods, we were able to build a high performing model to predict an
individual’s Likelihood of Sharing misinformation, and a moderately successful model at
predicting an individual’s likelihood of belief based on individual demographic features.
In addition, we conducted feature weight analysis on the top performing models and
found that country, conservatism, and shared_found_later (whether the individual had
previously unknowingly shared misinformation) were the highest determinants of sharing,
and conservatism, openness, and country were the highest determinants of belief.
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Model Analysis

Figures 12-13 summarize the results of predicting “’Likelihood of Sharing across Random
Forest and XGBoost models. Figures 14-15 summarize the results of predicting likelihood
of believing across Random Forest and XGBoost models. The F1 scores are the mean of all
samples with bootstrapped confidence intervals (1000 samples, 95% CI), with full intervals
documented in Tables 4-5 and Appendix.

Random Forest Results for Predicting Likelihood of Resharing
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Fig. 12 Summary of Random Forest results for predicting Likelihood
of Sharing across thresholding and sampling techniques
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Fig. 13 Summary of XGBoost results for predicting Likelihood of
Sharing across thresholding and sampling techniques

Random Forest Results for Predicting Likelil of Believing
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Fig. 14 Summary of Random Forest results for predicting likelihood of
believing across thresholding and sampling techniques

The strongest model for predicting sharing was found using the Random Forest model,
undersampled dataset, threshold 15, and had F1 scores 0.83 + 0.03 and 0.80 + 0.02 for
predicting categories “unlikely to share” and “likely to share”, respectively. The strongest
model for predicting the category “likely to believe” was found using threshold 6, the
original data, where the Random Forest model achieved an F1 score of 0.73 £ 0.04 for
predicting the category “likely to believe.” For predicting belief, the undersampled and
original data produced very similar results.

XGBoost Results for Predicting Likelihood of Believing
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Fig. 15 Summary of XGBoost results for predicting likelihood of
believing across thresholding and sampling techniques

A comparison of XGBoost and Random Forest models reveals that XGBoost exhibited
greater overfitting, with higher training AUC scores and lower test AUC scores. This could
be due to XGBoost’s sequential error-correction approach, which could allow noisy outliers
to dominate the training process. XGBoost also has higher sensitivity to hyperparameters
than Random Forest models, further increasing the likelihood of overfitting.

The models were generally more adept at predicting Likelihood of Sharing than like-
lihood of believing (Figures 8-9 vs. Figures 10-11). This could suggest that the factors
driving sharing may be based on more observable patterns, and that the factors influenc-
ing belief may not have been as cohesively included in the dataset. As the given dataset
mainly focused on individual demographic features, this could suggest that susceptibility to
misinformation may be better predicted with information on the news headlines’ inherent
properties. For instance, presentation cues are found to be a large determining factor of
belietZ0, Our study’s inability to achieve high predictive power for likelihood of belief is
possibly due to a lack of data on the text’s features themselves (eg. readability, language).
Future studies could build off our results by forming a more comprehensive dataset includ-
ing textual features alongside individual demographic and personality features to better
predict belief.

Our models performed the poorest when we split data into three classes “unlikely to
share/believe”, “neutral” and “likely to share/believe”. The goal of introducing a “neutral”
category was to assess the types of users unsure about a piece of misinformation a category
that could be crucial in prevention efforts. In Figures 12-15, the models struggled to
predict the “neutral” category across sampling techniques. This can be explained by how
an increase of granularity in the grouping increases the chances of having data points that
might fall into overlapping or ambiguous regions between groups. This can also be partially
explained by the data imbalance displayed in Figures 6C and 7C, where the “unlikely”
category held a significant majority over the other two classes. However, in spite of having
more “neutral” data than “likely” data (6C and 7C), the “likely” class outperformed the
“neutral” category in most instances in Figures 12-15. This reveals that ambivalence towards
misinformation is more complex and nuanced for ML predictions than clear-cut belief or
disbelief. Future work should consider building more robust machine learning models to
specifically predict the behaviour of ambivalent users when facing misinformation.

Across sampling techniques, undersampling best reduced the discrepancy of F1 scores
between “unlikely” and “likely” classes, likely due to a reduction of model bias towards a
specific class. For predicting sharing, the models achieved highest predictive power when
the dataset was undersampled. For predicting belief, undersampling and original with class
weight produced similarly high results. Our study underscores the need for a larger, more
balanced test dataset to improve a model’s predictive power. A larger dataset would provide
more reliable insights into the model’s performance and its generalizability to new data.

Bootstrapped confidence intervals reveal that as classification performance decreases,
confidence intervals also increase, which could be due to error propagation becoming
more pronounced when near the decision boundary, as predictions are more ambiguous.
Due to their low performance, multi-threshold approaches are associated with increased
confidence intervals, revealing fundamental instability that should be remedied through
significantly larger datasets or simplification to binary classification when appropriate.
F1 score confidence intervals between Random Forest and XGBoost differ minimally
(both models share similar absolute uncertainties, though percentage uncertainties differ
depending on performance), suggesting that neither architecture is able to resolve boundary-
case ambiguity, but differing percentage uncertainties could guide model selection.

Our approach to misinformation dissemination builds upon existing machine learning-
based literature on this subject, shifting focus from content level detection (eg. NLP classi-
ﬁcalionm) to user-level susceptibility. While natural language processing approaches can
help to identify potentially harmful individual posts, our approach can identify vulnerable
users and inform preventative measures unique to our approach. Social media platforms
could integrate these models to flag and prioritize review of posts shared by users identified
as high-risk for misinformation sharing. Platforms should consider implementing targeted
educational prompts and nudges at identified high-risk users before they share posts=2. Our
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work complements existing tools from a crucial behavioural lens.

It is important to recognize that these models were built on a specific, context-based
dataset, only reflecting trends among the responses of individuals from the US and UK
from 2019 to 2020. Additionally, the models also don’t take into consideration the content
or language of the misinformation posts themselves. To improve the results, future works
should attempt to build models that center around both post’s content and the viewer’s
demographic features, as well as use a larger dataset.

Feature Importance Analysis

Our feature weight analysis reveals that conservatism is a high indicator for sharing (ranked
2nd) and belief (ranked 1st), where greater amounts of conservatism align with greater
Likelihood of Sharing and/or believing the right-wing misinformation as shown in Figures
8B and 9B. This correlation was observed during exploratory data analysis (Figure 3D,
Figure 4C), and agrees with existing literature on this subject that suggest that confirmation
bias® and directionally motivated reasoningB¥ cause individuals to be more inclined to
believe and share misinformation aligning with their prior beliefs. It is worth noting that
our study only explores interactions with right-wing misinformation.

Country was also found to be a strong predictor of sharing (ranked 1st) and belief
(ranked 3rd). Our findings suggest that within the given dataset, representing user reactions
to 3 posts on xenophobia and immigration issues from 2019-2020, users from the US
were more likely to share and believe the misinformation than users from the UK. Our
findings could thus reflect the underlying political and cultural differences between the
two countries. Research27 found that the US was, on average, more politically polarized
than the UK, due to the US having more fragmented media landscape, while the UK had a
stronger centralized public broadcasters (eg. BBC). Studies show that political polarization
is a key driver of the dissemination of misinformation2138l as it affects the extent to which
users trust media sources. To further explore how country affects users’ interactions with
misinformation, future studies are recommended to explore whether the trend observed
holds up across different time periods outside of the period of 2019-2020. Researchers
should also strive to understand how different topics of misinformation, outside of purely
immigration, are perceived by users in different countries, and include a larger variety of
countries. This could allow for greater insight to expand on our findings.

While gender was ranked as 4th most impactful variable for sharing (Figure 10A), its
impact on belief was negligible (Figure 11A). Figure 10B implies that being male is a large
positive indicator for sharing misinformation, whereas being female is a negative indicator
on Likelihood of Sharing. This is a particularly interesting dichotomy, as it suggests that
while both genders have similar likelihood of believing misinformation, men are more likely
to further disseminate it. Our discovery is consistent from prior findings with men more
likely to share misinformation®#1, A suggested reason for this is men’s overconfidence in
their knowledge and decision-making abilities, causing an increased susceptibility to share
misinformation than women=%. Men also exhibit more risk-taking behaviours than women,
with men being socially expected to be more assertive and opinionated than women®2. Our
findings indicate that sharing can be driven by factors independent of belief, such as social
pressure, or differences in individuals’ cognitive processing, as explained by Social Role
Theory. This reveals a crucial nuance in research regarding misinformation dissemination,
encouraging future intervention methods and research to consider how sharing is not always
a direct result of belief. Stakeholders could choose to diversify the target audience of
nudges or media literacy education to deal with this discrepancy.

The variables shared_found_later and shared_while_knowing were significant predic-
tors of an individual’s Likelihood of Sharing, ranked 3rd and 5th highest SHAP values
respectively. Figure 10B shows that those who had previously unknowingly or knowingly
shared misinformation were more likely to share and believe the misinformation, and vice
versa. This is highly intuitive, as individuals who have previously shown susceptibility to
misinformation or an interest in spreading misinformation are likely to demonstrate similar
behaviours, a finding supported by research® and social learning theory™#, This finding
suggests that misinformation interventions and anti-misinformation campaigns should
be targeted at individuals who have shown previous engagement with misinformation.
Platforms should consider targeted warnings and nudges, as well as sharing restrictions
for users who show repeated misinformation dissemination behaviour™. Interestingly,
shared_found_later and shared_while_knowing were relatively unimpactful in determining
belief of the misinformation, which suggests that individuals’ belief of misinformation is
not highly related to previous sharing of misinformation.

Openness was a high indicator of belief (ranked 2nd), and had a moderate impact
on sharing (ranked 6th). A decrease in openness led to an increase in sharing/belief, a
correlation observed in exploratory data analysis (Figure 3 and 4). A correlation between
openness and conservatism was also found (Figure SA and 5B), where more conservative
individuals demonstrated lower openness. Considering that an increase in conservatism
led to a direct increase in sharing and belief, the role of openness could be attributed to
confounding of openness and conservatism. Another possible explanation is that more
open individuals tend to engage in more anal%l, reflective cognitive behaviours, which
can reduce susceptibility to misinformation . While both factors likely play a role,
we cannot determine whether and to what extent openness’s role is due to its relationship
with ideology or due to inherent cognitive behaviours. It’s important to note that our
study only examines the relationship between openness and the sharing of right-wing
misinformation, and cannot indicate the role of openness when individuals face left-wing
misinformation. It is possible that individuals with higher openness are indeed more likely

to share misinformation in line with their ideologies (liberal ideologies).

The role of the New Media Literacy Score (Total NMLS) is ambiguous. This may be
counterintuitive, as many have argued that increase in media literacy causes more critical
thinking and reduces the likelihood of disseminating misinformation 859, Comparatively,
our study suggests that personality or social circumstances can outweigh the role of media
literacy, or could also indicate that the New Media Literacy Scale doesn’t capture the
nuanced nature of media engagement. This is consistent with findings of certain studies™
suggesting that partisanship can override the role of media literacy. While this could be
possible explanations for our results, the variable’s insignificance could also be due to the
survey data being self-reported in a test setting, which could have affected the validity of an
individual’s response.

While age had an impact on belief (ranked 5th most influential variable), it was among
the least significant variables for predicting sharing. Interestingly, the model found that
the younger an individual, the more likely they were to believe the misinformation. It is
important to note that the data used was skewed, with far more young respondents than
older ones. However, younger respondents also had larger proportions of left-wing views
as opposed to older respondents, which should indicate an opposite trend as the one found
(Figure 16). Thus, this prediction is not a reflection of pure data bias.
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Fig. 16 Distribution of input variables age_group by political
orientation

Our findings regarding age oppose general consensus, as older generations are associated
with higher levels of conservatism and lower media litera% which should cause higher
chances of believing and sharing right-wing misinformation®*. In contrast, we suggest that
younger social media users are more susceptible to believing a piece of misinformation
is true. This could be because young people spend greater amounts of time on social
media, leading to more trust in social media headlines=". Dual-process theory suggests that
young people may be more reliant on System 1 (automatic and emotional) thinking due to
frequent exposure to online content, whereas older generations may rely more on System 2
(analytical) thinking, scrutinizing online content more thoroughly prior to acceptance.
Indeed, our findings are consistent with those found by a 2023 Psychology test by the
University of Cambridge@, which surveyed over 8,000 participants over two years. They
found that older generations were better able to identify fake news headlines compared to
younger generations. They also found that the longer an individual would spend online,
the more susceptible they were to believing misinformation. This suggests the need for
more targeted media literacy interventions towards young audiences. Finally, in alignment
with Buchanan (2020)“%“s study, the post’s authoritativeness and level of consensus was
found to have virtually no impact on the model’s prediction. This is contrary to literature
suggesting that online content with more authoritative tone and more likes have a higher
likelihood of being shared and believed®3. Our results could possibly be due to flaws in
the survey’s design, where the indicators were possibly not noticeable enough to become
impactful. Future studies would benefit from exploring authoritativeness and consensus at a
variety of data points, for instance by investigating how a range of different numbers of likes
affects a user’s belief and sharing. Recognizing that this study’s data reflects interactions
with right-wing misinformation, future work on this topic could introduce “post’s political
orientation” as an additional variable, and include both left and right wing misinformation.
This would allow us to further generalize the indicators of sharing and belief, ascertaining
the results of this study. This dataset would further benefit from having more balanced
responses and similar representation of each category, such as country and age. While this
study’s findings provide robust insights into misinformation sharing and belief in the US
and UK in 2019-2020, its generalizability to other temporal and political contexts requires
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consideration. The US/UK scope of the experiment reflects aspects of Western political
discourse, but not non-Western contexts, where political views and issues vary drastically.
The survey data was also collected in the pre-pandemic era, whereas post-pandemic era
political and economic discourse has shifted since. Findings in this experiment can only
apply to misinformation solely composed of text and images. This experiment’s design
does not account for the rise of audio-visual based online content as well as Al deep-fakes.
These limitations serve as benchmarks for areas of future study. While prior machine
learning-based studies on misinformation focused on content features>#>, we investigate
the individual demographic and personality features contributing to misinformation spread.
Previous studies investigating a similar topic only employ non-ML based approaches,
making our methodological contribution unique. While some studies have investigated
demographic features affecting misinformation sharing and belief2%Z, this study’s SHAP
analysis quantifies the effect of various features and identifies non-linear relationships.
These factors make this study’s findings unique. Furthermore, we conduct a systematic
study of multiple thresholds and sampling techniques revealing how a lower classification
threshold, as well as undersampling, increases the model’s predictive accuracy. This
provides an empirical framework for future machine learning works that use Likert scale
data with unbalanced misinformation datasets.

Conclusion

This study uses a unique machine learning approach to understand the extent to which Al
models can predict an individual’s sharing and belief of right wing misinformation, and
quantifies the contribution of demographic features to the model’s prediction. We use Ran-
dom Forest and XGBoost models to perform classification, attempting various thresholds
and sampling techniques. We build a powerful model with 0.83 & 0.03 and 0.80 + 0.02
F1 scores for predicting “unlikely to share” and “likely to share” categories, respectively.
The strongest model for predicting belief has F1 scores 0.61 £ 0.06 and 0.73 4 0.04 for
“unlikely to believe” and “likely to believe”, respectively. Conservatism, country, and an
individual’s prior experience sharing misinformation were among the highest determinants
of both sharing and belief. Being right-leaning, from the US (as opposed to the UK), and
having previously knowingly or unknowingly shared misinformation, caused the models to
predict greater Likelihood of Sharing and believing. Exploring the Likelihood of Sharing
and believing independent of each other, we find that men are more likely to share than
women, but their likelihood of believing misinformation is relatively the same. We find
that younger individuals are more likely to believe the misinformation, but age doesn’t
affect sharing behaviour. Openness was a higher determinant of belief compared to sharing
behaviour, where we found that more open individuals were less likely to believe and/or
share the misinformation. The media literacy of respondents, as well as authoritativeness
and level of consensus displayed on the post, had minimal effect on the model’s predic-
tions. The machine learning models were built upon imbalanced data that only reflects
interactions with right-wing misinformation in 2019-2020. Future studies should aim to
collect more balanced data, and could introduce “post’s political orientation” as another
input variable. To improve the predictive power of the models, researchers could attempt
to combine the exploration of demographic features with textual features as well. These
would allow our findings to be more generalizable to a greater variety of misinformation
posts, allowing governments and social media companies to take the necessary steps to
reduce the dissemination of misinformation.
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Table Al: Summary of evaluation metrics for likelihood of sharing using original dataset with class weight balancing

Threshold Approach Model Train/Test | Class Precision Recall F1 AUC Sample counts
Mean threshold Logistic Regression Train Unlikely to Share 0.76 + | 0.88 £ 0.82 0.80 1388
0.02 0.02 0.01 0.02
<9: unlikely to share Likely to Share 0.70 + 0.51 + 0.59 675
0.04 0.04 0.03
>9: likely to share Test Unlikely to Share 0.76 + 087 =+ 0.81 0.77 347
0.04 0.04 0.03 0.04
Likely to Share 0.68 + [ 050 =+ 0.58 169
0.08 0.07 0.07
Random Forest Train Unlikely to share 0.90 + 0.86 £ 0.88 0.93 1388
0.02 0.02 0.01 0.01
’max_features’: 2, Likely to share 0.77 + 082 =+ 0.79 675
‘min_samples_split’: 30, 0.03 0.03 0.02
’n_estimators’: 500,
class_weight: balanced
Test Unlikely to share 0.81 + | 078 £ | 0.79 0.80 347
0.04 0.05 0.03 0.04
Likely to share 0.62 + [ 0.66 £ 0.64 169
0.07 0.07 0.06
XGboost Train Unlikely to share 0.93 + 092 + 0.93 0.97 1388
0.01 0.01 0.01 0.01
colsample_bytree: 0.6, eta: 0.01, Likely to share 0.86 + 0.88 =+ 0.87 675
n_estimators: 500, subsample: 0.02 0.02 0.02
0.8, scale_pos_weight: 1.53
Test Unlikely to share 0.81 = | 076 £ 0.78 0.79 347
0.04 0.04 0.03 0.04
Likely to share 0.61 + 0.68 =+ 0.65 169
0.06 0.07 0.05
Midpoint threshold Logistic Regression Train Unlikely to Share 0.74 + 090 =+ 0.81 0.79 1388
0.02 0.01 0.01 0.02
<8: unlikely to share Likely to Share 0.71 £+ | 043 £ 0.54 675
0.03 0.03 0.02
>8: likely to share Test Unlikely to Share 0.75 + 0.88 £ 0.81 0.76 347
0.03 0.03 0.02 0.03
Likely to Share 0.67 + | 042 £ | 051 169
0.05 0.04 0.04
Random Forest Train Unlikely to share 0.87 + | 0.88 £ 0.87 0.92 1388
0.01 0.02 0.01 0.01
’max_features’: 3, Likely to share 0.78 + 0.81 + 0.79 675
’min_samples_split’: 20, 0.02 0.02 0.01
’n_estimators’: 400,
class_weight: balanced
Test Unlikely to share 0.79 + | 0.80 £ | 0.80 0.81 347
0.04 0.03 0.02 0.03
Likely to share 0.63 + | 065 £ | 0.64 169
0.06 0.05 0.05
XGboost Train Unlikely to share 0.91 + [ 093 £ 0.92 0.96 1388
0.01 0.01 0.01 0.01
colsample_bytree: 0.7, eta: 0.01, Likely to share 0.85 + 087 =+ 0.86 675
n_estimators: 400, subsample: 0.02 0.02 0.02
0.9, scale_pos_weight: 1.60
Test Unlikely to share 0.80 + | 077 £ | 0.78 0.78 347
0.03 0.03 0.02 0.03
Likely to share 0.60 + | 067 £ | 0.63 169
0.05 0.05 0.04
Multiple thresholds Logistic Regression Train Unlikely to Share 0.75 + 0.89 £ 0.82 0.81 1388
0.02 0.02 0.01 0.02
<7: very unlikely Likely to Share 0.72 + 046 £ 0.56 675
0.03 0.03 0.02
89: somewhat unlikely Test Unlikely to Share 0.76 + [ 085 £ 0.80 0.78 347
0.03 0.03 0.02 0.03
>10: likely to share Likely to Share 0.66 + 048 £ 0.55 169
0.05 0.04 0.04
Random Forest Train Unlikely to share 0.89 + 087 £ 0.88 0.94 1388
0.01 0.01 0.01 0.01
’max_features’: 4, Likely to share 0.79 + [ 0.80 £ 0.79 675
’min_samples_split’: 25, 0.02 0.02 0.01
’n_estimators’: 450,
class_weight: balanced
Test Unlikely to share 0.82 = | 079 £ 0.80 0.82 347
0.03 0.03 0.02 0.03
Likely to share 0.64 + 0.65 =+ 0.65 169
0.05 0.05 0.04
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XGboost

colsample_bytree: 0.6, eta: 0.01,
n_estimators: 450, subsample:
0.85, scale_pos_weight: 1.55

Train Unlikely to share 0.92 + | 091 £ | 092 £ | 097 <=+ 1388
0.01 0.01 0.01 0.01
Likely to share 0.87 + | 086 + | 087 £ 675
0.02 0.02 0.02
Test Unlikely to share 0.82 + | 078 + | 080 £ | 081 + | 347
0.03 0.03 0.02 0.03
Likely to share 0.62 + [ 0.66 £ 0.64 £ 169
0.05 0.05 0.04

Table A2: Summary of evaluation metrics for Likelihood of Sharing using combination of undersampled and oversampled dataset

Threshold Approach Model Train/Test | Class Precision Recall F1 AUC Sample Counts
Mean threshold Logistic Regression (Baseline) Train Unlikely to Share 0.73 + 077 £ 0.75 + 082 £ 1012
0.03 0.02 0.02 0.02
<9: unlikely to share Likely to Share 0.76 + [ 072 £ 074 + 1012
0.03 0.03 0.02
>9: likely to share Test Unlikely to Share 0.80 + ] 076 £ |[078 £ | 076 =+ 347
0.04 0.05 0.03 0.05
Likely to Share 0.60 + | 0,66 =+ | 063 =+ 169
0.06 0.07 0.05
Random Forest Train Unlikely to share 0.88 + 0.91 + 090 £ 097 £ 1013
0.02 0.02 0.01 0.01
max_features: 3, Likely to share 0.91 + 0.88 =+ 090 =+ 1013
min_samples_split: 20, 0.02 0.02 0.01
n_estimators: 1000
Test Unlikely to share 0.80 +£ ] 077 £ [ 078 £ | 078 =+ 253
0.05 0.04 0.03 0.04
Likely to share 0.61 + | 064 £+ | 063 £ 169
0.06 0.07 0.06
XGboost Train Unlikely to share 1.00 + 1.00 =+ 1.00 =+ 1.00  + 1013
0.00 0.00 0.00 0.00
colsample_bytree: 0.6, eta: 0.05, Likely to share 1.00 + 1.00 + 1.00 =+ 1013
n_estimators: 1000, subsample: 0.00 0.00 0.00
0.5
Test Unlikely to share 0.82 + 072 £ 0.76 £ 253
0.04 0.05 0.04 0.76 &+ 0.04
Likely to share 0.58 £ | 071 £ | 064 =+ 169
0.06 0.06 0.06
Midpoint threshold Logistic Regression (Baseline) Train Unlikely to Share 0.79 + 0.82 £ 0.80 =+ 0.87 =+ 624
0.03 0.03 0.02 0.02
<15: unlikely to share Likely to Share 0.81 + 078 £ 0.79 +£ 624
0.03 0.03 0.02
>15: likely to share Test Unlikely to Share 0.90 + [ 0.80 £ 085 £ 157
0.03 0.04 0.03 0.80 + 0.04
Likely to Share 0.49 + | 068 £+ | 057 <+ 104
0.08 0.09 0.07
Random Forest Train Unlikely to share 0.84 + 086 =+ 085 £ 092 £ 624
0.03 0.03 0.02 0.01
max_features: 2, Likely to share 0.86 + [ 083 £ 0.84 £ 624
min_samples_split: 70, 0.03 0.03 0.02
n_estimators: 500
Test Unlikely to share 0.90 + 0.79 £ 0.84 =+ 0.81 + 157
0.03 0.04 0.03 0.04
Likely to share 0.48 + | 068 £+ | 056 + 104
0.08 0.08 0.07
XGboost Train Unlikely to share 1.00 + 1.00 =+ 1.00 =+ 1.00 =+ 624
0.00 0.00 0.00 0.00
colsample_bytree: 0.7, eta: 0.05, Likely to share 1.00 + 1.00 =+ 1.00 =+ 624
n_estimators: 500, subsample: 0.00 0.00 0.00
0.7
Test Unlikely to share 0.9+ 0.03 0.74 £ 0.81 + 078 =+ 157
0.04 0.03 0.05
Likely to share 0.43 + | 071 £ | 054 &+ 104
0.07 0.08 0.07
Multiple thresholds Logistic Regression Train Unlikely to share 0.65 + 0.74 £ 069 =+ 0.81 + 297
0.05 0.05 0.04 0.02
Neutral 0.52 + | 042 £+ | 047 <+ 297
0.06 0.05 0.05
<13: unlikely to share Likely to share 0.68 + [ 0.71 + 069 =+ 297
0.05 0.05 0.04
13< and <23: neutral Test Unlikely to share 0.89 + 0.70 + 0.78 + 0.78 + 377
0.04 0.05 0.03 0.04
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>23: likely to share Neutral 0.30 + 0.45 + 0.36 + 89
0.07 0.10 0.08
Likely to share 0.35 £+ | 060 =+ 044 =+ 50
0.10 0.14 0.10
Random Forest Train Unlikely to share 0.74 + [ 085 £ 079 £ | 092 =+ 297
0.04 0.04 0.03 0.01
Neutral 0.76 + | 065 =+ 070 =+ 297
0.05 0.05 0.04
’max_features’: 1, Likely to share 0.82 + 083 =+ 0.82 £ 297
’min_samples_split’: 40, 0.04 0.04 0.03
‘n_estimators’: 500
Test Unlikely to share 0.87 £ | 075 =+ 080 + [ 080 + 377
0.04 0.04 0.03 0.04
Neutral 0.32 + 045 £ 037 =+ 89
0.08 0.10 0.08
Likely to share 0.43 + | 060 =+ 050 + 50
0.11 0.13 0.11
XGboost Train Unlikely to share 1.00 + 1.00 =+ 1.00 =+ 1.00 =+ 297
0.00 0.00 0.00 0.00
’colsample_bytree’: 1.0, ’eta’: Neutral 1.00 + 1.00 = 1.00 =+ 297
0.05, "n_estimators’: 1000, "sub- 0.00 0.00 0.00
sample’: 0.5
Likely to share 1.00 + 1.00 + 1.00 =+ 297
0.00 0.00 0.00
Test Unlikely to share 0.91 + | 066 =+ 076 + [ 078 + 377
0.03 0.05 0.04 0.04
Neutral 0.29 £+ | 058 £ 039 =+ 89
0.07 0.10 0.07
Likely to share 0.40 + 0.54 £ 046 £ 50
0.12 0.14 0.12
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Table A3: Summary of evaluation metrics for likelihood of believing using original dataset with class weight balancing

Threshold Approach Model Train/Test | Class Precision Recall F1 AUC Sample Counts
Mean threshold Logistic Regression (Baseline) Train Unlikely to Believe 0.64 + 0.52 0.58 £ 0.73 £ 842
0.04 0.03 0.03 0.02
<6: unlikely to believe Likely to Believe 0.71 + 0.80 0.75 £ 1221
0.02 0.02 0.02
>6: likely to believe Test Unlikely to Believe 0.63 + 0.52 0.57 + 0.74 + 210
0.07 0.07 0.06 0.04
Likely to Believe 0.70 £+ | 0.79 074 =+ 306
0.05 0.05 0.04
Random Forest Train Unlikely to believe 0.90 + 0.91 0.91 + 097 £ 842
0.02 0.02 0.02 0.01
max_features: 6, Likely to believe 0.94 + 0.93 093 =+ 1221
min_samples_split: 20, 0.01 0.01 0.01
n_estimators: 1000,
class_weight: balanced
Test Unlikely to believe 0.61 £ | 0.60 061 + [ 074 <+ 210
0.07 0.07 0.06 0.04
Likely to believe 0.73 + | 074 073 =+ 306
0.05 0.05 0.04
XGboost Train Unlikely to believe 0.81 + 0.88 0.84 £ 095 £ 842
0.03 0.02 0.02 0.01
colsample_bytree: 0.5, eta: 0.01, Likely to believe 0.91 + | 0.86 0.88 =+ 1221
n_estimators: 500, subsample: 0.02 0.02 0.01
0.6, scale_pos_weight: 1.53
Test Unlikely to believe 0.59 + 0.66 062 =+ 074 £ 210
0.06 0.06 0.05 0.04
Likely to believe 0.75 + | 0.69 072 =+ 306
0.05 0.05 0.04
Midpoint threshold Logistic Regression (Baseline) Train Unlikely to Believe 0.72 £+ | 0.87 079 =+ | 076 + 1291
0.02 0.02 0.02 0.02
<8: unlikely to believe Likely to Believe 0.67 + 0.45 054 + 772
0.04 0.04 0.03
>8: likely to believe Test Unlikely to Believe 0.72 + | 0.82 076 + | 070 =+ 323
0.05 0.04 0.04 0.05
Likely to Believe 0.60 £+ | 046 052 =+ 193
0.08 0.07 0.07
Random Forest Train Unlikely to believe 0.89 + 0.86 0.87 + 092 £ 1291
0.02 0.02 0.01 0.01
max-_features: 2, Likely to believe 0.78 + 0.82 0.80 £ 772
min_samples_split: 30, 0.03 0.03 0.02
n_estimators: 1000,
class_weight: balanced
Test Unlikely to believe 0.73 + | 0.70 071 + [ 070 + | 323
0.05 0.05 0.04 0.04
Likely to believe 0.53 £ | 057 055 =+ 193
0.07 0.07 0.06
XGboost Train Unlikely to believe 0.91 + 0.89 090 =+ 0.95 1291
0.02 0.02 0.01
colsample_bytree: 0.5, eta: 0.01, Likely to believe 0.82 + 0.85 0.84 £ 772
n_estimators: 500, subsample: 0.03 0.02 0.02
1.0, scale_pos_weight: 1.53
Test Unlikely to believe 0.73 + | 0.66 069 = [ 0.69 323
0.05 0.05 0.04
Likely to believe 0.51 + [ 0.59 054 =+ 193
0.06 0.07 0.06
Multiple thresholds Logistic Regression Train Unlikely to believe 0.64 + 0.85 0.73 £ 073 £ 1090
0.02 0.02 0.02 0.02
<7: unlikely to believe Neutral 0.47 + [ 0.33 038 =+ 680
0.05 0.03 0.03
7< and <11: neutral Likely to believe 0.57 £+ | 0.29 038 =+ 293
0.08 0.05 0.06
>11: likely to believe Test Unlikely to believe 0.63 + 0.80 0.70 £ 072 £ 273
0.05 0.05 0.04 0.03
Neutral 0.39 £ | 030 034 =+ 170
0.08 0.07 0.07
Likely to believe 0.65 + 0.32 042 + 73
0.16 0.11 0.12
Random Forest Train Unlikely to believe 0.93 + 0.86 090 =+ 096 £ 1090
0.01 0.02 0.01 0.00
max_features: 5, Neutral 0.86 £+ | 0.86 086 =+ 680
min_samples_split: 20, 0.03 0.03 0.02
n_estimators: 500, class_weight:
balanced
Likely to believe 0.74 £ | 095 083 =+ 293
0.04 0.03 0.03
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Test Unlikely to believe 0.68 £ | 070 =+ 069 + [ 072 <+ 273
0.05 0.05 0.04 0.03
Neutral 0.43 + | 038 £+ | 040 =+ 170
0.08 0.07 0.07
Likely to believe 0.38 + | 045 £ | 041 <+ 70
0.10 0.11 0.09
XGboost Train Unlikely to believe 0.82 £ |1 097 £ |08 £ | 097 <+ 1090
0.02 0.01 0.01 0.01
colsample_bytree:0.6, eta: 0.01, Neutral 0.88 + 0.71 + 0.79 + 680
n_estimators: 500, subsample: 0.03 0.03 0.03
1.0, scale_pos_weight: 1.53
Likely to believe 0.99 + | 086 £+ | 092 <+ 293
0.02 0.02 0.02
Test Unlikely to believe 0.66 £ 1072 £ [ 069 £ | 073 £ | 273
0.05 0.05 0.04 0.03
Neutral 0.37 + 040 £ 038 =+ 170
0.07 0.07 0.07
Likely to believe 0.51 + | 042 £+ | 046 =+ 70
0.12 0.10 0.10

Table A4: Summary of evaluation metrics for likelihood of believing using combination of undersampled and oversampled dataset

Threshold Ap- Model Train/Test | Class Precision Recall F1 AUC Sample Counts
proach
Mean thresh- Logistic  Regres- Train Unlikely to Share 0.73 = | 077 £ | 075 £ 0.82 £ 0.02 1012
old (<9: sion (Baseline) 0.03 0.02 0.02
unlikely, >9:
likely)
Likely to Share 0.76 + [ 072 £+ | 074 =+ 1012
0.03 0.03 0.02
Test Unlikely to Share 0.80 + | 076 £ [ 078 £ 0.76 £+ 0.05 347
0.04 0.05 0.03
Likely to Share 0.60 + [ 066 £+ | 063 =+ 169
0.06 0.07 0.05
Random Forest | Train Unlikely to Share 0.88 + 0.91 + 090 =+ 0.97 £0.01 1013
(max_features=3, 0.02 0.02 0.01
min_samples_split=20),
n_estimators=1000)
Likely to Share 091 + 08 + [ 090 + 1013
0.02 0.02 0.01
Test Unlikely to Share 0.80 + | 077 £ | 078 =+ 0.78 £ 0.04 | 253
0.05 0.04 0.03
Likely to Share 0.61 + [ 064 £+ | 063 =+ 169
0.06 0.07 0.06
XGBoost (colsam- | Train Unlikely to Share 1.00 + 1.00 =+ 1.00 =+ 1.00 £ 0.00 1013
ple_bytree=0.6, 0.00 0.00 0.00
eta=0.05,
n_estimators=1000,
subsample=0.5)
Likely to Share 1.00 + 1.00 + 1.00 + 1013
0.00 0.00 0.00
Test Unlikely to Share 0.82 + [ 072 £+ | 076 + 0.76 £ 0.04 | 253
0.04 0.05 0.04
Likely to Share 0.58 + 0.71 + 0.64 £ 169
0.06 0.06 0.06
Midpoint thresh- | Logistic Regression Train Unlikely to Share 0.79 + 0.82 £ 0.80 £ 0.87 £ 0.02 624
old (<15: unlikely, | (Baseline) 0.03 0.03 0.02
>15: likely)
Likely to Share 0.81 + | 078 £ | 079 =+ 624
0.03 0.03 0.02
Test Unlikely to Share 0.90 + | 080 £ [ 085 £ 0.80 £ 0.04 157
0.03 0.04 0.03
Likely to Share 0.49 + [ 068 £+ | 057 =+ 104
0.08 0.09 0.07
Random Forest | Train Unlikely to Share 0.84 + 0.86 £ 085 £ 0.92 £ 0.01 624
(max _features=2, 0.03 0.03 0.02
min_samples_split=70),
n_estimators=500)
Likely to Share 0.86 + 083 + [ 084 + 624
0.03 0.03 0.02
Test Unlikely to Share 0.90 + | 079 £ | 0.84 £ 0.81 £+ 0.04 157
0.03 0.04 0.03
Likely to Share 0.48 + [ 068 £ | 056 =+ 104
0.08 0.08 0.07

22 | NHSJS 2025 © The National High School Journal of Science 2025



XGBoost (colsam- | Train Unlikely to Share 1.00 1.00 1.00 1.00 £ 0.00 | 624
ple_bytree=1.0, 0.00 0.00 0.00
eta=0.05,
n_estimators=1000,
subsample=0.5)
Likely to Share 1.00 1.00 1.00 624
0.00 0.00 0.00
Test Unlikely to Share 0.91 0.66 0.76 0.78 £0.04 | 377
0.03 0.05 0.04
Likely to Share 0.40 0.54 0.46 50
0.12 0.14 0.12
Multiple thresh- | Logistic Regression | Train Unlikely to Share 0.75 0.80 0.77 0.84+£0.02 | 297
olds (Baseline) 0.02 0.02 0.02
Neutral 0.72 0.70 0.71 297
0.02 0.02 0.02
Likely to Share 0.74 0.72 0.73 297
0.02 0.02 0.02
Test Unlikely to Share 0.81 0.76 0.78 0.77 £0.04 | 377
0.04 0.04 0.03
Neutral 0.31 0.59 0.40 89
0.07 0.10 0.08
Likely to Share 0.41 0.54 0.46 50
0.12 0.13 0.12
Random Forest | Train Unlikely to Share 0.89 0.92 0.91 0.97 £0.01 297
(max_features=2, 0.02 0.02 0.01
min_samples_split=70),
n_estimators=500)
Neutral 0.90 0.89 0.90 297
0.02 0.02 0.01
Likely to Share 091 0.90 0.90 297
0.02 0.02 0.01
Test Unlikely to Share 0.80 0.77 0.78 0.78 £0.04 | 377
0.04 0.04 0.03
Neutral 0.29 0.58 0.39 89
0.07 0.10 0.07
Likely to Share 0.40 0.54 0.46 50
0.12 0.14 0.12
XGBoost (colsam- | Train Unlikely to Share 1.00 1.00 1.00 1.00 £ 0.00 297
ple_bytree=1.0, 0.00 0.00 0.00
eta=0.05,
n_estimators=1000,
subsample=0.5)
Neutral 1.00 1.00 1.00 297
0.00 0.00 0.00
Likely to Share 1.00 1.00 1.00 297
0.00 0.00 0.00
Test Unlikely to Share 0.91 0.66 0.76 0.78 £0.04 | 377
0.03 0.05 0.04
Neutral 0.29 0.58 0.39 89
0.07 0.10 0.07
Likely to Share 0.40 0.54 0.46 50
0.12 0.14 0.12
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