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Magnetorheological (MR) dampers are a style of semi-active damper with growing applications in various fields. They utilize
magnetorheological fluid, mineral oil with magnetically polarized particles, which can change its viscosity in response to a
magnetic field. MR dampers exhibit complex nonlinear hysteresis behavior that make it difficult to accurately model. Previous
studies analyzed the use of different parametric models and more recently, nonparametric models for MR damper simulation.
However, a study has yet to evaluate the use of state-of-the-art transformer neural networks for this task.This study investigated
the use of a transformer neural network to model the behavior of MR dampers. The research focused on development of the
architecture of the transformer model and identification of the hyperparameters for the functionality of the model. The data that
was used to train and test the model was sourced from the open source Magnetorheological Damper test data for characterization
and modeling from the National Science Foundation. The model uses displacement of damper, acceleration of actuator, velocity
of damper, and voltage to predict the damping force. The model was able to accurately predict the complex hysteresis behavior
of the MR damper highly accurately, with an MSE (Mean Squared Error) of 0.0068. The transformer model was found to
accurately derive known relationships between velocity, displacement, and damping force, further demonstrating the capability of
the transformer network for modeling the behavior of MR dampers.

Introduction

Dampers are an essential component in various structures and
systems that are designed and developed. They are commonly
used to minimize unwanted vibrations in a system and are avail-
able in a wide range of designs from passive to active1. Mag-
netorheological (MR) dampers are semi-active dampers with
growing applications in a variety of fields such as earthquake
resistant buildings and automobiles1. Semi-active systems offer
the adaptability of active systems while being more reliable and
less energy dependent than comparable active systems1.

Magnetorheological dampers use magnetorheological (MR)
fluid, which changes its viscosity when exposed to varying mag-
netic fields. MR fluid used in the dampers is mineral oil with
magnetically polarized particles, through which the damper pis-
ton travels. Variable voltage can be applied to the fluid, altering
the internal MR fluid viscosity, thereby varying the available
damping force. The dynamic adjustment of magnetic field and
the resulting changes to the fluid viscosity create nonlinear be-
havior and historical dependencies. The complex nonlinear
hysteresis behavior exhibited is difficult to model2. Prior mod-
els can be classified into two types, namely parametric and
nonparametric. Parametric models utilize physical properties
and equations to model the non-linear behavior. Instead of rely-
ing on a fixed set of physical parameters, nonparametric models
derive arbitrary relationships and patterns from the input data to

Fig. 1 Simplified diagram of MR damper
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predict the damping force.
Parametric models range from the simple Bingham viscoplas-

tic model to the state of the art Spencers Modified Bouc-Wen
model1. The Modified Bouc-Wen model is the most accurate
parametric model of an MR damper, where the damping force F
is given by1:

F = αz+ c0(ẋ− ẏ)+ k0(x− y)+ k1(x− x0)
z represents the hysteresis component, which is the solution

to the differential equation:
ż =−γ|ẋ− ẏ|z|z|n−1 −β (ẋ− ẏ)|z|n +A(ẋ− ẏ)
ẋ and x are used to represent velocity and displacement, re-

spectively.
ẏ is given by:
ẏ = 1

c0+c1
[αz+ c0ẋ+ k0(x− y)]

y is the internal variable representing hysteresis. k0 is used
to represent the higher velocity stiffness control and k1 is the
accumulator stiffness. c0 is the viscous damping coefficient ob-
served at higher velocities.α,β ,γ, and A are shaping parameters
for the hysteresis component.

The Modified Bouc-Wen model1 creates a highly accurate
parametric model, however, it requires solutions to complex
differential equations to obtain damping forces. Nonparamet-
ric models do not require solutions to differential equations.
To date, different nonparametric models have been proposed,
such as NARX3,4, Multilayer Perceptrons (MLP)5, Deep Neural
Networks (DNN)6, Extreme Learning Machines7, and Long
Short-Term Memory Neural Networks (LSTM)8. Nonparamet-
ric models have been shown to be as effective at modeling the
nonlinear hysteresis characteristics of MR dampers, particularly
more recent models such as the LSTM model8.

In the field of nonparametric models, Bittanti et al. investi-
gated the effectiveness of a NARX neural network model for
an MR damper and compared it to the accuracy of traditional
parametric models such as the Spencer Modified Bouc-Wen
Model1,3. In testing, the model was able to accurately predict
damping force, outperforming the Modified Bouc-Wen model3.

Liu et al. also proposed the usage of a nonparametric NARX
model with a single layer and a hidden size of 14 neurons4. This
model had accurate predictions with an RMSE of 0.008 in best
fitness and the study also evaluated the impacts of noise on the
model4.

Duchanoy et al. proposed the usage of a deep neural network
to model MR dampers using 8 inputs, 3 hidden layers utilizing
ReLU activation functions, and 15 neurons per hidden layer6.
The model performed with an “R2” accuracy of 0.95776.

Saharuddin et al. investigated the use of an Extreme Learning
Machine Algorithm for modeling MR dampers. Experiments
were conducted using several different activation functions (hard
limit, sigmoid, and sine)7. The best prediction accuracy using
Extreme Learning Machines was in the trial utilizing the sine
activation function with an RMSE(N) of 3.907.

Delijani et al. utilized a series of six Multilayer Perceptron

Neural Networks (MLP) to create a Sequential Neural Network
(SNN) for prediction5. This model combines aspects of both
parametric models and nonparametric models by using model
parameters to represent physical properties5. 75% of the models
predictions were found to have an absolute error less than 37.3
N5. The models predictions had an average “R2” of 0.9965,
demonstrating an application of MLPs and SNNs in MR damper
modeling5.

Hu et al. proposed an LSTM model which determined the re-
lationships between displacement, velocity, and damping force8.
The models minimum and maximum errors were 1.07% and
3.18% respectively8.

The Genetic Algorithm (GA) was recently proposed9,10 as a
solution for MR damper modeling. However, Jiang et al.’s MEA-
BP network was found to outperform GA models on accuracy
by 16.67%11.

Other model types like the Physics-Informed Neural Network
(PINN)12, Supervised Neural Network13, and Enhanced Back-
propagation Neural Network (BPNN)14 were also proposed.
The PINN was found to demonstrate promising performance in
estimating Bouc-Wen parameters but required further training
in order to model hysteresis12. The Supervised Neural Network
was specifically proposed for aircraft landing gear and was able
to perform with comparable performance to existing hybrid mod-
els utilized for MR damper simulation13. The BPNN was found
to improve MR damper control by 10-30% compared with exist-
ing control models14. These nonparametric models were able
to model MR dampers with similar or superior accuracy to prior
parametric, hybrid, and prior nonparametric models. Kowol et
al. further investigated the use of nonparametric models to char-
acterize MR fluid15. Experimentation showed that the neural
network developed by Kowol et al. was in good agreement with
experimental data15.

Research of the recent nonparametric models have shown
that they are a viable alternative for modeling the MR dampers.
Analysis of prior studies show that nonparametric models have
the capacity to outperform the Spencer Modified Bouc-Wen
model1, however, prior models are limited by their architectures.
The complex nonlinear hysteresis exhibited by MR dampers and
a comparatively large number of inputs (e.g. damper velocity,
damper piston displacement, voltage, internal fluid temperature,
etc.)4,5 creates complex long range dependencies. Without un-
derstanding the dependencies, the model has a high probability
of error when applied to wide ranging research. Hence further
research is needed to optimize a model that can make connec-
tions based on long range dependencies and handle the volume
of inputs required to model an MR damper accurately.

At a high level, the objective of this study was to implement
the state-of-the-art transformer neural network to model the
behavior of an MR damper with comparable accuracy to prior
parametric and nonparametric models. The intuition is that by
leveraging the transformer based neural network architecture,
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a model can be developed which can demonstrate the accuracy
required for future studies of dampers.

Development of such a model will aid in MR damper research
to determine the factors that have the biggest impact on the
damping force produced. These trained models should be ready
to use in any architecture and design space exploration studies
where MR dampers will be required. Design space exploration
for products such as automobiles, bridges and prosthetics may
benefit with the availability of the model.

To develop this model, data from Magnetorheological Damper
Test Data for Characterization and Modeling16 was used. This
dataset is an open-source dataset published to provide data for
training new models that can accurately model MR dampers16.
This dataset contains data for four major parameters (Displace-
ment (D), Acceleration (A), Velocity (V), Voltage (Y)) and the
resulting damping force based on the four parameters16. The
dataset includes data from 4 different experiments that were all
conducted using a MR damper manufactured by the Lord Corpo-
ration, with a 3.8 cm cylinder diameter and a 30.5 cm stroke16.
Based on the data available, the model developed in this study
incorporates only the four major parameters (D,A,V,Y) from the
study.

Proposed Transformer Model Architecture

The transformer neural network proposed by Vaswani et al. in
2017 creates a foundation for a neural network with high exten-
sibility and a self-attention mechanism which can be utilized
to find long range dependencies like those present in the be-
havior of an MR damper17. Transformer neural networks have
an attention mechanism which allows them to find long-range
dependencies in the input data. They can also use attention to de-
termine the relative importance of each part of input data. This
is beneficial for modeling an MR damper where the function for
damping force depends on multiple inputs. As described earlier,
MR dampers demonstrate hysteresis behavior meaning that cur-
rent damping force depends on historical states. The attention
mechanism can be used as long term memory to find relation-
ships between current and historical states. Transformers can
also model complex nonlinear patterns like those seen between
the input variables and damping force in MR dampers. Addi-
tionally, transformer models can handle large datasets efficiently
and can easily support future inputs such as cylinder dimension,
type of MR fluid, stroke length, etc. These characteristics will
allow this model to provide high accuracy predictions despite
the complex nonlinear hysteresis exhibited by MR dampers.

The proposed transformer model of an MR damper utilizes
the 4 main inputs16 which are fed through multiple encoder
layers, with each layer focusing on different sections of the
input, then through a feedforward neural network. The model
incorporates multi-head attention17 as proposed by Vaswani et
al. to capture different aspects of input relationships. Dropout

was built into the model to prevent overfitting. Once the inputs
passed through the multi-layer network, the predicted force
was generated. The model was designed with both a forward
and backward pass, with the criterion for accuracy being Mean
Squared Error (MSE).

Architecture Description

Fig. 2 Proposed transformer model architecture

The main inputs Acceleration (A), Displacement (D), Velocity
(V) and Voltage (Y) are scaled using RobustScaler and fed to
the transformer model as shown in step 1 of Figure 2. The
scaled values are then passed into the Projection Layer, which
maps the input dimension to match the expected dimensions
of the Transformer architecture. The proposed Transformer
Encoder, as shown in step 3 of Figure 2 consists of: Multiple
encoder layers, Multi-Head Attention, Feedforward Networks
and Dropout. Multiple layers were used to allow each layer to
focus on specific parts of the input. Multi-head attention is a
feature of transformer neural networks17 that captures different
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aspects of the input relationships. Dropout helps in generalizing
the model and preventing overfitting by randomly zeroing some
of the elements of the input data with probability specified.
This will ensure that the model is able to perform better on
future datasets. After passing through the Encoder, the Output
layer maps the features extracted by the Encoder into a single
value, the predicted damping force, which is compared to the
experimental damping forces16 using gradient descent and Mean
Squared Error (MSE). Training and validation loss are calculated
using MSE for every epoch that the model is trained. The model
ends training when it is determined that loss is not decreasing
over a period of cycles. Predicting a single output value (F)
based on input features (A, D, V, Y) is a machine learning
regression problem. Hence a decoder layer is not required and
only encoders are used in this design.

Hyper Parameter Tuning

Hyperparameters are parameters that influence the learning and
accuracy of a model. Hyperparameters for the model are batch
size, dropout, hidden size, number of layers, number of heads,
and learning rate. Improperly tuned hyperparameters can greatly
decrease prediction accuracy.

Fig. 3 Diagram of hyperparameter tuning algorithm

To ensure that the hyperparameters were correctly optimized,
Optuna Training Framework was utilized18. Optuna uses a Tree-
structured Parzen Estimator (TPE) to optimize the hyperparam-
eters to minimize prediction error18. The initial hyperparameter
values were randomly chosen by the TPE. An algorithm to han-
dle saving and restoring parameter optimization with DB storage
was developed as shown in Figure 3. The initial and optimized

Table 1 Initial and Optimized Hyperparameter Values
Hyperparameter Initial Value Optimized Value
d model 320 1024
nhead 8 16
dim feedforward 2816 1536
dropout 0.287801447 0.144813138
num layers 2 9
learning rate 0.000269932 1.14E-05
batch size 243 117

hyperparameter values for each parameter are described in Table
1.

Fig. 4 Parallel coordinate plot showing hyperparameters

The parallel coordinate plot in Figure 4 shows the relationship
between the various hyperparameters and the resulting objective
value, which in this figure represents the MSE.

Fig. 5 Visual representation of pruning

A custom pruning algorithm to stop tuning was created and
utilized for hyperparameter tuning. By analyzing the trend of
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the validation loss, the algorithm determined when a trial would
be stopped. If the validation loss increased substantially or did
not progress, the trial would be pruned, effectively reducing
the amount of time that suboptimal parameters were analyzed.
This algorithm will further optimize usage of compute resources
when additional parameters are added in future studies. Pruned
trials are visible in Figure 5 as lines that end before completion
of all the steps.

Implementation

Data Preprocessing

The data used in this study was sourced from Magnetorheologi-
cal Damper Test Data for Characterization and Modeling16. The
primary variables considered for this study were A (acceleration
of actuator), D (displacement of damper piston), V (velocity of
damper), Y (voltage), and F (damping force). These variables
were experimentally measured by Dyke and Spencer before be-
ing published into an open source dataset16. A linear variable
differential transformer was used to measure the displacement
of the damper piston and a load cell was used to measure the
damping force16. A servo valve was used to control the damper
actuator and it produced different wave inputs for different ex-
periments such as sine, triangle, step, and pseudo-random16.
These measurements were then compiled into the dataset.

Fig. 6 Nonlinear behavioral characteristics of MR dampers plotted
using data from Magnetorheological Damper Test Data for
Characterization and Modeling 16 correlating damper displacement and
resulting damping force.

Nonlinear behavioral characteristics of MR dampers as seen
in the published dataset are shown in Figures 6 and 7. The
published dataset had a total of 4 experiments and 66 trials, with
each of the 66 csv files representing data from one experiment16.
80% of the data was randomly selected for training, 20% for
validation and testing. Within the 20% of files used for validation
and testing, further splitting was done to divide the remaining

Fig. 7 Nonlinear behavioral characteristics of MR dampers plotted
using data from Magnetorheological Damper Test Data for
Characterization and Modeling16 correlating damper velocity and
resulting damping force

data into separate validation and testing datasets. One randomly
selected file was used for testing. Pandas python library was
then used to read the CSV files selected for training and the
data was appended to a training data dataframe. The features
selected were A, D, V, and Y from the data and the target was F
(damping force). The compiled training data was then shuffled.
Both the features and target were scaled using RobustScaler19.

The scaling values from RobustScaler19 were then applied
to the validation dataset. To ensure that the model was able to
accurately make predictions of the complex nonlinear hysteresis
behavior, windowing was used with a size of 10, stride of 1
and overlapping windows, allowing the model to see data in se-
quences. Through using sequences, the model is able to analyze
the impacts of prior data points to more accurately represent
hysteresis. During testing, the model was switched to inference
mode, where it made predictions on damping force based on A,
D, V, and Y in the test dataset.

Prior to training and validation, the input parameters (A, D, V,
Y) and the target parameter (F) are scaled using RobustScaler19.
RobustScaler scales features using the median and the interquar-
tile range (IQR), making it much more resilient to anomalies
and outliers seen with data in MR dampers19.

Transformer Model Implementation

A transformer model class was then developed, utilizing the
four main inputs (A, D, V, Y), a projection layer, multiple en-
coder layers, a fully connected layer, and the output (Predicted
damping force). A forward pass algorithm was built into the
class.

A training function was then constructed, with MSE loss
chosen as the criterion and Adam chosen as the optimizer20.
The function iterated through the training process for a given
number of epochs. In each epoch, the function compared the
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Fig. 8 High level flow of data

models predicted damping force for a given set of inputs from
the training data with the experimentally calculated damping
force from the dataset. The weights were then adjusted to better
fit patterns found in the training data.

The model additionally repeated a similar process every epoch
using data from the validation dataset without adjusting weights.
This was used to determine the accuracy of the model in predict-
ing unseen data and ensuring that over- or underfitting was not
present. Optuna Tuning Framework was used to optimize the
hyperparameters of the model18. A patience algorithm was inte-
grated into the validation process, where if validation loss did
not decrease for a number of epochs beyond a certain patience,
the model would end training. The early stopping was used
for time optimization to ensure that unnecessary training with
no improvement to accuracy was prevented. Once the model
was completely trained, the model and the files for scalers were
saved.

The test data was then passed through the model which was
set to inference mode. The predictions of the model were then
compared with the experimentally obtained values of damping
force from the open-source dataset to evaluate the performance
of the model.

Results from Training and Validation

MSE (Mean Squared Error) was used to evaluate the accuracy
of the model. With a run of 50 epochs, the lowest recorded
validation loss was on epoch 35, with a training loss of 0.0480
and a validation loss of 0.0530. The model, with its weights
from epoch 35, was saved and set to inference mode, where
it recorded a test loss of 0.0068. The accuracy of the model
was limited by access to computing resources. Further training
would have likely led to greater accuracy.

Discussion

The results of experimentation show that a transformer neural
network accomplished the engineering goal of this study. From
the predictions of the model, it can be seen that the proposed
model is capable of making accurate predictions of the complex
nonlinear hysteresis of MR dampers, with a prediction loss of

Fig. 9 Progression of training and validation loss

0.0068 MSE, showing that the transformer model has high ac-
curacy on the test dataset. Relative comparisons across other
nonparametric models is infeasible without access to prior mod-
els or the datasets used for studies. Nonuniform error reporting
techniques also makes the comparison difficult.

Fig. 10 Comparison of model predictions and experimental force 16per
test index

The graph shows a strong correlation between the predictions
of the model and experimentally obtained values16 for damping
force. The model was able to accurately predict experimental
values for both positive and negative forces. The graphs also
show that the model was able to accurately discover the relation-
ship between the inputs (piston displacement, piston velocity)
and damping force despite not being trained using physical prop-
erties or equations. Deviations in the graph can be attributed to
the MSE loss that was observed.

Figure 11 shows that the model was able to derive the loop
pattern noted by Spencer et al.1 in their study between displace-
ment and damping force.

Spencer1 study analyzed the correlation found in MR
dampers between velocity and damping force and found a near
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Fig. 11 Comparison of model predictions and experimental
force16with respect to displacement

Fig. 12 Comparison of model predictions and experimental force16(
with respect to velocity

linear force-velocity at higher velocities that became increas-
ingly more non-linear at lower velocities. The study1 cited that
this behavior will be sought after in MR damper models. In
Figure 12, it can be seen that the transformer model was able
to accurately derive this relationship as described by Spencer et
al,1 showing that transformer models are viable for modeling
the hysteresis behavior of MR dampers.

Conclusion

This study investigated the use of a transformer-based neural
network model for modeling magnetorheological (MR) dampers.
The study was conducted using data from the National Science
Foundation. After training, the model was evaluated; during
evaluation the model performed with an error of 0.0068 MSE,
showing that the model was able to accurately model an MR
damper. Additionally, the model derived the key relationships
between velocity or displacement and damping force described
in Spencer et al.s 1997 study. The accuracy of the transformer

model will enable study of MR dampers.The proposed model
has the potential to improve design space exploration of MR
dampers in fields from prosthetics to automobiles. This study
was limited by open-source data availability and further research
needs to be conducted to include additional factors such as stroke
length to optimize the model further. Additionally, the dataset
used to train the model only contained data for one specific
style of MR damper manufactured by the Lord Corporation.
To make the model more representative of all MR dampers,
further training and data availability is required. Additionally,
comparisons should be made using other existing parametric
and nonparametric models on identical datasets to determine the
relative accuracy of each model.
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