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Neural Architecture Search (NAS) automates model design but often requires prohibitive computation, with some methods
needing thousands of GPU hours. This study addresses the critical need for an efficient NAS framework. We hypothesized
that ensemble learning combined with an incremental reinforcement learning (RL) approach could discover high-performing
architectures at a fraction of the typical computational cost. We developed Reinforced ArCHitEcture Learning (RACHEL), a
framework integrating an actor-critic RL agent and a stability-ensuring ensemble safety net. Utilizing modern optimizations,
RACHEL demonstrated exceptional efficiency on the Canadian Institute for Advanced Research (CIFAR-10) image dataset. It
achieved significantly higher accuracy than the AdaNet baseline on binary tasks in under two hours and competitive accuracy on
the full dataset in under eight GPU hours. The framework’s effectiveness was further validated with state-of-the-art accuracy
among compared methods on Street View House Numbers (SVHN) and highly competitive performance on the Fashion Modified
National Institute of Standards and Technology dataset (Fashion-MNIST). Our results show that RACHEL provides competitive

performance at a drastically reduced computational cost, making advanced NAS methods more accessible.
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1 Introduction

Artificial Intelligence (AI) has quickly advanced by enabling
computer systems to learn from data, a field known as machine
learning. Modern machine learning, especially deep learning,
is largely based on structures called neural networks, which are
modeled after biological brains. The specific design of a neural
network is known as its architecture, and its design defines
its capacity to learn and its overall performance on tasks such
as object recognition in images. Deep learning using neural
networks has achieved state-of-the-art results across numerous
domains, but designing optimal neural network architectures is
still a complex and time-consuming task’?. The effort required in
manual design has created a need for methods that can automate
the discovery of high-performing architectures, which is what
the field of neural architecture search (NAS) aims to do. By
replacing labor-intensive trial and error, NAS offers a pathway
to democratize Al, accelerate model creation, and reveal task-
specific architectures that improve accuracy, efficiency, and
scalability across domains like computer vision and natural
language processing?.

Current NAS approaches can be broadly categorized into
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three types: reinforcement learning-based methods®, which
train agents to iteratively propose architectures; evolutionary al-
gorithms®, which optimize architectures through genetic opera-
tions like mutation and selection; and gradient-based techniques
(Differentiable Architecture Search, (DARTS®)), which leverage
differentiable optimization to optimize architecture parameters
and weights. A general framework for NAS is illustrated in
Figure 1.
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Fig. 1 The General Framework of Neural Architecture Search (NAS).
This flowchart illustrates the high-level, cyclical process common to
most NAS methods. The framework operates in a loop where a search
strategy (e.g., an RL agent or an evolutionary algorithm) selects or
generates a neural architecture (A) from a predefined search space of
possible architectures. This proposed architecture is then passed to a
performance estimation strategy, which trains or approximates the
performance of the model on a given task. The resulting performance
metric is returned to the search strategy, which uses this feedback to
guide the generation of the next architecture.

Among various NAS strategies, reinforcement learning (RL)
has proven particularly effective4. In RL-based NAS, an RL
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agent (a controller) learns to generate architectures, receiving
feedback based on the performance of the trained architectures
(child networks) on a validation dataset. Zoph and Les~ early
work showed that a recurrent neural network policy trained
with REINFORCE could discover convolutional cell structures
that surpassed human designs on CIFAR10 and ImageNet, al-
beit at the cost of roughly 22,400 GPUdays, or over 500,000
GPU-hours. Subsequent RL variants aimed to reduce this cost.
MetaQNN® explored greedy Qlearning, while efficient neural
architecture search (ENAS)Z introduced weight sharing so that
child networks inherit parameters from a supergraph, cutting
the search time down heavily. Progressive NAS (PNAS)® com-
bined RL search with a progressively expanding search space to
balance exploration and efficiency.

Ensemble-based NAS has also proven to be very effective
in the field. Ensemble-based Knowledge Distillation for NAS
(EnNAS)? constructs a diverse ensemble of candidate subnets
for each training batch. Distillation is then applied to each sub-
net, allowing the network to achieve competitive accuracies on
ImageNet. Neural Ensemble Search for Uncertainty Estimation
and Dataset Shift (NES) applies evolutionary NAS concepts to
ensemble networks, maintaining multiple fixed-size ensembles
using regularized evolution to edit one architecture at a time,
creating ensembles that outperform deep ensembles in accuracy,
uncertainty calibration, and robustness to dataset shift.

Other types of NAS have focused on efficiency. Training-
free Neural Architecture Search (TE-NAS)1", a type of NAS
that ranks candidate architectures by analyzing the architecture
itself rather than its performance on a dataset, searches for ar-
chitectures without training, creating a rapid architecture search
pipeline. More recent training-free methods like Rank-based
Improved Firefly Algorithm (RB-IFA)1! have lowered search
time to under ten minutes. One-shot methods have also proven
effective in improving efficiency; Once-for-All (OFA)12 trains
a single, over-parameterized network once to support all can-
didate sub-architectures using weight sharing. Child networks
can be initiated instantly from the large network based on the
deployment scenario.

Despite its success, NAS, especially with RL, faces several
obstacles. Firstly, one of the most significant issues is the com-
putation cost. As stated before, Zoph and Le famously utilized
800 GPUs over 28 days, accumulating approximately 22,400
GPU days (over 500,000 GPU hours) to find leading archi-
tectures. Subsequent methods, while sometimes improving
efficiency through techniques like proxy-less search (Proxy-
lessNAS!?), still frequently demand substantial computational
resources. This high resource requirement limits the accessi-
bility and practicality of NAS. Another important issue is the
difficulty in generalizing architectures across tasks and datasets.
Many NAS-discovered architectures perform well only on the
specific datasets they were optimized for, such as CIFAR-10 or
ImageNet, raising concerns about overfitting to proxy tasks or

search settings#. Additionally, current NAS methods struggle
with the search space design dilemmawhile a large, expressive
search space offers greater potential (e.g., AutoML-Zero explor-
ing from scratch), it also increases the complexity and cost
of the search, while smaller search spaces limit innovation and
may exclude optimal solutions altogether.

Moreover, NAS methods often neglect multi-objective opti-
mization. In practice, neural networks must balance multiple
criteria beyond accuracy, such as latency, memory footprint, en-
ergy efficiency, and fairness. While some recent works attempt
to incorporate these aspects (e.g., Mobile Neural Architecture
Search (MnasNet)"?, Facebook Berkeley Network (FBNet)19),
most current NAS algorithms remain single-objective in nature
and fail to address real-world deployment constraints, especially
for edge or mobile devices.

To address the challenge of computational cost while aiming
for competitive performance, we propose Reinforced ArCHi-
tEcture Learning (RACHEL), a NAS framework specifically
designed for computational efficiency. We hypothesized that by
combining an incremental RL-driven search with a stabilizing
ensemble method, we could achieve competitive performance
with significantly fewer computational resources. As a result,
RACHEL integrates two key ideas:

1. Incremental RL-driven Architecture Candidate Genera-
tion: An actor-critic RL controller explores the architecture
search space, incrementally building network designs.

2. Ensemble Learning with Safety Net: Instead of searching
for a single best architecture, RACHEL builds an ensem-
ble of performant networks discovered during the search,
improving robustness and overall accuracy. A safety-net
mechanism prevents catastrophic performance drops by
reverting to a previously validated, stable model if a newly
proposed candidate significantly underperforms.

We implement RACHEL using TensorFlow and a few GPU
optimizations, including mixed-precision training and Accel-
erated Linear Algebra (XLA) compilation, primarily targeting
NVIDIA L4 GPUs. Our results highlight RACHEL as a practi-
cal and efficient NAS framework, offering a compelling balance
between accuracy and resource utilization. In this study, we
demonstrate that RACHEL achieves competitive accuracy on
standard benchmarks while drastically reducing computational
cost, and it surpasses existing baselines on specialized binary
classification tasks. We acknowledge that while prioritizing
computational efficiency, the final architectures may not surpass
the peak accuracy of NAS methods that require vastly more
computational power. This study, therefore, accepts a trade-off
between state-of-the-art performance and practical accessibility.
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2 Architecture Search Process

2.1 Overview

We propose RACHEL, an RL-based framework for neural archi-
tecture search that constructs an ensemble of high-performing
models through iterative refinement. The flowchart of the
RACHEL process is shown in Figure 2.
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Fig. 2 The Iterative Process of the Reinforced Architecture Learning
(RACHEL) Framework. This flowchart details the specific operational
loop of the RACHEL framework for discovering and ensembling
neural network architectures. The process begins with an actor-critic
RL controller generating a batch of candidate architectures by
incrementally adding layers to a base model. Each candidate is trained
and evaluated on a validation set to measure its potential contribution
to an evolving ensemble. This performance metric is used as a reward
to update the RL controller’s policy. The best-performing candidate
from the batch is then subjected to a safety-net check; it is only added
to the final ensemble if its inclusion improves upon the ensemble’s
previous state. This cycle repeats for a fixed number of iterations to
build a robust final ensemble model.

2.2 Reward

The reward signal is not based on a candidate’s standalone
performance. To evaluate a candidate, it is temporarily added to
the current ensemble. This frames the task of finding the best
weights for this temporary ensemble as a convex optimization
problem. Because the predictions from each base model are
held constant (treated as fixed inputs), the overall cross-entropy
loss function is convex with respect to the mixture weights,
guaranteeing that a single, global optimal solution exists. These
weights are learned by optimizing a trainable tensor of logits for
10 epochs on the validation set. Specifically, a gradient-based
optimizer is used to iteratively adjust the logits to minimize
the ensemble’s cross-entropy loss, as it is the standard loss
function for this multi-class classification task. We selected
cross-entropy as it is the standard, principled loss function for
this multi-class classification task. The resulting validation loss
of the hypothetical combined ensemble (final_val_loss) serves as
the objective function (obj = final_val_loss) for calculating the
reward (r = obj). Since our goal is to minimize error (loss), we
define the reward as the negative of the loss; a lower loss results
in a higher reward for the RL agent. This objective is negated to
form the reward signal (r = obj). The top-performing candidate,
subject to a safety-net check that ensures stability, is then added
to the growing ensemble. After a fixed number of iterations,

the framework finalizes the model by learning the ensemble’s
prediction weights. This is achieved by optimizing a trainable
tensor of logits for 50 epochs on the validation set using the
Adam optimizer, with the final mixture weights determined by
a softmax function. These mixture weights are then used to
combine the models by taking a weighted average of the logits
(the raw, pre-activation outputs) produced by each network in
the ensemble.

2.3 RL Agent and the Search Space

The RL agent is composed of two parts: an actor that proposes
designs and a critic that estimates how good those proposals
are. This controller is built using a Long Short-Term Memory
(LSTM) network, a type of neural network with memory, which
is good for making a sequence of related decisions. The critic is
implemented as a feed-forward network composed of a Flatten
layer, a Dense hidden layer with 64 units and a ReLU activation,
and a final Dense output layer to predict the value. The agent
is trained on a combined loss function, which sums the policy
gradient actor loss with a critic loss (the mean squared error
between predicted values and actual rewards) that is weighted
by a factor of 0.5. At each decision step in the architecture
generation sequence (up to a predefined max_new_layers, which,
when multiplied by the iteration count, defines the maximum
number of layers a subnetwork can have), the LSTM generates
probability distributions over a set of architectural tokens, each
representing a specific design choice for a potential new layer
or block. This token generation is its action. To generate these
tokens, the process is initiated by a single random tensor, and the
LSTM’s own hidden state maintains context between sequential
decisions.

As seen in Table 1, the RL controller first decides layer pres-
ence and layer type (either a standard convolutional block or a
residual block) with binary token choices, and then defines the
layer width. For example, a sequence of three token choices
(0, 0, 50) represents a potential layer where the layer is present
(token 1), is of type standard convolutional block (token 0), and
has a width of 50 + 16 = 66 units. Specifically, the controller
uses three separate dense output layers with 2, 2, and 241 units
to generate the logits for layer presence, type, and width, respec-
tively. The final layer width is calculated by adding a base of 16
to the sampled integer (0-240), resulting in a range of 16 to 256.
The connectivity is sequential, with new architectural blocks
always being appended to the end of the existing network. To
control the agent’s decision-making process, a sampling tem-
perature is applied to the logits before the softmax operation.
This temperature starts at a high value (1.5) and multiplicatively
decays at each iteration. This schedule is crucial for balanc-
ing exploration and exploitation in the search process. Initially,
the high temperature flattens the probability distribution, en-
couraging the agent to take more random actions and explore a
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Table 1 Definition of architectural search space. This table shows the tokenizing process RACHEL uses to define each potential layer in a
candidate architecture. Each layer is represented by a sequence of three token choices made by the RL controller.

Decision Component Description

Token
Value

Operation

A binary decision indicating whether the

Layer Presence layer should be added.

0
1

Absent: No layer is added at this step.
Present: The layer defined by the next two to-
kens is added.

A categorical choice among predefined

Layer Type block types.

0 Standard Convolutional Block: A sequence
of Conv2D (3x3 kernel), BatchNormalization,
ReLU, Dropout, and MaxPooling2D.

Residual Block: A two-layer residual block with
a skip connection. The main path consists of two
Conv2D layers (3x3 kernel), each followed by
BatchNormalization and ReL.U. The skip con-
nection uses a Conv2D (1x1 kernel) to match
dimensions if necessary before being added back
to the main path.

Width | An integer specifying the number of fil-
ters or units in the layer, sampled from a

defined range (16 to 256).

Layer
(Units/Filters)

0 to 240 Number of Filters/Units: The token value is
mapped to a final layer width by the formula:
width token_value + 16. This re-
sults in a search space for layer widths ranging
from 16 to 256. This decision is also ignored if

Layer Presence is 0.

diverse range of novel architectures (exploration). As the search
progresses and the agent’s policy improves, the temperature is
lowered, which sharpens the distribution and causes the agent
to more consistently sample actions it already believes are best
(exploitation). This ensures that the search is both broad enough
to discover new ideas and focused enough to refine the most
promising ones. The actor component samples actions from
the generated distributions, while the critical component esti-
mates the expected reward for a given state represented by the
LSTMs input/hidden state, to compute the advantage (A =r -
V(s), where A is the advantage, r is the actual reward, and V(s)
is the estimated reward) used in policy updates. The given state
is the LSTM controllers internal hidden (and cell) state vector
after processing the dummy input sequence, which encodes all
previous layeraddition decisions. The advantage is a signal that
tells the actor how much better or worse their action was com-
pared to the average expected outcome. A summary of the RL
loop is shown in Algorithm 1.

The decode_full_candidate function translates a complete to-
ken sequence into a runnable Keras model'Z. Keras is a popular
library that simplifies the process of building and training neural
networks. It instantiates layers based on the tokens, incorporat-
ing standard components such as Conv2D, BatchNormalization,
ReLU activation, MaxPooling2D, Dropout, and optional resid-
ual connections. These are all fundamental building blocks: for
instance, Conv2D layers are specialized for finding patterns in
images, while Dropout helps prevent the model from overfitting
by reducing its tendency to memorize the training data. Input

preprocessing consists of normalizing images to (0, 1) and apply-
ing on-the-fly data augmentation. The augmentations are limited
to random horizontal flips and £10% translations; no advanced
techniques like cutout are used. This conservative approach to
which is comparable to or simpler than that of many baselines,
helps ensure a fair comparison focused on architectural discov-
ery. Dropout rates and layer widths (number of filters/units)
are adapted based on token values and architectural depth, al-
lowing flexible and expressive model generation. Because each
candidate model is trained from scratch on the full dataset, our
framework avoids the issue of catastrophic forgetting of weights,
a common challenge in parameter-sharing NAS methods.

2.4 Safety Net

A safety-net mechanism is employed to increase stability. Be-
fore a new candidate architecture is added to the ensemble, its
performance contribution is compared against that of the previ-
ously accepted model. If the new candidate performs worse (if
the objective is 0.01 less than the previous), it is discarded, and
the previous best subnetwork is re-added to the ensemble. This
prevents noisy evaluations or poor exploratory steps from cor-
rupting the ensemble, ensuring its quality does not decline over
time while also reinforcing successful subnetworks by increas-
ing the weight of a proven architecture in the final ensemble.
This approach is most advantageous in the early stages of the
search, where the RL agent’s policy is underdeveloped and prone
to generating subpar candidates, and when operating on datasets

4 | NHSJS Reports

© The National High School Journal of Science 2025



Algorithm 1 Pseudocode for the RL Decision Process. The
RL agent is rewarded for its decisions based on the overall
performance of the ensemble after its proposed subnetwork is
added.

1: for each iteration do
2:  for each candidate in iteration do
3 Use the previous subnetwork as a base
4 for each new layer (up to max) do
5 RL agent — choose presence
6: RL agent — choose layer type
7
8
9

RL agent — choose width
Add layer to subnetwork

: end for
10: Add the new subnetwork to the temporary ensemble
11: for 10 epochs do
12: Optimize mixture weights
13: end for
14: Evaluate ensemble
15: Reward RL agent based on performance
16:  end for

17:  Choose the subnetwork candidate with the best reward to
add to the ensemble
18: end for

where performance evaluations may be noisy.

2.5 Optimizations and Hyperparameters

Each candidate model was trained using standard optimization
procedures. RACHEL uses the Adam optimizer'®, a learning
rate scheduler (Ir_scheduler) that gradually reduces the learning
rate over epochs, and Early Stopping based on validation loss
(val_loss) to prevent overfitting. Rachel uses categorical cross-
entropy for its loss function, as it is the standard, principled
loss function for this multi-class classification task. The Adam
optimizer was chosen for its well-established rapid convergence.
The optimizer is the engine that adjusts the model’s parameters
to reduce error.

We also use an Adam optimizer'® with a learning rate of
1 10 for both actor and critic. The discount factor is set to
= 0.9, and an entropy coefficient of 0.01 is applied to encour-
age exploration. These hyperparameters govern the learning
dynamics of the RL agent. The controllers sampling temper-
ature starts at 1.5 and decays multiplicatively by 0.95 at each
iteration. All experiments, including RL controller iterations,
candidate model training, and ensemble evaluation, were con-
ducted on a single NVIDIA L4 GPU. Other hyperparameters
included num_candidates=4 per iteration, iterations=10, and
max_new_layers=3 per step. Training for each candidate was
limited with early stopping applied using a min_delta=0.001 on
validation loss and a patience=10. To assess the reliability of

1

the search process, each task was repeated across 5 independent
runs.

2.6 Data

RACHEL is implemented in TensorFlow 2.x12, utilizing tf.data
for efficient data handling and pipeline construction. Tensor-
Flow is a comprehensive software library developed by Google
for machine learning tasks. Input images are normalized to (0,
1). To maximize performance on modern GPUs (the NVIDIA
L4 in this case), the framework supports Mixed Precision Train-
ing?’, Accelerated Linear Algebra (XLA), and the Distributed
Training Strategy. These are advanced software optimizations
that significantly speed up the computationally intensive training
process, allowing us to achieve results much faster.

This study exclusively utilized publicly available and
anonymized image datasets, thereby avoiding concerns related
to human subject privacy or data confidentiality. The research
adheres to standard scientific practices for reproducibility and
responsible innovation.

3 Results

1. Canadian Institute For Advanced Research 10 Class
Dataset (CIFAR-10): A dataset that consists of 60,000
32x32 color images, categorized into 10 distinct classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. The dataset is divided into 45,000 training im-
ages, 5,000 validation images, and 10,000 test images.

2. Street View House Numbers dataset (SVHN): Over
600,000-digit images (3232) of street view house num-
bers. We use the core training (73,257) and test (26,032)
sets, with a 10% validation split from training.

3. Fashion Modified National Institute of Standards and Tech-
nology database (Fashion-MNIST): 70,000 2828 grayscale
images of 10 fashion categories. Split: 55,000 train, 5,000
validation, 10,000 tests.

The first set of experiments focused on binary classification
tasks using CIFAR-10, where five binary subsets were con-
structed to enable direct comparison with the AdaNetl bench-
marks: Cat vs. Dog, Deer vs. Truck, Deer vs. Horse, Automo-
bile vs. Truck, and Dog vs. Horse. The second set involved
full multi-class classification on the CIFAR-10, SVHN, and
Fashion-MNIST datasets. Test accuracy on the held-out test
set served as the primary performance metric, while total GPU
Hours measured the end-to-end computational cost of the neural
NAS process on the specified hardware when such data was
available from the comparison baseline methods.

RACHELSs performance was benchmarked against a diverse
and comprehensive set of baseline methods tailored to each
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specific task and dataset. For the binary classification tasks on
CIFAR-10, RACHEL was directly compared with AdaNet>!.
For the full multi-class classification tasks, the comparison
suite was significantly expanded. On CIFAR-10, RACHEL
was evaluated against foundational and widely recognized meth-
ods such as MetaQNN 8 NAS with RL3, and Progressive NAS
(PNAS)2. On the SVHN dataset, the evaluation included a
broad array of modern competitors, including Dirichlet Neu-
ral Architecture Search (DrNAS), Random Search with Pa-
rameter Sharing (RSPS)?2, Self-Evaluated Template Network
(SETN)23, Gradient-based?*, Partial Channel Connections for
Memory-Efficient Architecture Search (PC-DARTS)Z, and a
strong ResNet baseline from a previous study“®. For Fashion-
MNIST, RACHELSs performance was compared with methods
like DeepSwarm*Z, an evolutionary algorithm®®, Evolutionary
Cross-Topology Neural Architecture Search (ECToNAS)#?, and
MO-ResNet=".

To gauge the contributions of ensembling and RL, two abla-
tion studies were conducted on RACHEL, one with no ensem-
bling and one with random search instead of RL, both evaluated
on CIFAR-10.

3.1 Binary Classification Tasks (CIFAR-10)

For the binary tasks on CIFAR-10, RACHEL consistently out-
performed AdaNet! across all tasks, with accuracy improve-
ments ranging from approximately 4% to over 11%. RACHEL
achieved substantial accuracy improvements over AdanetZl:
Cat vs. Dog (80.57%=+0.91% vs. 69.24%+1.29%, an 11.33%
improvement, p<0.001), Deer vs. Truck (98.14%=+0.22% vs.
93.72%+0.82%, a 4.42% improvement, p<0.005), Deer vs.
Horse (92.21%40.84% vs. 84.30%+0.76%, a 7.91% improve-
ment, p<0.001), Automobile vs. Truck (94.23%=0.66% vs.
84.61%=+0.69%, a 9.62% improvement, p<0.001), and Dog
vs. Horse (92.79%40.80% vs. 83.50%=+0.89%, a 9.29% im-
provement, p<0.001) (Figure 3). AdaNet results are benchmark
values from Cortes et al. >l Each binary task required under two
hours of training on a single NVIDIA L4 GPU, though a compu-
tational cost comparison with AdaNet is difficult due to AdaNet
not specifying training times or GPU type. The safety-net mech-
anism was rarely activated (only once or twice per 10 iterations),
suggesting that the RL controller and adaptive training strategy
enabled stable and effective model selection.

3.2 Full Multi-Class Classification

For the full CIFAR-10 classification task, RACHEL was bench-
marked against several established NAS methods. RACHEL
achieved a competitive average accuracy of 92.67%=0.21%,
slightly trailing MetaQNN 31 (93.08%) and falling short of the
higher accuracies achieved by NAS with RL"” (96.35%) and
PNAS® (96.59%, p<0.001) (Figure 4). Data for competitor
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Fig. 3 RACHEL Significantly Outperforms AdaNet on Binary
CIFAR-10 Classification Tasks (N=5). This bar chart compares the
mean test accuracy of the RACHEL framework against the AdaNet
baseline across five binary classification tasks derived from the
CIFAR-10 dataset. For each task, the RACHEL framework was run
five independent times (N=5) to discover and train an ensemble model,
with the final accuracy evaluated on a held-out test set. Each RACHEL
bar represents the mean accuracy across the five runs, and error bars
represent the standard deviation.

methods are benchmark values reported in their respective pub-
lications2®8 and the GPU time for NAS with RL was reported
in Zhao et al.*% However, these methods required vastly greater
computational resources, ranging from 2,400 to over 500,000
GPU hours=4, compared to RACHELs ~8 GPU hours on a
single NVIDIA L4 GPU. We trained a standard ResNet-18 ar-
chitecture to convergence using the identical simplified training
protocol to provide a more direct baseline. Under these con-
trolled conditions on an NVIDIA L4 GPU with XL A and Mixed
Precision and simple augmentation, the ResNet-18 baseline
achieved a mean test accuracy of 83.57%+0.10%. RACHEL
significantly outperformed ResNet-18 (p<0.001). To assess
the real-world applicability of RACHEL, the inference times
and average sizes for each model on runs on CIFAR-10 were
recorded, averaging 17.121s30.901s per pass over the 10,000
images in CIFAR-10s test set. In addition, the average num-
ber of parameters per ensemble was 14,811,516 (an average
of 1.48 million per subnetwork). The fast inference times and
reasonable parameter count show that RACHEL is practical in
deployment.

It is important to note that the experimental setups between the
compared studies varied greatly. The type of GPU MetaQNN®
was trained on was specified only as Nvidia GPUs, but it is
specified that the experiment utilized 10 GPUs simultaneously.
Training took up to 10 days to complete with a batch size set
to 128, resulting in ~2400 GPU hours (240 hours x 10 GPUs =
2400 GPU hours). PNAS® completed training using P100 GPUs,
and since it is stated in Liu et. al.® that PNAS® is 8 times faster
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Fig. 4 RACHEL Achieves Competitive Accuracy on CIFAR-10 with
Drastically Reduced Computational Cost (N=5). This bar chart
compares the mean test accuracy of RACHEL against other prominent
NAS methods (MetaQNN, NAS with RL, PNAS) on the full 10-class
CIFAR-10 classification task. The computational cost, measured in
GPU hours, is noted below each method’s bar. RACHEL’s accuracy
was determined by averaging the performance of the final discovered
ensembles on the CIFAR-10 test set across five independent runs
(N=5) on a single NVIDIA L4 GPU. The RACHEL bar shows the
mean accuracy, and its error bar represents the standard deviation.

than NAS with RL=, which took up to ~537,600 GPU hours
(recorded in ENAS), PNAS® ran for a total of ~67,200 GPU
hours. The exact GPU type used in NAS with RL> was not spec-
ified, but the massive GPU hour count derived from ENASs”
reports evidently positions RACHEL as a more efficient NAS
system. Compared to the massive computational resources re-
quired by the other methods, RACHEL demonstrates practical
efficiency, even though additional tests were performed on a
faster setup using an L4 GPU with XLA and mixed precision.
Beyond these hardware differences, RACHEL employs a sim-
ple data augmentation strategy (random flips and translations),
whereas the baseline papers do not detail their augmentation
pipelines beyond standard CIFAR-10 preprocessing. By avoid-
ing advanced augmentation techniques, we ensure a more direct
and fair comparison of the search strategies themselves.

On SVHN, RACHEL achieved 96.62%-+0.29% test accu-
racy in approximately 7 GPU hours. RACHEL slightly out-
performs all other compared methods (Figure 5). It demon-
strates a slight advantage over the next-best models, includ-
ing DrNAS (96.30%=+0.03%), RSPS (96.17%=0.06%), and
a manually designed ResNet baseline (96.13%+0.10%) (Fig-
ure 5). RACHEL also slightly surpasses SETN, which scores
96.02%=+0.06% (Figure 5). RACHEL's accuracy is comparably
higher than that of Differentiable Architecture Sampler (GDAS)
(95.57%=+0.25%) and PC-DARTS (95.40%+0.33%) (Figure
5). All competitor results are benchmark values, including the
ResNet baseline, were reported by Lee et al., 202129, To ac-
count for the class imbalance in the SVHN dataset, we also used
the macro F1 score. This metric provides a better measure of

model performance by balancing precision (minimizing false
positives) and recall (minimizing false negatives). The achieved
score of 0.96294-0.0031 demonstrates that RACHEL performs
exceptionally well across all classes, not just the most frequent
ones. By consistently performing competently against a wide
array of established NAS techniques, RACHEL demonstrates
its practical capability in discovering high-performance archi-
tectures and achieving high performance among the compared
methods.
96.62%

F1 score =
0.9629+0.0031

96.3%
9%6.17%  96.13%
96.02%

95.57%
95.4%

RACHEL DrNAS RSPS ResNet

(Baseline)

SETN GDAS PC-DARTS

Fig. 5 RACHEL Achieves State-of-the-Art Accuracy Among
Compared Methods on the SVHN Dataset (N=5). This bar chart
compares the mean test accuracy of RACHEL with DrNAS, RSPS,
ResNet, SETN, GDAS, and PC-DARTS. The F1 score is also included
for RACHEL. RACHEL’s performance was evaluated by averaging the
test accuracy of the final ensembles from five independent search runs
(N=5).

On Fashion-MNIST, RACHEL achieved 94.76%=+0.47% test
accuracy in approximately 12 GPU hours. GPU hour com-
parisons are limited as they are not consistently reported for
all competitors on this dataset. RACHEL demonstrates strong
performance on Fashion-MNIST, outperforming DeepSwarm
(93.25%)%, an evolutionary algorithm (93.20%)2%, and signif-
icantly over ECToNAS (87.20%=+1.5%, p<0.001)?%. While
MO-ResNet“? reports a higher accuracy of 95.91%, RACHELs
accuracy (94.76%=+0.47%) is highly competitive, especially
considering its demonstrated efficiency on other datasets (Fig-
ure 6). Competitor accuracies are benchmark values sourced
from their respective publications?*3Y. To provide a more di-
rect baseline, we trained a standard ResNet-18 architecture to
convergence under the same conditions as RACHEL. Under
these controlled conditions on an NVIDIA L4 GPU with XLA
and Mixed Precision, the ResNet-18 baseline achieved a mean
test accuracy of 91.19%=0.13%, whereas RACHELSs accuracy
of (94.76%=+0.47%) is significantly higher than the result of
ResNet-18 in this case (p<0.001) (Figure 6).

The full RACHEL framework (RLdriven search + ensembling
+ safetynet) attains 92.67% =+ 0.21% in accuracy (Figure 7). Re-
moving ensembling and reporting the single best RLdiscovered
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Evolutionary
Algorithm for
Hierarchical

NAS

ECTONAS  ResNet-18

Fig. 6 RACHEL Demonstrates Highly Competitive Performance on
the Fashion-MNIST Dataset (N=5). This bar chart compares the mean
test accuracy of RACHEL with other published methods on the
Fashion-MNIST classification task. The accuracy for RACHEL was
calculated as the mean performance on the Fashion-MNIST test set
across five complete, independent search and evaluation runs (N=5).

model reduces accuracy to 88.44% =+ 0.34%, p<0.001, indicat-
ing that ensembling contributes a +4.23% improvement under
our settings. Overall, these results indicate that ensembling
(with the safetynet) is essential to the models performance.

94 -
92.67%
93 A
92 A
91 A
90 A
89 4 88.44%

88 1

Accuracy (%)

87 A

86 A

85 -

RACHEL No ensembling

Fig. 7 Accuracy of full RACHEL system vs. RACHEL without
ensembling vs. RACHEL with random search instead of RL on
CIFAR-10. This bar chart compares the mean test accuracy of the full
version of RACHEL with the mean test accuracy of RACHEL without
ensembling. The accuracy for RACHEL was calculated as the mean
performance on the CIFAR-10 test set across five complete,
independent search and evaluation runs (N=5).

4 Discussion

In this work, we introduced RACHEL, a novel NAS framework
designed to balance high performance with computational effi-
ciency. The pioneering work™ required over 500,000 GPU hours,
and even more advanced methods like PNAS® still demanded
thousands of GPU hours. On the other hand, RACHEL produced
a high-performing architecture on CIFAR-10 in approximately
8 GPU hours on a single GPU (the NVIDIA L4). This effi-
ciency was achieved by avoiding a full search from scratch at
each step and using the previously validated architectures in-
stead with the RL controller. On the binary CIFAR-10 tasks,
RACHEL’s higher accuracies over AdaNet?! suggest that its
RL-guided candidate generation is better than AdaNets heuristic
search?!. On the SVHN dataset, RACHEL surpassed a wide
array of studies. RACHEL also achieved a competitive accuracy
on Fashion-MNIST (94.76%+0.47%), further demonstrating its
adaptability. Furthermore, the safety net was rarely triggered in
our experiments, indicating that the RL controller successfully
learns to propose consistently beneficial edits.

While its accuracy on CIFAR-10 (92.67%) is competitive, it
still does not perform better in accuracy than the other CIFAR-
10 state-of-the-art projects. RACHEL prioritizes achieving a
highly competitive result while spending a minimal amount of
GPU hours, rather than pursuing the marginal gains that require
significantly more computation. Its competitive performance on
the other datasets, namely SVHN and Fashion-MNIST, further
demonstrates its competence and adaptability to different image
recognition tasks. RACHELSs design goals are more similar to
resource-efficient methods like MnasNet'2 and FBNet1?, al-
though it focuses on GPU-hour efficiency rather than on-device
latency. Compared to evolutionary approaches like AutoML-
Zero®, which evolves algorithms from scratch, RACHEL uses
a more constrained search space, simplifying the task for the
RL-controller and hastening convergence.

RACHEL’s primary application lies in scenarios requiring
rapid model development with limited computational resources.
Academic labs, startups, or researchers can use it to quickly gen-
erate high-performing, custom architectures for specific image
classification tasks without needing large-scale GPU clusters.
This effectively democratizes access to automated model design.

Dataset scale is an obstacle that challenges the efficiency of
RACHEL. Since our method ensures each candidate is trained
thoroughly via early stopping, the time required to reach conver-
gence for a single model a larger dataset like ImageNet would
be huge. The cost of generating a single reward signal would
become prohibitively expensive, diminishing the framework’s
core advantage of rapid search. RACHEL’s efficiency-focused
design also faces many challenges beyond the dataset. The
first arises from its incremental, append-only search strategy,
where an early, suboptimal architectural choice can permanently
weaken the ensemble. In addition, the controller can only assem-
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ble architectures from a predefined set of blocks (convolutional
and residual). It cannot invent novel operations, meaning that if
a task is best solved by a different type of architecture, such as a
transformer, RACHEL would be unable to discover it without
modification to the search space. In addition, the hyperparame-
ters for RACHEL in this experiment werent tuned thoroughly,
so future experiments for optimization of these values could be
conducted.

Thus, even though Rachel has achieved promising results,
there is future work that can be done. The architectural search
space could be expanded to include more diverse operations,
such as depth wise separable convolutions or attention modules.
However, this would make the search problem significantly
harder for the RL agent, as it would need to explore a much
larger, more complex policy landscape. Consequently, con-
verging to a high-performing architecture would likely require
increasing the number of candidates and iterations, increasing
the overall computational cost. Innovations are needed to keep
the efficiency of RACHEL while allowing it to be more archi-
tecturally expressive.

In addition, the RL algorithm could be improved. Testing
more advanced RL algorithms (e.g., Proximal Policy Optimiza-
tion) or more nuanced reward-shaping strategies, especially
when coupled with an expanded search space that would require
more complex algorithms to navigate, could further increase
search quality. Finally, Rachel could be applied to many more
diverse tasks, even beyond image classification, to further assess
its adaptability. Future work could assess its generalizability by
applying it to other tasks, such as natural language processing or
time-series analysis, by modifying the search space to include
domain-appropriate operations, as stated in the architectural
future work above. Furthermore, explainability methods like
Grad-CAM could be used to interpret the learned models, visu-
alizing the image features that influence the final classification
to ensure they are semantically meaningful.

In the end, RACHEL proved to be an effective NAS frame-
work that combines RL-based architecture search with ensem-
ble learning and a safety-net mechanism for an efficient and
robust search, boasting competitive performance across diverse
datasets, demonstrating its adaptability.
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