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Computability Theory investigates what can be solved by algorithms for a finite number of iterations and what can not, helping
to estimate the boundaries of computational possibilities. This research analyses the set finiteness problem, which determines
whether a problem of determining that a set of words equal to a particular word generated on certain conditions is finite or infinite,
decidable or undecidable. The idea of research is to prove the undecidability of the problem that afterward may be used in coming
up with a more clear understanding of a decidable version of Word Problem. The method of proof is to step-by-step reduce the
investigated problem to other ones, the last one of which is known to be undecidable. The result showed that such a ’chain’ of
valid steps exists, which means that the assumption about undecidability was correct. Furthermore, because we used the method of
’chain’, many other nontrivial problems appeared to be undecidable, making the research even more productive for understanding
the known boundaries of computational possibilities.
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1 Definitions and theorems.

First of all, its necessary to involve some definitions from
computability theory.

1) Word1

Lets determine the combination of symbols from the
finitely presented semigroup as a word.

2) Quadruple1

Quadruple is a 4tuple of one of the following 3 types:

1. qis jsmql

2. qis jRql

3. qis jLql

3) Turing machine (Formal definition, from1)

Turing machine consists of:

1. A finite set S is called the alphabet of the Turing machine
whose elements we call symbols. These symbols are
possible things that can be written on each tape cell of the
Turing machine. The alphabet includes a distinguished
blank symbol that we denote ⊔.

2. A finite set Q of states, one of which is distinguished as

the starting state and the other as the halting state.

3. A partial function

t : S×Q → S×Q×{L,R}

called the transition map: if we are in state q, the current
cell contains the symbol a ∈ S, and t(a,q) = (a′,q′,X),
then the machine writes a′ in the current cell, moves
to state q′, and shifts the tape one cell in direc-
tion X ∈ {L,R}.

4) Instantaneous description1

An instantaneous description α is a positive word of
the form α = σq1τ , where σ and τ are swords and τ is not
empty.

5) h-special word1

Let w be a word on semigroup C, then w is hspecial,
if w = hw′ h, where w′ is an instantaneous description.

6) Input instantaneous description

Lets determine an instantaneous description of a par-
ticular Turing machine, which it starts with as an input
instantaneous description.

7) Halting instantaneous description
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Lets determine an instantaneous description of a par-
ticular Turing machine, which it ends with as a halting
instantaneous description.

8) Basic move1

Let T be a Turing machine, A and B are instantaneous de-
scriptions. Then there is a basic move from A to B if one of
the following conditions is satisfied:

(i) A = uqis ju′ and B = uqlsku′, where qis jskql ∈ T ;

(ii) A = uqis jsku′ and B = us jqlsku′, where qis jRql ∈ T ;

(iii) A = uqis j and B = us jqls0, where qis jRql ∈ T ;

(iv) A = uskqis ju′ and B = uqlsks ju′, where qis jLql ∈ T ;

(v) A = qis ju′ and B = qls0sku′, where qis jLql ∈ T .

Where u and u′ are s words (possibly empty).

9) Set J

J = {(C,S) | there are only finitely many words S′ of C equal}
to S×{finitely presented semigroups}×{words}.

In other words, J is the set of all such pairs (C,S), where C
is a finitely presented semigroup and S is one of its elements,
and there are only finitely many other elements of C equal to
S.

10) Set W

W = {(T,R) | there are only finitely many instantaneous
descriptions B of T that eventually reach R

and for each such B there is some input
instantaneous description B′ that eventually reaches B}
×{Turing machines}×{instantaneous descriptions}.

In other words, W is a set of such pairs (T,R), where
T is a particular Turing machine and R is a particular
instantaneous description of T and there are finitely many
such instantaneous description B of T that eventually get to
R and for any B there is some input instantaneous description
B that eventually gets to B.

11) Set V

V = {T | there are only finitely many inputs
on which T halts} {Turing machines}.

In other words, V is the set of all Turing machines
that halt on finitely many inputs.

2 Introduction

Nowadays, computer science develops rapidly, hence its crucial
to understand the solvability of problems. Computability theory
explores the limitations of what problems can be and cannot
be solved algorithmically. The Halting problem, which deter-
mines whether a given Turing machine will eventually halt or
continue running indefinitely for any given input and which was
proved to be undecidable by Alan Turing in 1936, is a crucial
problem in computability theory, which led to determining the
decidability of many other problems in this sphere.

In this paper we will explore the question if there is given a
finitely presented semigroup G = ⟨l1, l2, . . . , lm | r1,r2, . . . ,rn⟩,
a word w on the generators l1, . . . , lm, is the problem of deter-
mining whether the set of words w′ (such that w′ is a word on
the generators l1, . . . , lm and w′ = w in G) is finite or infinite,
decidable or undecidable? Lets say that is the Word Finiteness
problem. Lets proceed with the structure of the proof.

3 Methods

The general idea of the proof is that we will step by step reduce
our initial problem to other problems, where the last one in a
chain will be the undecidable problem.

Here are the crucial steps of the structure of the research:

1. Build a list of relations for a computable function G(T ),
which takes as input a particular Turing machine T and
builds a finitely presented semigroup, which helps us to
represent steps of T by combinations of symbols in the
semigroups.

2. State an Instantaneous Descriptions problem.

3. Prove that the undecidability of the Instantaneous De-
scriptions problem leads to the undecidability of the
Word Finiteness problem.
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4. State an Input Finiteness problem.

5. Prove that the undecidability of the Input Finiteness
problem leads to the undecidability of the Instanta-
neous Descriptions problem.

6. Prove that the Input Finiteness problem is undecidable
by reducing it to the Halting problem.

4 Function G from Turing machines to finitely
presented semigroups

In Rotman1, the authors proved that the question of a finitely
presented semigroup being trivial is undecidable by encoding
Turing machines in terms of semigroups. We will follow a
similar technique, but add some extra relations that are necessary
for our proof.

List of relations

If T is a given Turing machine, then the semigroup G(T ) has
the presentation

G(T ) =
〈
h, s1, s2, . . . ,sm, q1, q2, . . . ,qn

∣∣ R(T )
〉
,

where R(T ) is the following set of relations:

qis j = qlsk if qis jskql ∈ T

qis jsB = s jqlsB if qis jRql ∈ T ,
qis jh = s jqls0h if qis jRql ∈ T ,
sBqis j = qlsBs j if qis jLql ∈ T ,
hqis j = hqls0s j if qis jLql ∈ T ,
s jqls0h = qis jh if qls0Lqi ∈ T ,
hqls0s j = hqls jqi if qls0Rqi ∈ T .

This function allows us to operate with Turing machines in the
language of semigroups.

5 Instantaneous Descriptions Problem

If we have a pair (T,R) ∈ {Turing machines} ×
{instantaneous descriptions}, is the problem of determin-
ing whether (T,R) belongs to W or is it not decidable or
undecidable?

8. Proof that instantaneous description problem is
equal to the Word Finiteness problem

Want to show that if we have a pair (T,R) where R is a halting
instantaneous description with at most one s0 on either end, and

L′(T,R) = (S,w),

then the set of instantaneous descriptions of T that eventually
get to R is finite if and only if the set of words equal to w in S is
finite.

A(R) =

{
instantaneous descriptions R′ with at most one s0

on either end, that eventually get to R

}
.

B(w) =

{
words w′ on the generators of G(T )

that are equal to w in G(T )

}
.

Want to show for R a halting instantaneous description with at
most one s0 at either end that A(R) is finite if and only if B(hRh)
is finite.

If R′ is an instantaneous description that eventually gets to R,
then hR′h is a word on the generator of G(T ) which is equal
to w, which means that if A(R) is infinite, then B(hRh) is also
infinite.

If we have an element hR′h of B(hRh), then R′ is an element of
A(R), this will prove that if the set B(hRh) is infinite then A(R)
is also infinite, satisfying the condition of if and only if.

First, we should note that since our relations preserve hletters,
each word w j in the chain

hR′h → w1 → w2 → . . . → wt → hRh

is h-special. Hence, each

w j = hr j h,

where r j is an instantaneous description. We know that either

r j
1−→ r j+1 or r j+1

1−→ r j

is a basic move of T , since w j → w j+1 is an elementary op-
eration of one of the first five types (see1, Lemma 12.3(ii), p.
427).

Let us prove by induction that in our chain of steps all the
arrows go to the right. It will follow that R′ will eventually reach
R, which means that R′ belongs to A(R). It is clear that the
last arrow cannot be left-looking, because hRh is terminal, so
wt ← hRh cannot occur; hence in our chain there is at least one
right-looking arrow. This shows that for a chain of two elements
all arrows are right-going, proving the base case for t = 2, where
t is the number of elements (words wi = hrh) in the chain. Lets
find a place where

ri−1 ← ri → ri+1,
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otherwise if there is no such place, all the arrows are going to
the right (version of Lemma 12.4 from1, pp. 427428).

Once we find such a place, from which we can determine that
ri−1 = ri+1 (because there is never ambiguity about the next step
of a Turing machine, i.e., from ri we cannot get two different
instantaneous descriptions), we can remove ri and ri+1 and
connect ri−1 to ri+2 directly. This reduces our chain length
by 2, and by the induction hypothesis all shorter chains are
right-going, so the original chain is right-going as well.

Therefore, all arrows are on the right, all r j are instantaneous
descriptions with at most one s0 on either end, and hence R′ is
also such a description, proving that R′ ∈ A(R) and completing
the if-and-only-if proof.

9. Input Finiteness problem

If we have a T in {Turing machines}, is the problem of deter-
mining whether T ∈V or not decidable or undecidable?

10. Proof that the problem of instantaneous de-
scriptions is equivalent to the Input Finiteness
problem

We want

M : {Turing machines}
−→ {Turing machines}×{instantaneous descriptions}

such that M(T ) ∈W if and only if T ∈ V . The existence of
such a function M shows that if the Input Finiteness problem
is decidable, then by computing M(T ) = (T ′,R) we can decide
membership in W . In particular, T ∈V when (T ′,R) ∈W and
vice versa.

Let us define a helper function

M′ : {Turing machines} −→ {Turing machines}.

On input a machine T , M′ outputs a machine T ′ such that, after
T halts, it rewrites the instantaneous description to some other-
wise unreachable instantaneous description qx s0. Therefore, the
function we are looking for would be take T , modify it with the
usage of M :

T = M(T )

and take qx s0 as an instantaneous description. Then

M(T ) = (T ′, qx s0),

and by construction (T ′,qx s0) ∈W if and only if T ∈V . This
completes the reduction.

Summarizing, the problem of instantaneous descriptions is
equivalent to the Input Finiteness problem, since any Turing

machine can be viewed as a pair machine + instantaneous de-
scription and vice versa.

11. Proof that the Input Finiteness problem is
undecidable

Lets assume that we may determine whether a particular Turing
machine has finitely many halting inputs or not.

Now lets prove that such ability leads to the solution of the
Halting problem.

Imagine that we have a Turing machine T and input x. We want
to determine whether T halts on x or not.

Lets build a Turing machine T ′ with the following rules:

1. T ′ ignores its own input y.

2. It simulates T on input x.

3. If T (x) halts then T halts.

4. If T (x) does not halt then T ′ does not halt.

Lets notice that if T halts on x, then T ′ halts on every input,
meaning that T ′ halts on infinitely many inputs, so T ′ does not
belong to V . Otherwise, T ′ halts on zero inputs, which is finitely
many, meaning that T ′ belongs to V .

Knowing this, we may determine when T halts on x:

1. If T ′ does not belong to V , then T halts on x.

2. If T ′ belongs to V , then T does not halt on x.

Since we can determine by the finite number of operations
whether the Turing machine belongs to V or not (our initial
assumption), we can determine by the finite number of opera-
tions whether a Turing machine halts on a particular input or
not, meaning that the Halting Problem is solvable, which is a
contradiction.

Hence, the Input Finiteness Problem is undecidable, which leads
to undecidability of all previous problems, including the initial
one.

12. Conclusion

During the research we analysed a chain, consisting of 3 prob-
lems of set finiteness. Eventually, the chain finished with the
Halting problem, allowing us to conclude that all of the problems
in it are undecidable, as it was initially assumed.

The knowledge of boundaries of solvability may help devel-
opers impose limitations on their requests, so that it will be
clear that the program cannot get to an infinite cycle and allow
them to be sure that the result will be received eventually. In
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particular, this research will be useful in topology questions,
where its necessary to determine properties of a finitely pre-
sented fundamental group (in fact, finitely presented semigroup).
So understanding that 3 problems are not computable helps to
put new fundamental limitations to the applied topology.

This chain may be further used for understanding the decidabil-
ity of more complicated questions, for instance, whether the
determination that the semigroup with the same conditions is
computable or not, decidable or undecidable.

It also should be considered that the solution is not optimized.
The amount of steps may be reduced. For instance, during the
research we found out that the Input Finiteness Problem can be
reduced directly to the Halting Problem, while initial research
used an auxiliary problem for determining that reduction. So it
must not be undermined that there might be a way to reduce the
initial problem directly to the Halting problem.

One of the interesting limitations which can be added to the
initial list of conditions and make it decidable is a limit on
the length of the word in the set. This limitation will impose
boundaries on other problems in the chain, making it difficult to
repeat the same reasoning and reduce it to the Halting problem.

Hence, this problem may and must be further investigated or
used as an auxiliary problem for other problems of the same
nature.
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