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Injuries are an inevitable part of all professional sports. In football, their consequences can impact not only individual players but
also entire teams and seasons. As the physical demands of the NFL continue to grow, so does the need for tools that can anticipate
and prevent injuries before they occur. This study explores the use of artificial intelligence (AI) and machine learning (ML) to
predict injury risk based on game context, player movement, environmental factors, and play history. Using a variety of modeling
approaches and resampling strategies to handle severe class imbalance, we found that analyzing sequences of plays leading up to
injuries, rather than the injury plays themselves, produced the strongest results. Our best model achieved a recall of 56% and a
precision of 40% in detecting injury risk on synthetic data. While still modest, these findings demonstrate that pre-injury play

patterns can provide valuable signals for anticipating injury risk, even in highly imbalanced datasets.

Introduction

While previous research has examined the relationship between
injury rates and factors like playing surface or weather, much of
it has been retrospective or limited to basic statistical analysis'.
Traditional approaches have relied on biomechanics, player
interviews, or post-game video review, aiming to understand
why injuries happened rather than predict when they might
occur?, Statistical models, while useful for identifying long-
term trends, struggle with play-to-play variability and rarely
offer actionable insights in real time™.

This study aims to go further by using machine learning
models to actively predict when injuries might occur, based
on patterns hidden within large-scale NFL datasets. Unlike
traditional research that focuses on a single hypothesis, this
paper takes an exploratory approach, testing multiple strategies
and angles to see how injury prediction can best be approached.

Simple physical correlations between players and injuries
aren’t reliable enough to predict injuries, as overlapping patterns
across multiple plays are often what show what could be an
upcoming injury waiting to happen.

The goal of this study is not only to evaluate how well dif-
ferent algorithms perform, but also to better understand how
injuries might be foreseen. Specifically, this paper aims to:

 Evaluate how well different machine learning algorithms
predict injuries

* Investigate whether early signs of injury risk can be de-
tected in play sequences

» Explore whether overlapping patterns across multiple plays
are more predictive than single-event features

Methods

Dataset Used and Preprocessing

This study uses a dataset provided by the NFL’s 1st and Future
competition on Kaggle, which includes 3 detailed data .csv files:
InjuryRecord.csv, PlayList.csv, and PlayerTrackData.csv. These
files contain detailed info about each play that was logged by
all 250 players for every game, contextual information about
each play, and high-resolution tracking data that captures player
positions, their movements, and speeds at 0.1-second intervals
for every play. The dataset includes only non-contact lower-
limb injuries, which were selected by the NFL as part of the
competition focus. These injuries are believed to be influenced
by surface conditions and player movement rather than direct
collisions™.

The dataset used for this project was from the NFL 1st and
Future competition, which had detailed histories for 250 players,
with dozens of plays in a number of games, the game-time con-
ditions for each game, and movement data for each play. Data
was preprocessed to first look at key correlations, as well as en-
gineering key features such as playing surface, player position,
game temperature, and type of play. Our models were evalu-
ated using accuracy, precision, recall, and F1-score to compare
performances, while more advanced comparisons like our Strat-
ified K-fold verified models weren’t just “memorizing” data, a
common theme in our early stages of models (more on that in
the overfitting explanation).

Injury prediction is inherently much more difficult than it
may seem, as there isn’t necessarily a one-to-one relationship
between features and outcomes, making it necessary to explore
multiple modeling strategies. It’s an extremely complex chal-
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lenge that can be approached from multiple angles. So, rather
than relying on a single strategy or model, various techniques
were utilized to understand which types of patterns and signals
may precede injuries. Some approaches involved differentiating
injury plays from non-injury plays based on basic features like
the surface type of the field and the game-time temperature,
while others focused on analyzing sequences of plays leading
up to an injury, aiming to uncover any potential warning signs in
player behavior or game context that could hint at an upcoming
injury.

This multi-faceted approach highlights the importance of
combining different perspectives, such as single-play classifica-
tion, temporal analysis, and contextual factors, to build a more
complete and realistic injury prediction framework. This paper
contributes to the growing usage of Al in sports science, as it
demonstrates how tools can be applied to predict injuries in
NFL athletes from game-driven data. Hopefully, AI models can
identify patterns or signs from a variety of game-related features
to point toward a possible future injury, offering a foundation
for proactive injury prevention strategies.

The raw data required extensive cleaning and transforma-
tion before modeling, starting with filling in all missing values
and removing null values to ensure the models wouldn’t en-
counter syntax errors or be affected too much by incorrect data.
PlayerTrackData.csv included data about the speed, location
on the field, and direction for each player frame-by-frame for
each 0.1-second interval. We grouped the tracking data by the
PlayKey that was associated with each play. The PlayKey in-
cluded the PlayerKey and GameKey attached to the last number,
which indicated the play number (46th play of the game would
have a 46). We aggregated the tracking data for each play by
computing mean speed (s), total distance traveled (dis), mean
direction, standard deviation of direction (dir), and a calculated
measure of angular speed based on directional variance across
all 0.1-second intervals.

Injured players were identified through InjuryRecord.csv, and
their corresponding play keys (PlayKey) were isolated. For mod-
eling, we focused not just on the injury plays themselves but
on the preceding plays. Specifically, we explored three window
sizes: 5, 10, and 20 plays before an injury. Any play that oc-
curred within N plays before an injury was labeled as a Prelnjury
=1, while all others were labeled 0. This approach provided a
more proactive and realistic framing for injury prediction.

Because the dataset is limited to non-contact lower-body in-
juries, which tend to result from accumulated stress or biome-
chanical factors, it is reasonable to assume that meaningful risk
patterns may emerge in the plays leading up to the injury. Label-
ing these 520 plays as “pre-injury” allows for detection of such
patterns in advance.

Because of the severe imbalance of injuries to non-injury
plays (since injuries are rare compared to all plays), we em-
ployed three resampling strategies to balance the data during

Raw Data (.csv)
(InjuryRecord, PlayList, PlayerTrackData)

Exploratory Data Analysis (EDA)
¢ Check data types
* Null values
¢ Distributions

Feature Engineering
* Behavioral
* Contextual

¢ Temporal

Injury Labeling
(5, 10, 20 plays before)

Resampling
(SMOTE, ADASYN, Under-Sampling)

Modeling
* Logistic Reg
¢ Decision Tree

* Random Forest

* Neural Net

Evaluation
(Accuracy, Precision, Recall, F1)

Overfitting Check
Compare real vs synthetic

Fig. 1 Flowchart outlining the full methodology for NFL injury
prediction, from data collection and preprocessing through exploratory
data analysis (EDA), feature engineering, modeling, and evaluation.

model training:

* SMOTE (Synthetic Minority Oversampling Technique):
SMOTE generates synthetic injury samples by interpolat-
ing between existing ones. This helps expose the model to
more examples of injury plays without simply duplicating
the data.

* ADASYN (Adaptive Synthetic Sampling): Similar to
SMOTE, but it focuses more on difficult-to-learn exam-
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ples. ADASYN creates more synthetic samples near injury
plays that are harder for the model to classify, which can
improve performance in tricky edge cases.

* Random Under-Sampling: This approach balances the
dataset by randomly removing non-injury plays (the major-
ity class). It’s simple and avoids synthetic data, but it can
discard potentially useful information.

We chose these techniques because our dataset was highly im-
balanced, with far fewer injury plays compared to normal plays.
SMOTE and ADASYN allowed us to artificially boost the num-
ber of injury examples to give the model more patterns to learn
from. Random under-sampling provided a useful contrast, as it
uses only real data and avoids overfitting to artificial patterns.
Using all three allowed us to test which approach worked best
for injury prediction in this imbalanced context™.

Exploratory Data Analysis (EDA)

Dataset Overview

To better understand the dataset before modeling, we per-
formed an exploratory data analysis (EDA) on the three core
files, focusing on data types, missing values, distributions, and
key trends across player behavior and injury patterns.

* InjuryRecord.csv: 105 records of lower-limb injuries, in-
cluding body part, surface type, and time missed.

* PlayList.csv: 151,987 player-play entries, with info on
weather, surface, stadium type, and play type. Most plays
are non-injury plays; injury plays can be cross-referenced
with InjuryRecord.

* PlayerTrackData.csv: 263,121 plays broken down into 0.1-
second intervals, with player location, speed, direction,
orientation, and distance moved.

Initial Data Checks

* Missing Values:
o StadiumType and Weather are missing in 9,484 rows
(mostly from indoor stadiums where weather may be irrel-
evant).
o PlayType is missing in 207 entries.
o Event is missing in most of PlayerTrackData.csv, but this
was expected and didn’t affect model development.

* Duplicates:
o No true duplicates, though many rows represent time
slices of the same play. This was intentional given the
tracking data format.

Visual Analyses
We included several visualizations in the appendix to better
understand data patterns:

* Play Type Distribution: Passing and rushing dominate the
dataset, while special teams plays are much less common.

e Roster Position Distribution: Most data comes from
linebackers, linemen, and wide receivers, as those posi-
tions are often involved in high-impact plays.

L]

Temperature Distribution: Most games occurred between
5080F. When split by injury vs. non-injury, no significant
difference was visible.

* Correlation Heatmap: Shows low correlation between in-
jury and numeric features. PlayerGame and PlayerDay are
highly correlated (r = 0.89), as expected, where r is the
Pearson correlation coefficient representing the strength of
a linear relationship between two variables.

Injury by Surface & Body Part: Slightly more ankle in-
juries on turf; more knee injuries on natural surfaces. This
supports existing concerns around synthetic turf and lower-
body injuries.

The EDA helped clarify how the data was structured and where
its limits were. We saw that injuries were rare and unevenly
spread, and most basic stats like temperature or surface didn’t
show strong patterns on their own. Some columns had missing
values, but nothing that seriously broke the data. These take-
aways guided how we cleaned the data, chose features, and set
up our injury prediction task.

Feature Engineering

We engineered features across three categories:
behavioral/tracking-based, contextual, and temporal. From
the player tracking data, we computed metrics such as mean
speed, max speed, total distance, and direction changes (mean,
standard deviation, and angular speed). Contextual features
included environmental and situational data like FieldType,
PlayType, Weather, RosterPosition, and StadiumType, all
of which were label-encoded after handling missing values.
Temporal features included each player’s game number and
cumulative plays to reflect progression and fatigue. These
engineered features were then used as inputs for model training.
A breakdown of key features across each category:

1. Behavioral/Tracking Features:
o Mean Speed / Max Speed: Captures the pace of move-
ment. Faster plays may correlate with higher exertion or
risky maneuvers.
o Total Distance Traveled: Reflects how much ground the
player covered during the play.
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o Mean Direction / Directional Standard Deviation: Mea-
sures how much a player’s movement varied directionally,
which might indicate cutting, pivoting, or instability.

o Angular Speed: A feature we created to measure how
quickly and frequently a player changed direction during
a play. It was based on the directional values in the track-
ing data, which show which way the player was facing or
moving every 0.1 seconds. We calculated the variance in
direction across each play and used that to estimate how
much the player was turning or cutting. The more the
direction changed, the higher the angular speed.

2. Contextual Features:
o FieldType: Whether the surface was natural grass or syn-
thetic turf. Prior studies suggest turf might raise injury
rates.
o StadiumType: Indoor vs. outdoor stadiums, which can
influence exposure to external conditions.
o Weather: General weather conditions (e.g., clear, rainy,
snowy) that could impact traction and footing.
o Temperature: Numeric value showing game-day temper-
ature, which may affect muscle function or fatigue.
o PlayType: Type of play (pass, rush, etc.), giving the
model context around player movements.
o RosterPosition: Player’s on-field role (WR, RB, OL, etc.),
since injury risk varies across positions.

3. Temporal Features:

o GameNumber: How many games the player had appeared
in so far that season.

o CumulativePlays: Total number of plays a player had
participated in. While this doesn’t account for rest days,
practice loads, or injury history, it served as a proxy for
accumulated game fatigue. Ideally, more advanced metrics
like acute-to-chronic workload ratios would have been used,
but that kind of data wasn’t available. So this feature was a
practical stand-in to reflect overall in-game wear and tear.

These features were picked to give some context around fatigue
and exposure. They’re not perfect, but they still helped the
model get a sense of whether a player had been on the field a lot
and might be more at risk.

Categorical features such as FieldType, PlayType, Roster-
Position, StadiumType, and Weather were label-encoded nu-
merically using scikit-learn’s LabelEncoder. Numeric features
such as Temperature were retained as continuous variables. Any
missing values were filled with 0. Encoding was needed for
categorical variables since machine learning models work best
when they process numerical data®.

Injury Labeling and Prediction Windows

A unique aspect of this study is the creation of a temporal injury
risk label. For each injury event, we labeled the previous 5,

10, and 20 preceding plays by the injured player as “pre-injury”
plays. These plays could have hidden parts that could hint at an
elevated risk and help reframe injury prediction as a forward-
looking classification task, not just a post-hoc analysis. Plays
that did not fall within these windows were labeled as non-
injury (0). This approach allowed the models to learn from
subtle changes in player behavior and game context that may
occur leading up to an injury, as opposed to only analyzing the
injury moment itself, which is often too late for prevention.

Modeling Approaches

To evaluate injury risk, we used a two-tiered modeling strat-
egy. The first tier focused on baseline models, which serve as
simple reference points to show what performance might look
like without real learning. The second tier involved advanced
machine learning models capable of detecting deeper patterns
in the data. This setup let us compare sophisticated approaches
against basic ones and measure how much value was added by
more complex modelingZ,

Baseline Models

e Dummy Most Frequent: Always predicts the majority class
(non-injury). This serves as the simplest possible bench-
mark.

e Dummy Stratified: Makes predictions according to class
distribution, simulating random guessing.

* Random Classifier: A custom model that outputs predic-
tions by uniformly guessing 0 or 1. This helps contextual-
ize what performance might look like by chance.

Logistic Regression

Logistic Regression is a simple model used to predict whether
an event will happen. In this case, whether a play will lead to an
injury. It assigns weights to different features (like field type or
player speed) and combines them to estimate a probability. If
that probability is above 0.5, (this threshold can be changed) it
predicts the play is a pre-injury play®.

In our NFL dataset, Logistic Regression helped to identify
basic patterns, like one or two features having a higher corre-
spondence to a play resulting in an injury. However, since this
model only captures straight-line relationships between vari-
ables, it struggled with more complex interactions like fatigue
building up over time or how different player positions respond
to similar conditions. Even though it can take all the variables
into effect with multivariable regression, these aren’t enough to
identify the complex relationships and patterns that are hidden
within pre-injury plays.
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Naive Bayes

Naive Bayes is a fast model that uses probability to make predic-
tions. It looks at each feature independently and estimates the
chance that a play will be an injury-related one based on past
data®.

For our dataset, Naive Bayes worked best as a starting point.
It was quick to train and gave us a baseline to compare with
more complex models. However, it didn’t perform well overall
because many of our features are related. For example, bad
weather often comes with slippery turf, and Naive Bayes treats
those as completely separate. It uses Bayes’ Theorem to cal-
culate posterior probabilities from prior and likelihood values,
expressed as
P(B|A)-P(A)

P(B)

where P(A | B) is the probability of event A given B, P(B |

A)is the likelihood, P(A)is the prior, and P(B) is the marginal
likelihood.

P(A|B)= (1)

Decision Tree

A Decision Tree works like a flowchart, asking yes-or-no ques-
tions about features to split the data into groups. Each step helps
the model get closer to predicting whether a play will lead to
injury'Y,

In our project, Decision Trees were especially good at cap-
turing obvious risk scenarios. For example, if a player makes
quick direction changes on a wet, synthetic field late in the game,
the model might flag that as risky. However, a single tree can
be too specific to the training data and sometimes make poor
predictions on new plays.

Elements of a decision tree

+ | Decisionnode
Branch
Decisionnode

Condition choice)

Branch

Decisionnode

Afternatives.

Decisions  —
(outcomes)

Fig. 2 Structure of a decision tree model. The yellow boxes represent
decision nodes, where the model evaluates a specific feature or
condition. Each branch corresponds to a possible outcome of that
condition, leading to the next decision or result. The green boxes at the
bottom are leaves, which represent the final predicted outcomes or
classifications. This tree-like structure helps the model break down
complex decisions into a series of simpler, rule-based splits.

Random Forest

Random Forest improves on Decision Trees by creating many
of them and combining their predictions. Each tree is trained on

a slightly different version of the data, which helps the model
avoid overfitting and become more accurate overall. It works as
a more advanced model of decision trees.

This model performed best on our datasets, especially when
using real (non-synthetic) examples. It was able to catch com-
plicated patterns, like how certain conditions might not be risky
alone but become dangerous when combined. It also provided
insights into which features were most important, such as total
distance covered and angular speed'.

Neural Network (Multilayer Perceptron)

Neural Networks are powerful models that learn patterns by
passing data through layers of “neurons.” Each layer transforms
the data slightly, allowing the model to understand very complex
relationships. The number of layers of a neural network can
affect how deep its understanding is of the data, with more layers
allowing the model to detect more complex patterns. However,
this also requires more data, and it can be difficult to identify
these patterns without enough data, and can lead to the model
overfitting if not managed carefully'2,

In our case, the best neural network had 3 hidden layers
with 40 neurons each, which made sense given the size of our
dataset. It tried to learn patterns in player movement, game
conditions, and timing that might signal injury risk. While it
showed potential, it didn’t outperform Random Forest, mostly
because our dataset wasn’t large enough to fully take advantage
of the neural network’s capabilities. Still, it opens the door for
future work with more data or real-time tracking.

What made our neural network effective was its use of back-
propagation, a process where the model evaluates how wrong
its prediction was and then adjusts the weights in the network to
improve future predictions. This cycle repeats during training,
gradually minimizing prediction error. While training on resam-
pled data (such as through ADASYN), the model sometimes
reached high validation accuracy. However, due to the artificial
balance of the resampled dataset, these metrics were not reliable
indicators of real-world performance. To better reflect the true
difficulty of injury prediction, we prioritized recall as the main
metric and evaluated all models on the original, imbalanced test
set.

Training and Evaluation

For each combination of model, resampling technique, and
injury window, we trained the model on an 80% training split
and evaluated it on a 20% holdout set (the test set). Stratification
was used to preserve class balance in each split. The following
evaluation metrics were recorded:

e Accuracy: The percentage of total predictions the model
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Fig. 3 Visualization of a single neuron computing a weighted sum
followed by an activation function.

got correct
TP+TN
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* Precision: Out of all plays the model predicted as injuries,
how many were actually injuries.

TP
TP+FP

» Recall: Out of all actual injury plays, how many the model
successfully caught.

TP
TP+FN

* F1 Score: A balanced average of precision and recall, use-
ful when dealing with imbalanced data, like our data (be-
fore resampling was applied)

2 x (Precision x Recall)

Precision + Recall

where, TP = True Positives, TN = True Negatives, FP = False
Positives, and FN = False Negatives.

A total of 72 possible experiments were designed by com-
bining three injury window sizes, three resampling methods,
and eight models (including baselines). However, not every
combination was executed due to resource constraints and to
avoid excessive redundancy. All experiments that were run are
discussed in the results section.

Overfitting Considerations

We carefully monitored for signs of overfitting, especially in
high-performing models paired with synthetic data. For instance,
Random Forest and Decision Tree models trained on SMOTE
and ADASYN data achieved nearly perfect F1 scores, which
may suggest overfitting to artificially generated patterns 3.

To prevent this, we compared results against models trained

with under-sampling, which only uses real data. These models

typically had lower but more believable performance, serving as
a “reality check” and making sure that the model wasn’t overfit-
ting. The low capacity for overfitting made logistic regression
and Naive Bayes good for our model, even if they would have a
lower accuracy.

Ultimately, by combining baseline evaluation, resampling
strategies, and simple vs. complex models, we were able to build
a robust injury prediction framework that balances accuracy and
generalizability.

The evolution of our modeling strategy followed a deliberate,
layered approach. Initially, we framed the problem in its sim-
plest form: feed a model a random play and ask whether it was
an injury or not. This approach proved ineffective because the
model lacked context and temporal understanding, and the class
imbalance overwhelmed most classifiers.

Next, we refined our scope by focusing only on players who
experienced injuries, collecting all plays they were involved in
across the dataset. This allowed us to study play patterns specific
to injury-prone athletes. Most importantly, we introduced the
concept of pre-injury windows (5,10 plays before the injury),
relabeling plays leading up to injuries as “elevated risk” plays.
This redefinition of the prediction task proved to be a turning
point, transforming it into a temporally-aware problem. The
goal became not to predict the injury moment itself but to detect
signs that an injury might be imminent, based on subtle changes
in movement patterns, fatigue, or game context. In turn, it still
answers and submits to the goal of predicting injuries.

Through this lens, we tested baseline models to establish ref-
erence points. The Dummy classifiers and Random Classifier
performed poorly, as expected, offering F1 scores often below
0.4. This validated our hypothesis that random guessing would
not yield meaningful insights. Logistic Regression and Naive
Bayes, though slightly better, still showed limited ability to cap-
ture the complexity of the data, further reinforcing the need for
nonlinear models, as elevated risk plays posed no improvement
for nonlinear models to identify complex relationships.

Results

The results of this study are based on the performance of five
machine learning models evaluated across three resampling
methods (SMOTE, ADASYN, and Under-Sampling) and three
pre-injury time windows (5, 10, and 20 plays before the injury).
The models included the baseline classifiers Dummy Most Fre-
quent, Dummy Stratified, and a Random Classifier, as well as
more advanced algorithms including Logistic Regression, Naive
Bayes, Decision Tree, Random Forest, and a Neural Network
(MLP Classifier).

To evaluate performance, we focused on recall, which mea-
sures the model’s ability to correctly identify actual pre-injury
plays. Since most plays in the dataset are non-injury events,
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recall gives a better picture of how well the model flags real
injury risk4.

Our initial modeling attempt used all 267,000 plays from the
dataset, treating each play as a separate data point. However,
this approach included many plays from players who never
experienced injuries, introducing noise that overwhelmed the
injury patterns we were trying to detect. Even after applying
resampling methods to address class imbalance, recall scores for
injury detection peaked at just 0.13, showing that the baseline
strategy wasn’t effective. This led us to refine our approach by
focusing only on players who had sustained injuries and the
plays leading up to those injuries.

Play-by-Play Prediction Using Entire Dataset (All Players)

Resampling Method
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we Under-sampling

e
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Fig. 4 Recall scores for different models using SMOTE, ADASYN,
and under-sampling on the original dataset containing both injured and
non-injured players.

Play-by-Play Prediction Using Entire Dataset (All Players)
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Fig. 5 Precision scores across resampling methods for various models
trained on the original dataset.
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To compare the effects of injury window length, performance
metrics were tracked across the 5-play, 10-play, and 20-play
pre-injury windows for each resampling method. In general,
under-sampling performed slightly better on the 10-play win-
dow, offering more stable recall across models. SMOTE and
ADASYN tended to produce higher F1 scores in the 20-play
window, where more play data gave synthetic resampling more
signal to work with. The 5-play window showed reduced per-
formance across all methods, likely due to the smaller context
window limiting the model’s ability to learn injury-related pat-
terns.
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Fig. 6 F1 scores comparing model performance across three
resampling methods.
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Fig. 7 Accuracy of each model using SMOTE, ADASYN, and
under-sampling on the full dataset

SMOTE, ADASYN, and undersampling each performed dif-
ferently across metrics. For recall (Figure 4), ADASYN slightly
outperformed SMOTE in most models, like Logistic Regression
(0.13 vs. 0.115) and Neural Network (0.11 vs. 0.10), while
undersampling trailed behind both. In precision (Figure 5),
SMOTE gave stronger results, beating ADASYN and undersam-
pling in 5 out of 6 models. For example, in Random Forest
(0.085 vs. 0.07 vs. 0.065). For F1 scores (Figure 6), SMOTE
and ADASYN were nearly identical, with undersampling close
behind in most cases. Accuracy (Figure 7) showed all three
methods performing similarly, but SMOTE had a slight edge
in most models. Overall, ADASYN helped recall more, but
SMOTE was more balanced, and undersampling, while slightly
lower in performance, avoided synthetic noise and matched real
data more closely.

Our second, and final, approach focused exclusively on in-
jured players. Rather than using the entire player pool, we
trained models only on those who had sustained injuries. Ad-
ditionally, we incorporated patterns from plays leading up to
the injury, allowing the models to learn potential warning signs.
This method aimed to provide earlier and more accurate in-
jury predictions, compared to approaches that treated all plays
equally.

As evidenced, injury risk based on preceding play patterns
significantly outperformed our earlier approach that relied on
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Table 1 Model performance using preceding play patterns for injury prediction

Model Accuracy Average Re- | Precision | FI Score K-Fold Std. Devi- | Resampling
call ation Method
Baseline | 0.5 0.04 0.05 0.02 5 0.03 N/A
Logistic | 0.65 0.38 0.34 0.28 10 0.04 Under-
Regres- sampling
sion
Naive 0.6 0.43 0.25 0.31 7 0.06 Under-
Bayes sampling
Neural 0.75 0.56 0.4 0.36 7 0.05 Under-
Network sampling
Random | 0.68 0.33 0.33 0.31 8 0.02 Under-
Forest sampling
Decision | 0.62 0.31 0.3 0.24 6 0.11 Under-
Tree sampling
o predicted the majority class (non-injury) every time. Dummy
o7 — Stratified and the Random Classifier achieved slightly better
[ i — results but still remained underwhelming, with average recall
M scores being essentially nonexistent. These models served as
"W critical reference points, establishing that any meaningful pre-
goe diction would need to significantly outperform random guessing.
Their limited ability to detect injury plays highlights the need
for more complex models capable of learning patterns in player
behavior and play context.

eine e

es
e e 8

” =
o ores
el N pando™ pec®

Fig. 8 Model performance comparing average recall, precision, F1
score, and accuracy across five models used to predict injury risk based
on preceding play patterns. The neural network performed best overall,
with the highest recall and precision, while baseline models lagged
behind, highlighting the value of learning complex patterns for injury
prediction.

play-by-play data from the entire player dataset.

While recall was prioritized to emphasize correctly catching
injury risks, precision was also evaluated to understand the rate
of false alarms. Our models achieved precision scores rang-
ing from 10% in baseline models to around 40% in the neural
network, indicating a reasonable balance between detecting in-
juries and minimizing false positives. These precision values
demonstrate that although some false alerts may occur, the mod-
els maintain practical utility for sideline applications, where
excessive false alarms could be disruptive.

Baseline Performance

The baseline models performed as expected, with the Dummy
Most Frequent model achieving near-zero F1 scores because it

Logistic Regression and Naive Bayes

These simpler models offered modest improvements over base-
lines. With 65% accuracy, Logistic Regression, which models
linear relationships between features and the probability of in-
jury, scored around 0.38 on recall for injury plays. It likely
succeeded in identifying basic correlations, such as the associa-
tion between synthetic turf or high-speed movement and injuries,
but struggled with capturing interaction effects between vari-
ables. In football, injuries are rarely caused by a single factor;
instead, they result from a combination of contextual and biome-
chanical elements, which linear models cannot fully express.
Logistic Regression may have picked up trends like increased
injury risk for players involved in a high volume of plays late in
a game, but without deeper structure, its accuracy plateaued.
Naive Bayes, with a recall score of 0.43, performed worse
due to its assumption that features are independent. In the
context of the NFL, many factors are highly interdependent. For
example, field conditions often correlate with weather, which
in turn affects player movement patterns. By ignoring these
dependencies, Naive Bayes likely misclassified many pre-injury
plays. Its simplistic probabilistic logic was insufficient to model
the complex reality of professional football gameplay, where
physical contact, environmental conditions, and player fatigue
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interact in nuanced ways.

Decision Tree and Random Forest

Among all models, Random Forest emerged as the best per-
former under non-synthetic conditions, with an average recall
score of 0.32. In the context of NFL gameplay, Random Forest
likely learned decision rules such as: “If a player is on synthetic
turf, has above-average angular speed, and the game temperature
is below 40F, the play has elevated injury risk.” These kinds of
combinations are frequent in real-world sports scenarios, and
the model’s ensemble structure helps avoid overfitting to noise.
All final performance metrics reported in the table reflect models
trained using under-sampling. These values are based solely
on real data and avoid the inflated scores caused by synthetic
oversampling techniques.

Both tree-based models appeared to leverage context-rich,
game-level data along with temporal movement patterns to de-
tect pre-injury signs. Their structure allowed them to mimic
the kind of situational judgment coaches or analysts might use
when reviewing game film.

Neural Network

The Neural Network model achieved exceptional performance,
with a recall score of 0.56 and a precision of 0.40. While neural
networks are theoretically powerful, their performance in this
study was enhanced by deeper neuron levels (can be classified as
a Deep Neural Network). Neural networks require large amounts
of diverse data to generalize effectively, and in this context, the
model likely failed to build consistent internal representations
of injury-prone scenarios.

Still, the neural network’s architecture should have allowed
it to learn nonlinear sequences and player behavior over time.
It’s possible that it was beginning to recognize subtle features,
like a player’s directional acceleration patterns or gradual per-
formance decline, but without enough training examples, the
patterns weren’t strong or consistent enough to yield high per-
formance. Furthermore, the injuries themselves may involve
complex biomechanical or psychological precursors (e.g., accu-
mulated microtrauma or risk-taking decisions) that are not fully
observable in the tracking and play-level data provided.

Pre-Injury Window Analysis

Shorter pre-injury windows generally resulted in better perfor-
mance. Models trained on 5 and 10 pre-play windows consis-
tently outperformed those just relying on predicting injuries
through guessing a specific play, even if it was isolated to just
injuries. This result suggests that injuries may be preceded by a
detectable buildup in physical stress or gameplay intensity in the
final few plays before an incident. In an NFL context, this could
mean that fatigue, play style (e.g., more explosive movements),

or risk-taking behavior increases in the moments leading up to
injury. These results collectively demonstrate that injury predic-
tion is possible using machine learning models and that model
performance is highly dependent on both the sampling strategy
and the temporal framing of injury risk. While synthetic over-
sampling led to high-performance scores, the models trained
with real data (under-sampling) provide a more cautious and
realistic benchmark for deployment in real-world systems. Tree-
based models proved especially capable in this domain, likely
due to their ability to recognize and generalize from complex,
multi-factor interactions commonly found in professional foot-
ball games. Their success in learning injury predictors supports
the idea that even short-term player behavior and game context
can be used to model and anticipate injury risk in elite athletic
settings.

To ensure the legitimacy of our results, we employ K-fold
cross-validation across all models, allowing us to assess their
consistency on different subsets of the data. In this technique, the
dataset is split into k equal parts (folds), and the model is trained
and tested k times, with each time using a different fold as the
test set and the remaining folds as the training set. This method
not only provides a more robust estimate of performance but also
guards against overfitting by ensuring the model generalizes well
beyond a single train-test split'>. By examining the standard
deviation of F1 scores across folds, we were able to identify
which models had stable predictive power and which were more
sensitive to changes in the data.

Discussion

In previous studies, injury prediction has mostly relied on sim-
ple statistical trends or reviewing injuries after they happen. For
example, researchers often look at whether injuries are more
common on turf or in bad weather, or they study game footage
to analyze biomechanics. These methods are helpful for under-
standing injury causes, but they don’t help much with predicting
injuries before they happen. Our machine learning models go a
step further by trying to catch signs of injury risk in real time.
Even the simpler models, like logistic regression, performed
better than random guessing, while more advanced models like
neural networks were able to learn more complex patterns. This
shift toward using play-by-play tracking data to spot injury risk
ahead of time could be a useful step toward real-time injury
prevention.

Two limitations of our approach stems from training exclu-
sively on data from players with prior injuries. This creates a
blind spot for identifying injuries in players without previous
injury history (e.g., rookies). Consequently, the model’s ability
to detect these cases is limited, reducing its overall utility for
comprehensive injury prevention. Addressing this limitation
will require incorporating data from the full player population
or developing strategies to generalize predictions beyond pre-
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viously injured athletes. Another limitation is that the dataset
didn’t say how serious each injury was. It treated all injuries the
same, whether they were minor or more severe. Because of that,
the model just predicts if an injury might happen, not how bad
it might be. If future datasets include injury severity, the model
could be more helpful in real situations.

An important realization throughout the course of this project
was that there is no singular, definitive way to approach injury
prediction. The very nature of injuries is complex, and it’s driven
by a combination of biomechanical stress, play context, envi-
ronmental factors, and even random chance. As a result, there
are countless ways to frame and model this type of problem.
Models can be trained to classify a single play as high-risk or
not, to look at sequences of plays leading up to an injury, or even
to focus on specific positions or field zones. One could model
fatigue over time using cumulative workload data, analyze risky
movement patterns using raw player tracking coordinates, or
examine shifts in team play-calling when injury likelihood in-
creases. Even within a single methodology, choices such as
sampling technique, feature set, injury definition, and time win-
dow size all fundamentally alter the framing and outcome of the
prediction.

This flexibility is both a challenge and an opportunity. It
means that injury prediction in the NFL is not a one-size-fits-all
problem, but instead a dynamic puzzle that requires iteration,
creativity, and constant testing. The path forward will involve
not only refining the technical modeling approaches, but also
aligning them with the real-world needs and workflows of ath-
letic trainers, coaches, and sports scientists. Future work could
explore ensemble techniques combining multiple strategies, or
personalized models trained for individual athletes with unique
risk profiles. With so many different angles to approach this
problem, the space for innovation is wide open. Another direc-
tion would be testing whether models trained on one season still
perform well on future seasons, since injury patterns could shift
over time. This would be important for making sure the models
are actually useful in real-world settings.

Looking ahead, this research lays the groundwork for future
developments in sports safety and analytics. A practical next
step could be the creation of a sideline analytics application that
continuously tracks player movement and issues alerts when
injury risk metrics exceed certain thresholds. Additionally, ex-
panding the model to incorporate biomechanics, equipment data,
and real-time sensor inputs could further improve accuracy and
make predictions more actionable.

Conclusion

The goal of this research was to explore whether machine learn-
ing could be used to proactively identify NFL plays that carry
an elevated risk of injury. Through rigorous data preparation,
thoughtful feature engineering, and comparative evaluation of

various classification models, we were able to demonstrate that
Al can, in fact, detect subtle patterns in gameplay and player
behavior that precede injuries.

We tested several machine learning models, starting with
basic classifiers like logistic regression and Naive Bayes, and
moving to more advanced ones like decision trees, random
forests, and neural networks. We also applied different resam-
pling techniques, including SMOTE, ADASYN, and random
under-sampling, to address the large class imbalance between
injury and non-injury plays. Our models were trained to recog-
nize risk based on three different pre-injury windows: 5, 10, and
20 plays before the injury.

The best-performing model was a neural network trained
on real, under-sampled data. It achieved a recall of 56% and
a precision of 40% when evaluated on injured players. This
showed that our models could pick up meaningful signs of injury
risk, especially when using sequences of plays rather than just
the injury moment. Even simpler models outperformed random
guessing, which suggests that useful patterns are present in the
data.

The study’s progression from random play classification to
temporally structured risk prediction using preceding play pat-
terns demonstrates the importance of framing and preprocessing
in machine learning for sports analytics. It also highlights the
tension between performance and realism when using synthetic
data. While the results are promising, especially in controlled
modeling setups, real-world deployment of these systems would
require continuous data collection, real-time labeling, and ongo-
ing retraining to remain relevant and actionable.

There were also some key limitations. The model was trained
only on players who eventually got injured, so it cannot yet
predict injuries in players with no prior injury history. Some
of the features, like angular speed and cumulative plays, were
also simplified estimates. They may not fully capture a player’s
fatigue or the complex biomechanics behind an injury.

Overall, this study shows that machine learning can be used to
flag injury risk in real-time situations. With more data and better
tracking tools, this approach could help coaches and staff take
action earlier to keep players safe. Future work could focus on
adding data from healthy players, improving feature accuracy,
and testing these models in live settings.
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