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Brain tumors pose a serious health risk and are commonly diagnosed using non-invasive imaging techniques such as Computed
Tomography (CT) machines, Magnetic Resolution (MRI) machines, Positron Emission Tomography (PET) scans, and ultrasound.
This study explores the use of artificial intelligence to classify MRI images into four categories: glioma, meningioma, pituitary
tumor, and no tumor. Three machine learning (ML) models (Artificial Intelligence (AI) models that detect patterns and differentiate
data set images into multiple groups) Convolutional Neural Network (CNN), EfficientNet, and Vision Transformer (ViT) were
fine-tuned using transfer learning. Among them, ViT achieved the highest classification accuracy of 72.34%, demonstrating the
potential of transformer-based models in medical image analysis.
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1 Introduction

Brain tumors are a severe medical condition requiring accu-
rate diagnosis through non-invasive imaging techniques. These
methods allow doctors to examine the brain without surgical
intervention, helping to identify and classify tumors effectively.
Various imaging modalities are commonly used, including CT,
ultrasound, and MRI, each employing different principles. CT
scans utilize ionizing radiation, which can be harmful due to
its potential to alter cellular DNA, increasing the risk of tu-
mor recurrence 2, Ultrasound relies on sound waves to create
images but is less commonly used for brain imaging due to its
lower resolution”. MRI, on the other hand, uses strong magnetic
fields, making it a preferred diagnostic tool as it does not expose
patients to radiation, thus reducing health risks®. Despite its
advantages, MRI has limitations. Patients with metal implants
cannot undergo MRI scans due to the strong magnetic fields
interfering with metal-containing medical devices”. However,
MRI remains a highly effective imaging technique due to its
high-resolution imaging capabilities and non-invasive nature,
making it the preferred method for diagnosing brain tumors'.
After acquiring MRI images, doctors must classify them to ac-
curately diagnose the type of brain tumor present. Traditional
diagnostic methods rely on expert interpretation, but recent
advancements in Al and ML have revolutionized medical imag-
ing”. ML algorithms can analyze and categorize medical images
by identifying subtle patterns that may not be easily detected by
the human eye. In this study, MRI images were analyzed using
three different deep learning models: CNN, EfficientNet, and
ViT. CNN is a foundational deep-learning model widely used for

image classification tasks due to its ability to learn hierarchical
spatial features through convolutional operations®. EfficientNet
improves classification accuracy by optimizing model scaling
using compound coefficients.ViT, a deep learning model, classi-
fies images by dividing them into patches and analyzing their
relationships, often achieving high accuracy?. To evaluate their
performance, MRI images were split into two datasets: 88%
for training and 12% for testing but the imbalance can be fixed
through the use of Synthetic Minority Oversampling Technique.
The dataset was sourced from Kaggle using KaggleHub and in
this study, we comparatively evaluate the performance of sev-
eral state-of-the- art image classification models using standard
accuracy metrics to identify the model that performs best on the
selected dataset.

2 Literature Review

Medical imaging plays a foundational role in the non-invasive
diagnosis of brain tumors. Among the available modalities,
Computed Tomography (CT) and Magnetic Resonance Imag-
ing (MRI) are the most widely used. CT scans, while fast and
accessible, rely on ionizing radiation, which has been linked to
increased long-term cancer risk, particularly in pediatric popula-
tions (Hauptmann et al., 2023; Lin, 2010). MRI, by contrast, uti-
lizes strong magnetic fields and radio waves to produce detailed
anatomical images without the risks associated with radiation
exposure, making it the preferred choice in many clinical sce-
narios (Martucci et al., 2023). However, limitations existMRI
cannot be performed on patients with metal implants or certain
medical devices, necessitating clinical discretion in imaging
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selection (Dempsey et al., 2002).

Parallel to advances in imaging, artificial intelligenceparticu-
larly machine learning (ML) and deep learning (DL) modelshas
emerged as a powerful tool for automated image classification.
Traditional Convolutional Neural Networks (CNNs), introduced
by Krizhevsky et al. (2017), extract hierarchical spatial features
and have proven effective across numerous medical imaging
tasks. More recently, EfficientNet, a family of models that
optimize depth, width, and resolution simultaneously through
compound scaling, has demonstrated improved performance
in image classification tasks while maintaining computational
efficiency (Tan & Le, 2019). Meanwhile, Vision Transformers
(ViT), which leverage self-attention mechanisms across image
patches, have shown strong performance in capturing global
contextual relationships, a feature especially useful in high-
resolution medical imagery (Dosovitskiy et al., 2020).

The integration of these models into brain tumor classification
tasks is a growing area of research, with studies demonstrating
their utility in differentiating between gliomas, meningiomas,
pituitary tumors, and normal brain tissue. This study builds
on these developments by conducting a comparative evalua-
tion of CNN, EfficientNet, and ViT architectures applied to a
curated MRI dataset. By doing so, it seeks to identify which
architecture offers the most clinically relevant accuracy, with
a long-term view toward augmenting diagnostic workflows in
neuro-oncology.

3 Methods

Information regarding the paper is sourced from scholarly ar-
ticles from reputed journals such as: ScienceDirect, PubMed,
and others. The learning process was initiated by understanding
if cancer is caused by CT machines!?!, and knowledge about
other scanning machines such as MRI, Ultrasound and PET
was gradually acquired. There was still focus on how CT could
cause cancer through the use of ionized radiation, while also
research on the pros and cons of each machine began'%!3, The
use of ionized radiation by CT was shown to be a legitimate
concern for cancer#. Insights into these medical machines were
gained by examining their pros and cons, which facilitated an
understanding of the circumstances in which the use of each
machine would be optimal. The structure of the brain, includ-
ing the meninges and other parts of the nervous system, was
also studied!?. This contributed to an understanding of tumor
classification. Additionally, data were analyzed to determine
when certain medical machines were preferred over others by
understanding the structure of the nervous system and the pros
and cons of each machine. For example, MRI machines are
generally preferred over CT machines because they are con-
sidered safer due to not using ionized radiation; however, in
circumstances involving a patient with metal in their head, a CT
scan must be employed'®. A CT scan would need to be utilized

due to the potential dangers posed by the magnetism of MRI
machines for such patients. Furthermore, the understanding
of brain structure aids in deciding which technique should be
employed. If a tumor is located in a critical area of the brain
that may control vision, hearing, or other essential life func-
tions, options for tumor removal are ruled out. Consequently,
techniques like biopsies are not utilized, as they can cause per-
manent damage to these vital functions. Also, sex, age, and
race matter during choosing a radiological machine because, for
example, these factors can influence the likelihood of getting
cancer from the ionizing radiation used in CT machines'Z, MRI
machines are known to be very expensive, meaning that a doc-
tors facility may not have access to one. This could limit the
available options to other scans like CT or PET scans. At times,
a specific method may be ruled out, as the least intrusive option
is typically preferred by doctors; for example, a brain surgery
would not be performed solely for a biopsy when an MRI or
CT scan could be conducted instead. Also, different images
of varying tumors were compared using a CNN system on CT
scans. CNN, a type of ML that utilizes repeated knowledge
inputs to learn a specific action to a high level. It utilizes many
ways to correct its computing errors - resets each of its layers
by altering the weights - until it can correctly distribute the data.
This allows easier distribution of the tumor images into different
categories of no tumors, meningioma tumors, glioma tumors,
and pit tumors.

The process of setting up and analyzing each ML model is as
shown in the points below.

After researching the different radiological machines, it was
clear that MRIs were the safest among all the radiological ma-
chines due to their nature of being noninvasive while still having
a clear resolution. MRIs also do not use ionized radiation which
lowers the risk of danger to patients. The biggest problem for
MRI was that it uses magnetism which can pose problems for
patients who have metal implants. The MRI images were then
put through CNN, ViT, Efficient-Net data systems.

3.1 Data Collection and Preprocessing

Figure 10 provides an overview of the flowchart, illustrating the
step-by-step process of our methodology. The dataset used in
this study was sourced from Bhuvaji et. als kaggle!® data set.
The data consisted of high-resolution images categorized into
multiple classes. For preprocessing, all images were resized
to a uniform size of 2242243 to ensure compatibility with the
input requirements of the models. The class labels were en-
coded into numerical values using the LabelEncoder function
from the scikit-learn library, standardizing the categorical target
variable for model training. The encoded labels were then used
to transform both the training and testing datasets. Figure 8
shows the number of images used in each tumor category for the
training phase, while Figure 9 shows the number of images used
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in each tumor category for the testing phase. This preprocessing
pipeline ensured a consistent data format and dimensionality,
facilitating effective learning by the models while maintaining
the integrity of the original dataset. After preprocessing, the
training dataset comprised 2870 samples, and the testing dataset
included 394 samples. All images in the data set were used and
due to this, there was no use of a sampling method to ensure
representativeness. Since all the data that was being offered was
used, one can classify it as a census which is more representative
of the population than any other sampling method.

3.2 CNN Model Architecture

The CNN architecture used in this study is a sequential model
designed for the multi-class classification of MRI images. The
model begins with a convolutional layer comprising 8 filters
with a kernel size of 5x5 and rectified linear unit (ReLLU) ac-
tivation, which extracts spatial features from the input images
of size 224 x 224 x 3. To ensure consistency and align with
established practices, we adopted the input resolution of 224224
pixels, as used in prior work. Specifically, we followed the
precedent set by: S. Tummala, S. Kadry, S. A. C. Bukhari, H.
T. Rauf. Classification of brain tumor from magnetic resonance
imaging using vision transformers ensembling. Current Oncol-
ogy, 29, 74987511 (2022). This is followed by a max-pooling
layer with a pool size of 55, which reduces spatial dimensions
and mitigates overfitting. The feature extraction process contin-
ues with two additional convolutional layers, each with 8 filters
and kernel sizes of 33, both employing ReL.U activation for
non-linear transformation. These are followed by corresponding
max-pooling layers with pool sizes of 33 and 22, respectively,
for progressive down-sampling of feature maps. After the con-
volutional and pooling layers, the model transitions into a fully
connected architecture with a flattening layer, which transforms
the extracted feature maps into a one-dimensional vector. This
is followed by a dense layer with 128 neurons and ReLU ac-
tivation, which serves as a high-level feature representation.
Regularization is incorporated using a dropout layer with a 20%
dropout rate to prevent overfitting. Subsequently, two additional
dense layers with 64 and 32 neurons, respectively, both em-
ploying ReLLU activation, further refine the extracted features.
Each dense layer is followed by a dropout layer with a 20%
dropout rate to enhance generalization. The final dense layer
consists of 4 neurons, corresponding to the four tumor classes
(glioma, meningioma, pituitary, and no tumor), and utilizes a
softmax activation function to output class probabilities. This ar-
chitecture is designed to balance complexity and computational
efficiency, making it suitable for the classification of medical
imaging datasets with limited variability.

3.3 Efficient-Net Model Architecture

The EfficientNet-based model utilized in this study builds upon
the EfficientNetV2B3 architecture, a member of the Efficient-
Net family of CNNs renowned for its state-of-the-art accuracy
and computational efficiency in image recognition tasks. Effi-
cientNet employs a novel compound scaling method to system-
atically balance model depth, width, and resolution, optimiz-
ing performance under various resource constraints. Derived
from a baseline architecture (EfficientNet-B0) through neural
architecture search, the EfficientNet family scales up to larger
models (EfficientNet-B7), offering versatility for diverse appli-
cations. In this work, the EfficientNetV2B3 model, pre-trained
on ImageNet, is used as a feature extractor. The top layers of
the base model were excluded, and a lightweight classification
head was added, consisting of a global average pooling layer
followed by a fully connected dense layer with softmax acti-
vation for multi-class classification. This design leverages the
pre-trained model’s robust feature extraction capabilities while
maintaining computational efficiency, making it well-suited for
domain-specific fine-tuning in computer vision tasks®. Point
14: batch_size = 32 n_epochs = 15 alpha = 0.01 Efficient net To-
tal params: 12936770 (49.35 MB) Trainable params: 12827554
(48.93 MB) Non-trainable params: 109216 (426.62 KB)

3.4 ViT Model Architecture

The ViT-based model employed in this study is built upon the
ViT-B32 architecture, which is part of the pioneering family
of transformer-based models for image recognition. Unlike
traditional CNN models, ViT processes images as sequences
of patches, enabling it to capture long-range dependencies and
global context effectively. Due to the data set being pre trained
with certain sized data sets, we only had a small data set size to
use for the ViT. The pre-trained ViT-B32 model, initialized with
weights optimized for image classification tasks, serves as the
base feature extractor. To adapt this architecture to the specific
classification task, additional layers were appended, including
a flattening layer, batch normalization layers to stabilize and
accelerate training, and a dense layer with Gaussian Error Linear
Unit (GELU) activation to introduce non-linearity. The final
layer is a dense layer with softmax activation, designed to output
class probabilities. This configuration harnesses the transformer
architecture’s strength in feature representation while tailoring
it for the multi-class classification task, ensuring high accuracy

and robust performance?’.

3.5 Training Procedure

The training procedure was designed for a multi-class classi-
fication task involving 4 classes (glioma tumor, meningioma
tumor, no tumor, and pituitary tumor) corresponding to the la-
bels: glioma tumor, meningioma tumor, no tumor, and pituitary

© The National High School Journal of Science 2025

NHSJS Reports | 3



tumor. The dataset consisted of images resized to a uniform
dimension of 2242243 to meet the input requirements of the
model. The model was trained using a batch size of 32 over
15 epochs, ensuring adequate iterations for effective learning.
A validation split of 20% was employed, reserving part of the
training data for validation to monitor the model’s performance
and prevent overfitting. The Adadelta optimizer with a learning
rate of =0.01 was used to adaptively adjust the learning rate dur-
ing training. The loss function, sparse_categorical_crossentropy,
was utilized to handle the integer-encoded multi-class labels effi-
ciently. This well-structured training pipeline enabled the model
to classify images across the four tumor categories accurately.

Input data from
kaggle

'

Training dataset Test dataset
n=2870 n=394

Normalize training
images

MNormalize test
images

Train Vision
Transformer
model

Train EfficientNet
model

Train CNN
model

Model
evaluation

Classify test :magesl Classify test images

v using CNN model _using EfficientNet model
A y \ ~ Classify test images
using Vision Transformer model
< Classify ™. /" Classity Classify

\ \les.t images - \est images s/ test images

A 4 y
Y
Outcome  |—— Outcome | QOutcome
L Compare
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Fig. 1 Flowchart Showing Data Process.

4 Results

4.1 Evaluation Criteria

The evaluation of the model’s performance was conducted using
several key metrics. First, precision, recall, and F1-score were

calculated using the precision_score, recall_score, and f1_score
functions, respectively, with the *'macro’ average method. These
metrics provide insights into the model’s ability to correctly
classify instances from each class, accounting for both FP and
false negatives (FN). Additionally, a confusion matrix was gen-
erated to visually assess the classification performance across
all classes. This was plotted using the ConfusionMatrixDisplay
to identify misclassifications and the overall distribution of pre-
dictions. To further evaluate the models ability to discriminate
between classes, the ROC curve and AUC were plotted for each
class using the plot_roc_curve function. The ROC curve pro-
vides a graphical representation of the trade-off between the true
positive (TP) rate and FP rate, and the AUC value quantifies the
model’s ability to correctly classify instances. These metrics and
visualizations collectively offered a comprehensive evaluation
of the models performance in the multi-class classification task.
The three modelsCNN, EfficientNet, and ViTwere compared
using the same set of evaluation metrics to ensure a fair and
consistent performance analysis.

* Precision: Precision is the ratio of correctly predicted
positive observations to the total predicted positive obser-
vations. It reflects how many of the predicted positive cases
are actually positive. A higher precision means fewer FPs.
Equation #1: Precision=TP/TP+FP where TP is the number
of true positives, and FP is the number of false positives.

* Recall: Recall (also known as Sensitivity or TP Rate) is
the ratio of correctly predicted positive observations to
all observations in the actual class. It shows how many
of the actual positive cases were correctly identified by
the model. A higher recall means fewer FN. Equation
#2: Recall=TP/TP+FN where TP is the number of true
positives, and FN is the number of false negatives.

* F1-Score: The Fl-score is the harmonic mean of pre-
cision and recall. It combines both metrics into a sin-
gle value that balances the trade-off between them, es-
pecially when there is an uneven class distribution (im-
balanced dataset). A higher Fl-score indicates a better
balance between precision and recall. Equation #3: F1-
Score=2(PrecisionRecall/Precision+Recall)

¢ Confusion Matrix: A confusion matrix is a table used to
evaluate the performance of a classification algorithm. It
summarizes the number of correct and incorrect predictions
for each class in a matrix format. The matrix contains:

— True Positive (TP): Correctly predicted positive class.

— True Negative (TN): Correctly predicted negative
class.

— False Positive (FP): Incorrectly predicted as positive
class.
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— False Negative (FN): Incorrectly predicted as negative
class.

The confusion matrix helps in identifying the types of
errors made by the classifier and is the foundation for cal-
culating other metrics like precision, recall, and F1-score.

* ROC Curve: The ROC curve is a graphical representation
of the performance of a binary classification model at vari-
ous threshold settings. It plots the TP Rate (Recall) against
the Equation #4: FP Rate (1 - Specificity). The ROC curve
helps to visualize the trade-offs between sensitivity and
specificity across different decision thresholds, providing a
clear overview of the model’s discrimination ability.

* AUC: The AUC is a scalar value that quantifies the overall
ability of the model to discriminate between positive and
negative classes. An AUC of 1 indicates perfect classifi-
cation, while an AUC of 0.5 indicates random guessing.
A higher AUC indicates better model performance, as it
signifies that the model is better at distinguishing between
the classes.

4.2 Analysis

This study evaluates the performance of three deep learning
modelsEfficientNet, CNN, and ViTfor multi-class tumor classi-
fication. The models were assessed using confusion matrices,
receiver operating characteristic (ROC) curves, and quantitative
metrics, including precision, recall, F1-score, and accuracy.

4.3 Confusion Matrix Analysis

The confusion matrices (Figures 13) reveal the distribution of
correct and incorrect predictions across the four tumor classes:
glioma tumor, meningioma tumor, no tumor, and pituitary tumor.
EfficientNet demonstrated relatively balanced performance but
showed misclassifications, particularly for glioma and pituitary
tumors. ViT exhibited improved classification accuracy across
all tumor classes, with significantly fewer misclassifications
in the no tumor and meningioma tumor categories. CNN, on
the other hand, displayed the highest rate of misclassification,
particularly for glioma tumors, which were often confused with
pituitary tumors and meningioma tumors.

4.4 Explanation of how each deep learning model per-
formed on the different types of tumor images:

EfficientNet performed well in classifying meningioma tumors
and no tumors with it having gotten 80 of meningioma tumors
correctly classified and 98 no tumors correctly classified. It
was not as successful with the other types with only around
30 in both being correctly classified. With ViT, it was able to
correctly get 111 meningioma tumors correctly classified along

with 104 no tumors correctly classified. It did not do as well
in the other categories with only 20 gliomas tumors correctly
classified and 50 pituitary tumors correctly classified. Finally,
CNN got 90 meningioma tumors correctly classified and 101
no tumors correctly classified. It had lower performances with
the other categories with 17 glioma tumors correctly classified
and 25 pituitary tumors correctly classified. With all the deep
learning models, it was apparent that meningiomas tumor and
no tumor images were more commonly correctly classified than
glioma and pituitary tumor images.

Confusion Matrix

glioma_tumor

meningioma_tumor

True label

no_tumor

pituitary_tumor

glioma_tumor
meningioma_tumor
no_tumor
pituitary_tumor

el

redicted label

Fig. 2 Confusion matrix for EfficientNet

4.5 ROC Curves

The ROC curves (Figures 46) illustrate the models ability to
distinguish between classes. ViT achieved the highest area under
the curve (AUC) values across all classes, with an AUC of 0.77
for glioma tumor, 0.92 for meningioma tumor, 0.99 for no tumor,
and 0.92 for pituitary tumor. EfficientNet also performed well,
with AUC values of 0.76, 0.93, 0.98, and 0.97 for the respective
classes. CNN lagged behind, particularly for the glioma tumor
class, with an AUC of 0.54.

4.6 Quantitative Metrics

The quantitative evaluation of the models is summarized in Table
1. ViT achieved the highest overall accuracy (72.34%) and F1-
score (0.672), demonstrating superior performance compared
to EfficientNet and CNN. We would like to clarify several key
differences between our study and that of Tummala et al., which
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Fig. 4 Confusion matrix for CNN

contribute to the observed variance in performance. Dataset
differences within Tummala et al.s study is due to the fact that
Tummala et al.s utilized a dataset comprising 3,064 T1-weighted
contrast-enhanced MRI slices sourced from Figshare, focusing
on three tumor types: meningiomas, gliomas, and pituitary
tumors. In contrast, our study employed a different publicly
available dataset, which, while similar in nature, differs in size,

ROC curve
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LX) 0.2 0.4 0.6 0.8 10

False Positive Rate

Fig. 5 ROC curve for EfficientNet
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Fig. 6 ROC curve for ViT

imaging techniques and class distribution. These differences
inherently affect model performance and limit direct compara-
bility. EfficientNet followed with an accuracy of 65.23% and
an Fl-score of 0.611. CNN achieved the lowest performance
metrics, with an accuracy of 59.13% and an F1-score of 0.530.
Precision and recall values were consistent with these trends,
with ViT achieving the highest precision (0.787) and recall
(0.707).

ViT emerged as the most robust model for multi-class tu-
mor classification, achieving the highest accuracy, F1-score,
and AUC values across most tumor classes. EfficientNet per-
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Model Name | Precision | Recall | F1 Accuracy
EfficientNet | 0.785 0.625 0.611 0.652
ViT 0.787 0.707 | 0.672 | 0.723
CNN 0.673 0.563 0.530 | 0.591

Table 1 Table 1: Metric Table

formed moderately well, demonstrating better generalization
than CNN but underperforming compared to ViT. CNNs lower
performance, as reflected in all metrics, highlights its limitations
for this specific classification task.

4.7 Loss Curves

Loss curves are fundamental diagnostic tools in deep learning
that visualize the training and validation loss over epochs, pro-
viding critical insights into model convergence behavior and
generalization performance. The training loss represents how
well the model fits the training data, while the validation loss
indicates the model’s ability to generalize to unseen data. Ide-
ally, both curves should decrease monotonically and converge
to similar values, indicating good model performance without
overfitting. A widening gap between training and validation
loss suggests overfitting, where the model memorizes train-
ing data but fails to generalize. In our comparative analysis,
the CNN model exhibited typical deep learning convergence
patterns with both losses decreasing steadily until plateauing
around epoch 25, demonstrating stable learning dynamics. The
Vision Transformer (ViT) showed the smoothest and most con-
sistent convergence behavior with both training and validation
losses following nearly parallel downward trajectories through-

out training, indicating well-balanced learning dynamics and
effective generalization. The EfficientNet model demonstrated
rapid initial convergence with steep loss reduction in the first 20
epochs, followed by more gradual improvement, characteristic
of efficient architectures that quickly learn dominant features
before fine-tuning, ultimately achieving competitive final loss
values.

Model loss

—— Training loss.
— validation loss

Model loss

[ 10 20 EY a0 50
Number of epachs

Fig. 8 CNN loss curve Training and validation loss curves for the
Convolutional Neural Network (CNN) model over 50 epochs. The
model shows stable convergence with both losses decreasing until
approximately epoch 25, after which they plateau around 0.75,
indicating successful learning without significant overfitting.
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Fig. 9 ViT loss curve: Training and validation loss curves for the
Vision Transformer (ViT) model over 60 epochs. The model exhibits
the smoothest convergence behavior with both training and validation
losses following consistent downward trajectories, demonstrating
well-balanced learning dynamics and effective generalization
capabilities.
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Fig. 10 EfficientNet loss curve: Training and validation loss curves for
the EfficientNet model over 60 epochs. The model demonstrates rapid
initial convergence with steep loss reduction in the first 20 epochs,
followed by more gradual improvement, characteristic of efficient
architectures that quickly capture dominant features before fine-tuning
for optimal performance.
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5 Discussion

This study explored the use of ML models to classify brain
tumors using MRI imaging data into four categoriesglioma,
meningioma, pituitary tumors, and no tumor. The study focuses
on the classification of different tumor images by different ML
models. MRI machines were chosen as they are generally safe
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Fig. 12 Bar graph that shows frequency of each tumor type used in the
testing phase.

due to not using ionized radiation. A downside of MRI scans is
that they cannot be used if the patient has metal in their bodies10.
MRIs also have high resolution while still having a non-invasive
nature, meaning that the images produced by MRIs are very
clear and are easier to classify. The study employed three ML
modelsEfficientNet, CNN, and ViTto see which model classi-
fied the MRI images the most accurately. The possibilities of
the models can help the classification of radiological machines
become automated™?. The models performance was assessed
using confusion matrices, ROC curves, and metrics such as
precision, recall, F1-score, and accuracy. Among these, ViT
emerged as the most robust model, achieving the highest overall
accuracy (72.34%), precision (0.787), recall (0.707), and F1-
score (0.672). EfficientNet demonstrated moderate performance,
while CNN lagged behind in all metrics. These findings align
with the growing recognition of the potential of advanced deep
learning models like ViT for medical image analysis. Precision
and recall metrics are particularly critical in the context of medi-
cal datasets. High precision metric ensures that when a model
predicts the presence of a tumor, the prediction is reliable, reduc-
ing the risk of false positives (FP) that could lead to unnecessary
treatments and patient anxiety. On the other hand, recall metric
measures the model’s ability to identify all actual tumor cases,
minimizing the risk of giving a patient a wrong treatment or not
giving a treatment when necessary.
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