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Social media has allowed millions to express raw emotions readily. The patterns of emotions observed online have been studied
by supervised machine learning methods on labeled data. However, unsupervised algorithms have been less researched in
such sentiment analysis, especially those able to perform multi-emotion classification. This paper aims to understand public
sentiment by using unsupervised machine learning models and identify clusters of multiple emotions. This unsupervised sentiment
classification method uses TF-IDF to convert text into vector representations and then K-Means clustering to group similar
sentiment texts. The emotion of each cluster is interpreted probabilistically by comparing to Distil-RoBERTa predictions using
cosine similarity. This method is tested on 20,000 tweets from Kaggle and compared to existing popular unsupervised clustering
models. It is demonstrated to be effective by competitive scores on external validation metrics. The method is applied as a Google
Chrome Extension that labels the sentiments of tweets in real-time as the user scrolls down a page and displays the percentage

breakdown of the emotions expressed by a profile’s recent tweets.
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1 Introduction

People around the world express emotional responses to various
topics on X. Past research in natural language sentiment analy-
sis has focused on categorizing tweets as positive, negative, or
neutral. More recent studies are able to capture a more diverse
range of emotional categories, but they mainly rely on super-
vised models which require large-scale and annotated datasets
for training. The current gap lies in the limited research into
unsupervised multi-emotion classification algorithms.

1.1 Background

Research in natural language processing has explored supervised
learning for sentiment analysis and classified tweets into posi-
tive, negative, and neutral categories. These studies typically use
well-established supervised models such as Support Vector Ma-
chine (SVM) and Long Short-Term Memory (LSTM)Z-. More
advanced supervised learning algorithms have expanded the cat-
egories to include emotions such as joy, anger, fear, and sadness.
Ameer et al. introduced transformer networks along with multi-
ple attention mechanisms® to detect and classify emotions with
multiple labels. Mohammad and Bravo-Marquez were able to
not only classify multiple emotions of tweets but also detect the
intensity of those emotions>. These supervised methods usually
require a large pre-labeled dataset. Demszky et al. introduced
the GoEmotions dataset®, covering 27 emotion categories. The

emotion classification work is often organized based on psy-
chological frameworks such as Plutchik’s wheel of emotions-Z,
which organizes emotions into eight primary categories, and
Russell’s circumplex model®, which presents emotions in con-
tinuous valences and arousal spectrums. These models provide
machine learning with the background knowledge about basic
emotions and quantify psychological processes that the machine
is trying to study. However, these supervised approaches are
inherently limited by their heavy dependence on labeled data

and lack of cross-domain adaptability.

On the other hand, unsupervised sentiment analysis meth-
ods have been studied less frequently. Bann classified tweets
based on their semantic content using iterative Latent Semantic
Clustering (LSC)?. Agrawal and An employed an unsuper-
vised context-based approach to detect emotions at the sentence
level'?. Unnisa et al.'!' compared several unsupervised methods
and found spectral clustering to be optimal. But the results are
mainly confined to the opinions category and have limited appli-
cability to the real emotions of tweets. Zhu et al. used tripartite
graph unsupervised clustering? to assess sentiments. Argueta
et al. used graph-based unsupervised methods™ to detect emo-
tions within the Twitter context. However, these graph-based
methods are often high in computational cost and therefore less
applicable to real-time analysis. Darwish et al. were able to
classify datasets into 2-3 clusters with high purity*. However,
these clusters were made based on the content and the stance of
the tweet on a particular issue, not the sentiment it expressed.
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Hiremath et al. tried an emoji-based unsupervised classifier
of shorter, more emotive tweets'>. This method is limited in
interpreting sarcastic uses of emojis. Nagayi and Nyirenda used
affinity propagation combined with hierarchical clustering® on
TF-IDF data of social media, showing superior CHI, DBI, and
silhouette scores than baseline methods. But the time efficiency
of this hybrid approach is not analyzed. Bibi et al. implemented
concept-based and agglomerative hierarchical clustering for
Twitter sentiment analysis, and the performance was compara-
ble with supervised learning models'”. However, this ensemble
framework can be computationally expensive. Abdalgader et
al.!¥ studied the clustering performances of three unsupervised
models plus similarity measures. Limboi compared the imple-
mentation of TF-IDF on hashtag-based and text-based data in
an unsupervised environment'?, It achieved good DBI and sil-
houette scores. However, hashtag-based algorithms can often
capture similar topics instead of emotions.

Overall, previous unsupervised methods have the following
limitations. First, many unsupervised methods perform less
powerfully when they cluster tweets into three or more clusters.
Nuanced emotions are not represented effectively. In this pa-
per, the proposed method uses TF-IDF and DistilRoBERTa to
capture more details and map emotions more neatly. Second,
some approaches are often not well-adjusted to the online envi-
ronment and cannot be easily implemented in real time. Hence,
K-Means is selected as a computationally light and generalizable
alternative.

1.2 Proposed Unsupervised Machine Learning For Emo-
tion Analysis

This paper studied an unsupervised machine learning algorithm
that uses a vectorizer and a clustering model to group tweets
based on multiple emotions. Each text is transformed into a
vector space representation using TF-IDF (Term Frequency-
Inverse Document Frequency) based on its semantic content
and importance. Next, the K-Means clustering algorithm is
applied to group texts based on similarity and distance. Since
the unsupervised clusters are unlabeled, they are then classified
by Distil-RoBERTa probabilistically into categories of emo-
tions and mapped onto the clusters based on cosine similarity.
Experiments on datasets of tweets from the general X ecosys-
tem demonstrate the effectiveness of the strategy. Comparative
tests with existing popular unsupervised clustering models and
literature via external validation metrics also indicate the com-
petitiveness of the proposed method.

Then, this unsupervised learning method is applied as a
Google Chrome Extension that can analyze the emotions of
tweets in real-time as the user scrolls through the webpage.
Overall, this study improves upon current unsupervised senti-
ment analysis systems, and the application as a user-facing web
extension has the potential to improve user experience.

2 Methods

In this section, the algorithm used in this paper is described
in detail. Unsupervised learning is employed to cluster and
classify tweets based on multiple emotions. An overview of the
procedure is illustrated in Figure 1.
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Fig. 1 Consolidated Overview Diagram of Proposed Method

2.1 Dataset Selection and Exploratory Data Analysis

Data are selected to experiment with whether the algorithm
would perform well in the X ecosystem. They are collected from
Kaggle (https://www.kaggle.com/datasets/parulpandey/emotion-
dataset) and include 20,000 tweets from a real X environment
across different topics. From this Kaggle source, 16,000 tweets
are extracted, forming the primary dataset. To increase gener-
alizability, the other 4,000 tweets form the second dataset used
for model validation in Section 3.1.6. All tweets are previously
human-labeled; however, those labels are not used in the unsu-
pervised pipeline but only as ground truth labels for external
validation.

For the primary dataset of 16,000 tweets, exploratory data
analysis reveals that 83.42% of the tweets are under 150 charac-
ters, as seen in the graph of tweet length distribution in terms of
character numbers (shown in Figure 2). The word cloud graph
in Figure 3 shows that the most frequently appearing words
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are “feel”, “feeling”, and “feel like”. The second dataset of
4,000 tweets has a similar distribution of length and similar
frequently-appearing words as shown in Figures 4 and 5. The
frequently appearing word “feel” suggests that both datasets are
concentrated on tweets that express emotions, which is ideal for
testing sentiment analysis models.
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Fig. 2 Tweet Length Distribution of the 16,000 Tweet Dataset
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Fig. 4 Tweet Length Distribution of the 4,000 Tweet Dataset
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Fig. 5 Word Cloud of the 4,000 Tweet Dataset

2.2 Preprocessing

Further steps are performed to ensure the dataset is ready for the
machine learning model to be implemented.

To prepare the raw tweet data for unsupervised analysis, each
tweet is lowercased. Hyperlinks in the tweets that do not add
meaning to the text are removed by removing strings of text that
start with “https.” Twitter-specific texts, such as mentions and
hashtags, are also removed.

A standard English stopword list from the NLTK (Natural
Language Toolkit) library is used to remove common gram-
matical words (e.g., the, is, and) that do not carry much emo-
tional weight. After preprocessing, the textual input to the unsu-
pervised model is composed of meaningful tokens and helps to
avoid introducing noise into the model.

2.3 TF-IDF

After data preprocessing by cleansing the unnecessary infor-
mation, the Term Frequency-Inverse Document Frequency (TF-
IDF) algorithmm is used. This converts each tweet into a
numerical vector that represents its semantic composition. TF-
IDF tokenizes the data and assigns values based on the content
and importance of the words. Hence, the vectors produced are
sparse and weighted. This makes the data suitable for distance-
based clustering of the vectors. Clustering assumes that the
closer together two vectors are, the more similar the semantic in-
formation being represented is. The TF-IDF vectorizer process
is summarized in Figure 6.

Each tweet is transformed into a TF-IDF vector that represents
its semantic content using equation:

TE-IDF(z,d, D) = TF(t,d) x IDF(z, D)

where 7 represents a certain token, d represents a tweet text,
TF(t,d) represents Term Frequency of ¢ in d, IDF{(t, D) represents
Inverse Document Frequency of ¢ in the dataset D. And,

raw count of 7 in d

TF(t,d) =
( ’ ) total number of words in d
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Fig. 6 Diagram for TF-IDF Vectorizer

M
IDF(¢,D) = log (DF(t) T >
where DF(t) represents the number of tweets containing t, M
represents the total number of tweets in the dataset D. Through
these calculations, words are weighed by their importance and
contribution to the semantic meaning of the text. Rare words
will be weighed more heavily than common words.

2.4 K-Means Clustering

K-Means is used to separate the dataset into K clusters by min-
imizing the sum of squared distances within each cluster. K-
Means Learning® is implemented through initialization, assign-
ment, and iteration. Random tweets are chosen as the initial
centroids, and the other tweet vectors are assigned to the nearest
centroid based on Euclidean distance. Each centroid is calcu-
lated as the mean of the vectors in cluster k,

L

x;€Cy

%= |Ck\

where oy, represents the new centroid of cluster k, Cy repre-
sents the set of all data in cluster &, and x; € C, represents every
data point that belongs to cluster k. The summation ) denotes
the vector sum of all tweet vectors in cluster k.

The system then takes iterative procedures to achieve the
following optimization.

mmz Z ||x,-—Ock||2
=1x,€Cy
where K represents the total number of clusters, ¢, represents
the centroid of cluster k, Cy represents the set of all data in
cluster k, and x; € C, represents every data point that belongs to
cluster k. The result is the cluster assignment of each tweet.

2.5 Number of Clusters

Next, before finally forming the clusters, it is important to iden-
tify the optimal number of clusters, K, for the whole dataset.
This is a hyperparameter that must be determined adaptively,
instead of a parameter that the model could learn from the data.
If there are too few clusters, semantically distinct groups could
get blurred, and if there are too many clusters, similar tweets are
fragmented across multiple clusters.

One of the commonly used quantitative measurements,
Davies-Bouldin Index (DBI)?#, is adopted in this paper to iden-
tify the number of clusters best suited for a given dataset. The
DBI is calculated independently for situations when the dataset
is sorted into 2 to 30 clusters. The number of clusters that corre-
sponds to the lower DBI score will be chosen to finally cluster
the dataset, which indicates good cohesion and separation and
therefore a superior cluster classification.

This DBI takes into account the within-cluster cohesion and
the between-cluster separation of the clusters. For a dataset of
K clusters, the score is defined as:

DBI = ZmaxR, j

KD i
For each pair of clusters C; and C;, their similarity, R;;, is
defined as:
Si+S;
M, j

where S; and S; are the calculated average distances of data
points in clusters C; and C; from their centers, respectively,

Z d xl,OC,

x1€C;

Rij=

5= |C|

where o; represents the centroid of cluster Ci. M;; is the distance
between the centers of clusters Ci and Cj:

M;j = d(04, ;)
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For each cluster C;, find the maximum similarity to any other
cluster. And DBI is equal to the average of all of the numbers
calculated.

2.6 Emotion Labeling

Because the proposed unsupervised learning model was based
on unlabeled data, the output clusters are not labeled with emo-
tions. Emotion labeling is done through probabilistic inference
using the DistilRoBERTa model and cosine similarity. Dis-
tilRoBERTa is chosen because it is highly context-aware. The
same phrase can be positive or sarcastic depending on the con-
text. It calculates the softmax of representations of the tweets
and outputs a probability of emotions, for example: ’sadness’:
0.72, ”fear”: 0.11, ”joy”: 0.010, "disgust”: 0.04, “anger”: 0.03.
The largest percentage is taken as the tweet’s most probable
sentiment.

Then, an algorithm is used to find the main emotion for each
cluster by comparing the centroid vector o; of each K-Means
generated cluster C; with the average vector representations e,
under each of the seven Distil-RoBERTa predicted emotion la-
bels. Cosine similarity is used in this comparison. The equation
of cosine similarity measures the angle between two vectors.
It is the dot product of the two vectors divided by the product
of their magnitudes. Thus, this algorithm links each unlabeled
cluster to its most similar emotion. This ensures that the clusters
are interpretable.

2.7 External Validation Metrics

DBI and other indices are used to measure the cohesion and
separation of the unsupervised clustering outputs. These are
internal validation metrics. Additionally, external validation
metrics are used to measure the accuracy or effectiveness of
the outputs. External validation metrics compare the clustering
results with ground truth labels. In this paper, three external
validation metrics are used: emotion classification accuracy
of DistilRoBERTa, cluster purity, and Fowlkes-Mallows Index
(FMD).

The emotion classification accuracy of DistilRoBERTa is
presented as a simple percentage of DistilRoBERTa’s correct
predictions compared to the ground truth labels.

The cluster purity measures how many data points from a
single ground truth class are contained within a particular cluster,
hence indicating the cluster’s “purity”. In this case, cluster purity
is determined by finding in each cluster the ground truth emotion
that most frequently appears and calculating the proportion.
Mathematically, it is defined as the total number of points of
the most frequently appearing emotion label in each cluster
over the total number of data points. For a total of K clusters
C=0C,G, - Ck,

1 K
Purity(C,Q) = v Y max |C; W]
i=1 /

where N is the total number of data points, Q =
{W1,Wa,...,W;} is the set of J ground truth classes, C; N W;
calculates the number of data points in cluster C; that belong
to the j-th ground truth class W;, and max ;|C; N W;| indicates
the number of data points in cluster C; that belong to the most
frequently appearing ground truth class in cluster C;.

The Fowlkes-Mallows Index (FMI) is also an external evalua-
tion metric to assess the similarity between the clustering results
and the ground-truth class. It is the geometric mean of Precision
and Recall as

TP TP
TP+FP TP+FN

FMI:\/]WZ\/

where TP (True Positives) means the number of data pairs
which are in the same sentiment labeling cluster and the same
ground truth class, FP (False Positives) means the number of
data pairs which are in the same labeling cluster but different
ground truth classes, and FN (False Negatives) indicates the
number of pairs which fall in different labeling clusters but in
the same ground truth class.

2.8 Chrome Extension Application

Furthermore, the proposed classification algorithm and emo-
tional labeling model are applied as a Chrome Extension. This
extension is able to label tweets with emotion categories using
the above proposed unsupervised machine learning method. It
operates on the user side via a Chrome extension embedded into
the X.com webpage. It supports, as an add-on feature, a basic
representation of classified emotion categories that is expressed
as percentages on user profiles.

When the user visits any X page, a JavaScript file (content.js)
will be injected into the API. This connects the machine learning
model with the X page bidirectionally. It allows the model to
extract tweets and the webpage to include the model’s emotion
labeling outputs. Each tweet is extracted, made lowercase, to-
kenized, and excluded common English stopwords like “and,”

“s0,” and “the”. Each tweet is then transformed into a TF-IDF

vector that represents its semantic content and then clustered
using K-Means in the same manner discussed above. After each
tweet on the page is labeled using DistilRoBERTa, the model
samples the 60 most recent tweets of the Twitter profile the user
is scrolling through to calculate the percentage of emotions this
profile expresses, and then displays the data at the top of the
profile page.
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3 Results

3.1 Experiments on Tweet Datasets

3.1.1 Number of Clusters

After applying TF-IDF vectorization on the 16,000-tweet
dataset, the K-Means algorithm is implemented with different
scenarios (splitting the dataset into 2 to 30 clusters), and their re-
spective DBI score results against cluster numbers K are plotted
in Figure 7. The candidate cluster number range is chosen from
2 to 30, as it aligns with psychological models suggesting that
human emotions can be classified into up to 27 categories.

Davies-Bouldin Index vs Number of Clusters
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Fig. 7 DBI Scores for Splitting the 16,000-Tweet Dataset into 2 to 30
Clusters, Respectively

As shown in Figure 7, the DBI score decreases as the number
of clusters K increases. When K increases from 2 to 7, the rate
of change is high, and the DBI drops drastically, which indicates
improving cluster differentiation. However, when K increases
from 7 onwards, the rate of change is low, the DBI decreases
slowly, and there are evident fluctuations. For example, at K =25,
the DBI score (DBIs = 3.4003) is reduced by 26.9% against
K =7(DBI; = 4.6551) at the expense of cluster interpretability,
comparing with the DBI score reduction of 28.8% for K =7 over
K =2(DBIL, = 6.5392).

Therefore, choosing a K value that is near 7 ensures lower
DBI and prevents over-clustering. To determine which value
is more optimal, the silhouette score is computed for K =6 and
K =7. The silhouette score?? is another index that accounts for
the cohesion and separation of unsupervised clusters. Using
it in conjunction with DBI enhances the internal validity and
accounts for outliers. For 7 clusters, the silhouette score is
0.0002, which is significantly worse than that for 6 clusters, at
0.0179. Hence, the number of clusters K =6 is used.

3.1.2 Clusters Visualization

Then, a Principal Component Analysis (PCA) and a Hier-
archical Clustering Dendrogram are done to visualize the six
clusters. The PCA reduces the high dimensionality of the data

to two axes with the most variance, PCA1 and PCA2. The hier-
archical visualization is done through calculating the distance
between pairs of data points and applying a merge algorithm to
store and then display that information.

As shown in the PCA graph Figure 8, the orange cluster is
packed tightly and clearly separated to the left. The purple
cluster is also cohesive and has a tail shape. The red clus-
ter is cohesive but overlaps with the purple one. The green,
blue, and brown clusters overlap and are not very visible. They
might capture outliers or reflect the limitation of PCA visualiza-
tion in reducing high-dimensional vectors, a common problem
with text-related data or complex vectors produced by TF-IDF.
Overall, the PCA graph shows reasonable clustering with some
structure.

PCA Cluster Visualization of Tweets
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Fig. 8 PCA Cluster Visualization for Proposed Method on
16,000-Tweets Dataset

Hierarchical Clustering Dendrogram
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Fig. 9 Hierarchical Clustering Dendrogram for Proposed Method on
16,000-Tweets Dataset

In the clustering dendrogram in Figure 9, there are long lines
around height 2.0 near the upper bound. This means that the
clusters are generally well-separated. At lower heights starting
at 0.5, the lines become scattered and difficult to distinguish.
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This represents that between tweets within a larger cluster, there
is closeness and similarity. These two positive observations
contribute to the conclusion that the clustering is well separated
at the high level and well-integrated at the micro level. However,
exceptions to these two observations also exist, which could
mean outliers or uneven cluster size. Further quantification is
needed to ascertain these observations.

3.1.3 Calinski-Harabasz Index

To quantify the clustering quality, another index, the Calinski-
Harabasz Index (CHI), was used. Like the DBI index, this value
also represents how cohesive each cluster is and how separated
clusters are from each other. In this paper, DBI is used as a
preliminary way of determining the best number of clusters for
K-Means. However, CHI is a more reliable indicator of the K-
Means model’s outputs because it fits well with TE-IDF vectors.
These vectors are in Euclidean space, which works well with the
Euclidean distance calculations within CHI. DBI is the average
similarity between clusters, and averages could be less sensitive
to structure than CHI.

The CHI of 6 clusters for this dataset is found to be 118.73,
which is higher than the threshold value for datasets of around
10,000 points of data. This means that the clusters are reasonably
well separated and internally cohesive.

3.14 Emotion Labeling

When the emotion labeler with the DistilRoBERTa model is
run, the centroid vector of each cluster is compared with the av-
erage vector in each class of Distil-RoBERTa predicted emotion,
and cosine similarity is used. The resulting interpretation of the
dominant emotion for each cluster is shown in Figure 10.

cluster dominant_emotion cosine similarity

0.0 surprise 0.496

fear 0666

joy 0.353

sadness 0.693

0.852

joy

sadness 0.336

Fig. 10 Dominant Emotion and Cosine Similarity for Each Cluster on
16,000-Tweet Dataset

Of the 6 clusters, clusters 1, 3, and 4 have high cosine similar-
ity scores, indicating that those clusters are more closely aligned
with their labels of fear, sadness, and joy, respectively. Clusters
2 and 4 are both labeled as “joy,” and clusters 3 and 5 are both
labeled as “sadness.” This could suggest that there are subtle

differences between the “joy” expressed by tweets in cluster 2
and that expressed by tweets in cluster 4, for example.

Referring back to the PCA graph in Figure 8, cluster 4 demon-
strates a strong, well-separated shape in the PCA plot, with a
high cosine similarity of 0.852 to ”joy”. In contrast, clusters
2 and 5 have low cosine similarities and a scattered shape in
the PCA space, potentially indicating noise. Both clusters 3
and 5 are labeled “’sadness,” but cluster 3 is emotionally denser
and appears more cohesive than cluster 5 on the PCA graph.
Similarly, clusters 2 and 4 are both called ”joy,” but only clus-
ter 4 shows strong alignment. Cluster 0, which is associated
with “surprise,” is not well-defined, which may indicate that
surprise has adjacent linguistic indicators as other emotions, and
is harder to define.

Three example tweets from each cluster are extracted and
presented in Table 1. The tweets align well with the emotion
label and show interpretability.

3.1.5 External Validation Metrics

So far, the unsupervised pipeline has been evaluated by inter-
nal metrics such as DBI, CHI, and Silhouette score. External
validation metrics are also employed to arrive at meaningful
conclusions about the model’s accuracy and consistency in clus-
tering and classification. The dataset is human-annotated. They
are the ground truths that are used to determine the external
validation metrics.

The emotion classification accuracy of DistilRoBERTa is
calculated to be 83.05%. This value is determined by compar-
ing the DistilRoBERTa predicted emotion labels to the human-
annotated ground truth labels. The cluster purity is measured
at 0.3392. The FMI index is calculated as 0.2872. This might
be influenced by the overlap between different emotion classes,
which creates noise, or the short text length, which makes vec-
tors sparse.

3.1.6 Results on Second Dataset

The same pipeline is run on the other 4,000 tweets from
Kaggle. This second dataset is a quarter the size of the former
one, which tests whether the algorithm performs equally well
on smaller datasets. The number of clusters K is determined
using the DBI score. The score trends downwards with some
fluctuations as the number of clusters increases. As seen in
Figure 11, the rate of change in DBI is substantial till K=6,
hence K=6 is chosen. The DBI for 6 clusters in the second
dataset is 4.7178, which is a slight improvement compared to
the DBI for 6 clusters in the primary dataset at 5.2390.

PCA cluster visualization for six clusters on the 4,000-tweet
dataset is shown in Figure 12, and its dominant emotion and
cosine similarity for each cluster are shown in Figure 13. As
can be seen in Figure 12, clusters 1 and 5 stand out as they are
compact and dense. Their emotional content is more distinctive
and less ambiguous. They also rank highest in cosine similarity,
which quantitatively supports this. Not only do these clusters
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Table 1 Example Tweets from Each Cluster

Cluster | Emotion
0 Surprise

Tweets

i remember waking up feeling anxious and excited
to read the bible its amazing how god will change
your desires

i am feeling amazed to see what god is doing new
friends who aren t only amazing but get me who
don t run and hide in a dark room unless i am there
and they are joining me

i had awesome workouts and feeling amazing

i feel paranoid thinking about it just looking out the
window and feeling my insomnia creep up on me

i m drawing a blank as to what this is called to help
me when i am feeling fearful or attacked

i am concerned that my gut feeling about not drop-
ping aol that quickly about not trusting verizon was
not just paranoia

i really like it a lot and think its a great fit for me
and i love talking to the patients and trying to help
them feel less nervous or at least that someone cares
about them for a few minutes

i feel honoured that my art is in someone s home
and is being enjoyed on a daily basis

ijust love the feeling of something warmly hugging
you and feeling so precious and small precious to
someone something

i say this because she never truly gets a choice or
the freedom to decide what to do with her life which
makes it hard not to feel like she got the less dirty
end of a really shitty stick

i did feel like their relationship seemed a little
rushed though

i actually feel like i have been beaten up

i feel is thankful for the lessons i m learning

i feel so excited cause that means i get to skip classes
i love running because i feel strong and powerful
and totally in control

i feel like a mollusk repeatedly beaten with a wet
cloth and stabbed times in the back just for the sake
of it

i want to tell everyone exactly how im feeling but
as soon as i start to i feel ten times more pathetic
and stop talking

i often times feel lost here because all our friends
seem to leave us and move away

1 fear

2 joy

3 sadness

4 joy

5 sadness

group visually in PCA, but they are also highly aligned with the
emotion labels. They are reliable representations of their labeled
emotions. Clusters 2, 3, and 4 are more scattered in the PCA
figure and have lower cosine similarity scores compared to other
clusters with the same label. This could be due to variation or
nuances within an emotion or noise in the tweet data, such as
sarcasm. Also, some of the tweets in clusters 2, 3, and 4 might
express multiple emotions and have Distil-RoBERTa labels that
are more complicated, such as “’sadness”: 0.37, fear”: 0.32,
”joy”: 0.24, ”disgust”: 0.07. Cluster 0, which is labeled as “fear,”
is noteworthy because it overlaps with other clusters in the PCA
plot but does not share the same emotion label. The overlap may
indicate the inherent emotional and semantic closeness between

Davies-Bouldin Index vs Number of Clusters
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Fig. 11 DBI Scores for Splitting the 4,000-Tweet Dataset into 2 to 30
Clusters, Respectively
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Fig. 12 PCA Cluster Visualization for Proposed Method on
4,000-Tweet Dataset

cluster dominant_emotion cosine similarity

0.0 fear 0.452

1.0 sadness 0.645

20 sadness 0.228

30 sadness 0.477

4.0 0.359

joy

50 0.869

foy
Fig. 13 Dominant Emotion and Cosine Similarity for Each Cluster on
4,000-Tweet Dataset

fear and other emotions, such as sadness.

Then, external validation metrics are calculated. The emotion
classification accuracy of DistilRoBERTa versus ground truth
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labels is 81.61%, similar to what is obtained from the 16,000-
tweet dataset. The cluster purity is measured at 0.3540. The
FMI index is calculated as 0.3174. Overall, the results obtained
from the 4,000-tweet dataset have slight improvements from
those obtained from the 16,000-tweet dataset. This is likely
the result of the size difference between the datasets and the
difference in data noise. The model’s performance is consistent
in both larger and smaller datasets.

3.2 Comparative Analysis

3.2.1 Comparison with Unsupervised Methods

The unsupervised learning and labeling method proposed in
this paper is comparatively analyzed with popular unsupervised
clustering methods such as Agglomerative, DBSCAN, Spectral
clustering, and UMAP + HDBSCAN. Experiments are run on
the 16,000-tweet dataset. The same labeling approach is used.
Cluster purity and FMI metrics are inspected and compared.
The results are shown in Table 2. PCA cluster graphs are shown
in Figures 14 to 17.

Table 2 External Metrics for Proposed Method and Popular
Unsupervised Methods on 16,000-Tweet Dataset

Method Cluster Purity FMI
Proposed Method 0.3392 0.2872
Agglomerative 0.3611 0.2291
DBSCAN 0.8041 0.1753
Spectral clustering 0.3369 0.485
UMAP + HDBSCAN 0.5951 0.0544
Agglomerative Clustering

0.8
0.6 1 !

% 0.4

J .
0.2
0.0

.

T
—-0.2

Fig. 14 PCA Cluster Visualization for Agglomerative method on

16,000-Tweets Dataset
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Fig. 15 PCA Cluster Visualization for DBSCAN method on

16,000-Tweets Dataset
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Fig. 16 PCA Cluster Visualization for Spectral method on
16,000-Tweets Dataset

tral clustering. However, as the PCA graph for Spectral cluster-
ing shows in Figure 16, the clustering is extremely imbalanced,
with one huge cluster, making the others indistinguishable. In
terms of cluster purity, the proposed method has a lower result
than DBSCAN and UMAP+HDBSCAN, and is close to Spectral
and Agglomerative clustering. However, DBSCAN’s purity is
inflated because, as the PCA visualization shows in Figure 15,
it created a homogenous large cluster. The proposed method
is likely more stable across different cluster sizes compared to
DBSCAN and UMAP+HDBSCAN.

3.2.2 Ablation Study
A comparative ablation study is conducted on individual com-
ponents of the pipeline. First, a count vectorizer is used in

The proposed method’s FMI score is better than Agglomera- place of the TF-IDF vectorizer. The resulting FMI was 0.3377,
tive, DBSCAN, and UMAP+HDBSCAN, but lower than Spec- slightly better than that obtained by the proposed method, but

© The National High School Journal of Science 2025

NHSJS Reports |9



UMAP + HDBSCAN Clusters

15 A

10 A

Component 2
-

_10 -
-10 -5 0 5 10 15 20 25
Component 1
Fig. 17 PCA Cluster Visualization for UMAP + HDBSCAN method
on 16,000-Tweets Dataset

the resulting cluster purity was worse at 0.2757. The higher
FMI can be explained by the fact that the count vectorizer fo-
cuses on raw frequencies in its algorithm, which may help with
detecting general similarity between texts but over-emphasizes
common terms across different clusters, leading to fuzzy group-
ings. Hence, TF-IDF is still preferable.

Second, the same pipeline is run on K=4 clusters instead of
K=6 to test the output emotions. The cluster purity is 0.3353,
which is slightly smaller than that of K=6. The resulting cluster
labels and cosine similarities are displayed in Figure 18. Com-
pared with the results in Figure 10 for K=6, while the 4-cluster
method has a slightly higher average cosine similarity by 0.07
and slightly more cohesive clusters, the 6-cluster solution offers
more complexity and nuance. It preserves the core clustering of
the 4-cluster method, such as a strong joy cluster and a strong
sadness cluster, indicating that the 6-cluster solution concurs
with the overall classification of emotions. A higher K value
might sacrifice cohesion marginally, but it compensates by po-
tentially revealing subcategories within each broad sentiment
label.

cluster dominant _emotion cosine_similarity

0.0 0.852

joy

fear 0.666

sadness 0.361

sadness 0.695

Fig. 18 Resulting Cluster Labels of K=4 on 16,000-Tweet Dataset

3.2.3 Literature Comparison

Abdalgader et al. performed a comprehensive evaluation on
three unsupervised clustering methods (Partitional, Hierarchical,
and Fuzzy clustering)m under the baseline condition of no sen-
tence embedding measure. The experiments are run based on
BERT and DistilRoBERTa models, respectively. The proposed
method in this paper employs partitional clustering via TF-IDF +
K-Means with the DistilRoBERTa model. It is implemented on
the three datasets, SearchSnippets, AG News, and MR Dataset,
provided by Abdalgader, and the performances are compared.

Table 3 FMI of Proposed Method vs. the Literature on the
SearchSnippets Dataset

Model FMI
Proposed Method 0.4786
TF-IDF+ K-Means +DistilRoBERTa

Partitional clustering + DistilRoBERTa | 0.29
Hierarchical clustering+ DistilRoBERTa | 0.345
Fuzzy clustering+ DistilRoBERTa 0.134
Partitional clustering + BERT 0.302
Hierarchical clustering+ BERT 0.39
Fuzzy clustering+ BERT 0.225

Table 4 FMI of Proposed Method vs. the Literature on the AG News
Dataset

Model FMI
Proposed Method 0.4884
TF-IDF+ K-Means +DistilRoBERTa

Partitional clustering + DistilIRoBERTa 0.245
Hierarchical clustering+ DistilRoBERTa 0.233
Fuzzy clustering+ DistilRoBERTa 0.175
Partitional clustering + BERT 0.198
Hierarchical clustering+ BERT 0.302
Fuzzy clustering+ BERT 0.202

Table 5 FMI of Proposed Method vs. the Literature on the MR Dataset

Model FMI
Proposed Method 0.537
TF-IDF+ K-Means +DistilRoBERTa

Partitional clustering + DistilRoBERTa 0.297
Hierarchical clustering+ DistilRoBERTa 0.349
Fuzzy clustering+ DistilRoBERTa 0.289
Partitional clustering + BERT 0.313
Hierarchical clustering+ BERT 0.344
Fuzzy clustering+ BERT 0.282

As shown in Table 3 on the SearchSnippets dataset, the FMI
score of the proposed method is evidently higher than that of the
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candidate unsupervised clustering algorithms in the literature.
Compared to the best-performing result, Hierarchical clustering+
BERT with FMI of 0.390, this proposed method is 22.7% better.
As shown in Table 4 on the AG News dataset, compared to the
weakest-performing result, Fuzzy clustering with FMI of 0.175,
the proposed method is approximately 2.8 times.

The results of the proposed method surpass the benchmark
performance of the candidate algorithms in the literature running
with DistilRoBERTa, demonstrating that the TF-IDF plus K-
Means method improved the overall performance. In summary,
a competitive FMI score shows that the proposed method is able
to capture emotional structure meaningfully better.

Additionally, the SearchSnippet dataset has eight emotion
classifications, the AG news dataset is labeled with four emo-
tions, and the MR dataset is a binary emotion dataset. This
proposed method’s success with all the datasets demonstrates
that it can effectively classify texts into varying numbers of emo-
tions. The SearchSnippet dataset is composed of results from
search engines, the AG News dataset is a collection of news
article titles, and the MR dataset is a set of reviews for movies
and TV shows. These are different textual information from
tweets, and the method’s success with classification on these
three datasets shows a high level of generalizability to textual
sentiment analysis beyond the Twitter environment.

3.3 Application as a Chrome Extension

The proposed algorithm was successfully integrated into Google
Chrome as an extension. When the user visits the X.com page,
tweets are automatically analyzed using the TF-IDF plus K-
Means module via JavaScript code. It extracts tweet contents
in real-time, computes vectors, performs clustering, and then
maps each cluster back onto an approximate emotional category
through the process explained in Methods. Tests demonstrate
that this labeling operates with minimal delay and provides the
user with a sense of the sentiments of Twitter accounts. The
resulting Chrome Extension program allows its users to see the
emotion label of each tweet on the page and the percentage
breakdown of the 60 most recent tweets made by a profile when
the user clicks into it. Some screenshots of the model’s emotion
labels of tweets are shown in Figure 19. Some screenshots of
the model’s evaluation of a profile’s emotions based on recent
tweets are shown in Figure 20.

Table 6 Chrome Extension Execution Statistics

Metrics Result
Inference Latency (sec) 0.0738
Memory Usage (KB) 19.33
Peak Memory (KB) 33.39

Several key statistics relevant to the Chrome extension are
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(e)
Fig. 19 Screen-shots of the Model’s Emotion Labels of Tweets

(a) (b)
Fig. 20 Screen-shots of the Model’s Evaluation of a Profile’s Emotions
Based on Recent Tweets

measured and displayed in Table 6. These results suggest that
the model is efficient in memory and time consumption. It is
feasible for the Chrome extension prototype to be implemented
in a real X environment.

However, CPU utilization sometimes reaches high peaks dur-
ing the response timeframe, which may be due to the heavy
computational demand of real-time TF-IDF vectorization. To
mitigate this, optimizations such as precomputing TF-IDF cen-
troids can be used.

Additionally, the model skips emoji-only or photo-only
tweets. It deals with errors associated with the API limita-
tions of Twitter or non-English language tweets by logging to
the console. Methods such as fallback, retry, or notification
mechanisms can be tried to better adapt the model to handling
errors.

The accuracy of the Chrome extension is verified with a
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human-labeled subset of 40 most recent tweets on the For You
page of a new account. The topics range from politics and
technology to jokes and celebrity gossip. The resulting accuracy
is 26 correct out of 40, i.e., 65%. However, this is a small subset
and is only a preliminary evaluation of the model’s performance.

4 Discussion

This study proposes, tests, and applies an unsupervised machine
learning method for sentiment analysis on social media. This
method clusters emotional language based on patterns rather
than predefined labels, which enables more nuanced categoriza-
tion, such as “fear,” “joy,” and “surprise,” making it applicable
to the real-world online environment. The clustering results
are supported by a good CHI score, PCA graph, Dendrogram,
FMI score, and cluster purity. They suggest that this method
can achieve meaningful clustering without the requirement for
training on annotated datasets. When compared with typical
unsupervised clustering models, the proposed method performs
competitively. The application of this method with X data in
real-time as a Chrome extension prototype demonstrates the po-
tential for this model to be employed as a user-facing technology
that helps users observe emotional trends.

However, limitations must be acknowledged. First, the
emotion-to-cluster mapping of emotional labels remains approx-
imate, rather than concrete. Future iterations could integrate
some supervision or external lexicons to increase precision.

Second, the system may not fully capture the emotions hid-
den in sarcasm, slang, emojis, or foreign cultures, which are
prevalent on X. This is shown through some of the misclassifi-
cations of tweets in the Chrome Extension application. Though
a library of common text abbreviations, such as LOL, OMG,
NVM, etc., is used to account for some slang words, it is often
difficult for the model to capture the levels of sarcasm. Many
of the misclassifications the model produced could be linked
to this limitation. For example, the tweet “NEVER TIRED OF
WINNING” was encountered by the model in the Chrome Ex-
tension phase. Though this tweet expresses joy, it was labeled as
sadness due to the lack of contextual interpretation of the word
“tired”. Closely tied with context are emotionally ambiguous
texts such as “she broke him emotionally,” which was labeled
as anger despite having strong undertones of sadness. Sarcasm,
context-dependent words, and tweets with complex emotion
compositions could be detected by methods such as contradic-
tion between emotion words in text and the expected label or
the addition of contextual embeddings, such as GPT.

Third, the selection of the most optimal K value for clustering
is done semi-manually via comparing the DBI and Silhouette
scores and analyzing the trend of the graphs. Further opti-
mization could approximate the DBI graphs as functions and
mathematically compute the best K value through an adaptive
calculation.

Fourth, when multiple clusters are labeled as the same emo-
tion, it is difficult to understand whether it was the result of
poor clustering or whether the model has discovered underlying
nuances.

The methods of this paper are data-based, analytical, com-
petitive, and scalable. The work done by this paper suggests
that future research into unsupervised sentiment analysis could
implement TF-IDF plus K-Means methods efficiently and ef-
fectively. Or, to improve upon this paper’s results and previous
research, a hybrid system of both supervised and unsupervised
components of sentiment analysis could be tried.
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