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This study investigates the use of persistent homology, an important aspect of topological data analysis, to diagnose Alzheimer’s
disease. An MRI data set derived from the Open Access Series of Imaging Studies (OASIS) is adopted in combination with
persistent homology to classify the severity of Alzheimer’s disease for individual cases. We access a Kaggle OASIS-derived
data set with approximately 461 brain MRI scans converted into 2D slices along the z-axis. Magnetic resonance imaging for
each subject was cut into 256 slices, of which approximately 60 per subject were used in this analysis. We defined four different
severity levels for Alzheimer’s according to the metadata and Clinical Dementia Rating (CDR) values: Non-Demented, Very Mild
Demented, Mild Demented, and Demented. After preprocessing the MRI slices (including intensity normalization), we constructed
a VietorisRips filtration to compute persistent homology and derive the corresponding persistence diagrams. Persistence diagrams
for multiple slices are aggregated into a single feature representation, which was used to train two classifiers: a multivariate
logistic regression and a random forest. A CNN was also trained on raw aggregated 2D slices for a benchmark comparison. The
random forest classifier achieved the highest accuracy of 91.8% with the AUC of the ROC curve as 0.93. We confirmed using
ANOVA and Tukey’s post hoc HSD test that the random forest classifier performs statistically superior compared to pure CNN and
logistic regression (p < 0.001). Using persistent homology, our work demonstrates the potential of combining topology with data
analysis to capture information in intricate imaging data. Our results indicate success in detecting the severity of Alzheimer’s

disease, paving the way for future research to more effectively diagnose Alzheimers disease with topological techniques.
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1 Introduction

Topological Data Analysis (TDA) is a rapidly developing field
that originated in the late 1990s, combining concepts from alge-
braic topology and computational geometry to analyze complex
data sets. The key tool in TDA is persistent homology, which al-
lows the examination of topological features on multiple scales.
This technique was pioneered by Edelsbrunner, Letscher, and
Zomorodian in 2002, providing a framework for quantifying
and interpreting the shape of data in a way that is less affected
by noise and computationally feasible."

TDA has found applications in numerous areas, from neu-
roscience to image analysis, where the shape and structure of
high-dimensional data are critical. The ability to extract mean-
ingful topological features that include both global and local
attributes has made it a valuable tool in fields like biology, where
data complexity presents significant challenges.

Alzheimers disease (AD) is a degenerative neurological condi-
tion that affects millions of people around the world, especially
the elderly. In the United States, it is classified as one of the
leading causes of mortality. The disease is characterized by
progressive memory loss and cognitive impairment due to the
death of nerve cells in the brain responsible for memory and
cognition. As the population ages, the prevalence of AD is pro-

jected to increase, enhancing the importance of early diagnosis
and intervention for more effective management. Early and ac-
curate diagnosis enables more timely therapeutic interventions
and allows patients and families to plan appropriate care. More-
over, improved diagnostic accuracy can aid patient stratification
for clinical trials and also more personalized treatment plans
to ensure that individuals are correctly categorized by disease
stages.

Neuroimaging techniques, such as Magnetic Resonance Imag-
ing (MRI), proved to be extremely valuable in the diagnosis
and monitoring of AD. Machine learning (ML) approaches, es-
pecially Convolutional Neural Networks (CNNs), have been
used to automate the classification of AD stages using MRI data.
However, these models often struggle to capture high-order topo-
logical structures within complex imaging data to distinguish
different stages of AD.

In response to these shortcomings, we propose an alternative
approach using tools from TDA: persistent homology. TDA
provides a more nuanced understanding of the shape and struc-
ture of high-dimensional data, capturing features that may be
overlooked by traditional ML methods. By applying TDA to
neuroimaging data, our aim is to improve the precision and re-
liability of classifying the four different severity levels in the
progression of AD: Non-Demented, Very Mild Demented, Mild
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Demented, and Demented. Most notably, the quantitative in-
formation obtained via persistent homology can be linked to
neuropathological changes due to AD. For instance, patients
with AD tend to have hippocampus atrophies and ventricles
enlarge, causing changes to the topology of the MRI intensity
maps: separate bright regions (connected components) emerge
or merge and loops appear around dark voids. Persistent homol-
ogy can track all of these changes by recording the “birth” and
“death” of such topological features across intensity thresholds.
This provides mathematical markers that align with structural
brain degeneration.

Although applying persistent homology to AD is a relatively
novel strategy, prior research has begun to explore TDA in neu-
roimaging. Kuang et al. (2020) utilized persistent homology to
analyze brain networks in AD, and Xing et al. (2022) extended
this approach to spatiotemporal brain connectivity in ADZ%.
Topological techniques have also been investigated in other
brain disorders such as schizophrenia and autism, underscoring
the broad potential of TDA in revealing complex neurological
patterns. Our work builds on these foundations and aims to
demonstrate the utility of persistence-based features for AD
severity classification.

This study contains four main objectives. Firstly, our goal
was to process and slice the OASIS MRI scans into approxi-
mately 256 2D images each to obtain a suitable labeled data
set for the four classes of AD severity. Then, we needed to
compute the persistent homology on a VietorisRips complex
constructed from those 2D slices to obtain a persistence dia-
gram (PD). Next, we would train and evaluate two classification
models (random forest and multivariate logistic regression) on
an aggregated persistence image. Furthermore, we would train
an AlexNet-based CNN classification model similar to the one
introduced by Fuadah et al.”. The results of these models would
be compared using one-way ANOVA and post hoc Tukey’s HSD
test to evaluate whether the persistent homology-based approach
is more effective than a standard CNN approach.

2 Theoretical Prerequisite: Simplicial Topology

Simplicial homology is a fundamental tool in algebraic topology
which allows us to study topological spaces. By defining the
topological spaces into pieces called simplices, one can compute
the homology group for the entire space, capturing important
properties such as the “holes” of the space.

2.1 Triangulations

Definition 1 (Simplex). Given n+ 1 affinely independent points
V0, V1, .- .,Vn, an n-simplex is the smallest convex set containing

these points. Formally, it is defined as:

S:[vo,w,...,vn]:{xeRN|sz?Liv,-, Z;Li=1, liZO}.

i=0 i=0
The points v; are called the vertices of the simplex.

Definition 2 (Face). A face of a simplex S is another simplex
formed by a subset of its vertices. Specifically, any simplex
F = [vig,viy,- .- vi)) with {io,i1,...,ix} €{0,1,...,n} is a face
of S.

0-simplex = point LA
1-simplex = closed line segment *~—
Yo vy
Y2
2-simplex = triangle
v Y

V3

3-simplex = tetrahedron (solid)
Yo ¥

V1

Fig. 1 Example of Simplices. Image from Armstrong Topology.©

Definition 3 (Simplicial Complex). A simplicial complex K is a
finite collection of simplices satisfying the following conditions:

1. Every face of a simplex in K is also in K.

2. The intersection of any two simplices in K is empty or a
face of both simplices.

Definition 4 (Triangulation). A triangulation of a fopological
space X consists of a simplicial complex K and a homeomor-
phism f: |K| = X.

Triangulation is important in simplicial homology because it
underscores the essential process behind redefining a topological
space into a simplicial complex, which makes it possible for the
calculation of homology groups to be carried out.

2.2 Formal Algebraic Formulation of Homology Groups

We now introduce the algebraic framework necessary to define
and calculate homology groups.

Definition 5 (Chain Group). Given a simplicial complex K, the
n-th chain group C,,(K) is the free abelian group generated by
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the oriented n-simplices of K. Elements of C,(K) are formal
sums of the form:
Cc = ZaiG,'7
i

where a; € 7 and ©; are oriented n-simplices.

Definition 6 (Boundary Operator). The boundary operator d, :
Cu(K) = Cy—1(K) is a group homomorphism defined on an
oriented n-simplex [vo,v1,...,vy] as:

(—l)i[V(),...,ﬁi,...

™

In([vo,-..,vn]) =

7Vn]a

i=0

where V; indicates that the vertex v; is omitted.

Remark 1. We see that the orientation of the simplices is crucial,
which is represented by the sign. Swapping two vertices would
reverse the orientation.

[V0>V1>~~'7Vn} = _[V17V07V27...,Vn].

The boundary operator formalizes the intuitive notion of find-
ing the boundary for a simplex. For example, intuitively, the
boundary of a triangle, which is a 2-simplex, would be the three
edges. For the boundary operator, we see that the boundary
would be calculated to be the sum of the three 1-simplices that
represent the edges.

Lemma 1. For any n, the composition of boundary operators

satisfies 0,1 0y = 0.

Proof. We need to verify that applying the boundary operator
twice to any element of C,,(K) yields zero. Consider an oriented
n-simplex [vo,vy,...,v,|. Applying 9, gives:

(v, -, vn]) = i(—l)i[v07...,ﬁi, e

i=0

7Vn]'
Applying d,_1 to each term:

Dn1(Du([Vos ... v])) = f(—u"an,l([vo,...,vA,»,...,vn}).

i=0

Each term d,—1 ([vo,- .-, i, . ..,Vvy]) is a sum of (n—2)-simplices
with appropriate signs. When we sum all these terms, each
(n—2)-simplex appears twice with opposite signs due to the
alternating sign in the definition, resulting in a total sum of zero.
Therefore, d,_1 09, = 0. O

This property ensures that boundaries of boundaries are al-
ways zero which makes sense geometrically as a boundary
would cycle back to itself and its boundary would be zero.

Definition 7 (Homology Group). The n-th homology group of
a simplicial complex K is defined as:

_ ker(dy)
Hy(K)= @)

In this context:

* ker(d,) consists of n-chains whose boundary is zero, called
n-cycles.

* im(d,41) consists of n-chains that are the boundary of
some (n+ 1)-chain, called n-boundaries.

Thus, intuitively one can interpret the homology group H,(K)
as denoting all the n-dimensional “holes” in the simplicial com-
plex K. An equivalence class of cycles in H,(K) is known as
the homology class. Informally, each homology class would
correspond to one n-dimensional “holes”.

We know that the homology group can be used to detect
multidimensional “holes” in any topological space. However,
when we are working with raw point cloud data in R, we face
a major problem due to the lack of connectivity between data.
A method to bypass this is to build a Vietoris-Rips complex.

2.3 Vietoris-Rips Complex

Given a set of points X = {p1,p2,...,pm} C R, we choose a
parameter € > 0. The Vietoris—Rips complex R, (X) contains
a simplex [pj, ..., p;,] if and only if all pairwise distances be-
tween these points are at most €. Alternatively, one can imagine
drawing balls of radius €/2 around each point; whenever a
group of points has pairwise intersecting balls, we include the
corresponding simplex in R (X). See Figure[2]

Fig. 2 The Vietoris-Rips Complex.”

Definition 8 (Vietoris-Rips Complex). Let X C R and € > 0.
The Vietoris—Rips complex R¢ (X) is a simplicial complex with
vertex set X, and a subset 6 = {pj, ..., pi,} C X is an n-simplex

OfRs(X) if

diam(c) = max |[p;i—pj|| <e.

Pi,PjEC

3 Persistent Homology

Persistent Homology is a method to compute topological fea-
tures for spaces with multiple scales. This technique is adopted
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from algebraic topology and, more specifically, homology the-
ory. We will properly explain the theory of persistent homology
here.

Definition 9 (Filtration). A filtration of a simplicial complex
K is a family of subcomplexes (subset of a larger simplicial
complex)

{Ker, to<ti<---<ty,

such that
0:K[0 gKl] g gKtn =K.

In a point cloud context, K; = R,(X) is the Vietoris—Rips complex
at scale t.

Each inclusion map K;; C K,_/. (for #; <t;) induces a map on
homology:
ll] N Hﬂ(Kll‘) — Hn(Kl/)

Definition 10 (Persistent Homology Group). For t; <t;, the
n-th persistent homology group is defined by

1l

HY = im(Hn(K,i) NS (Ktj)) .
In other words, H,tf’tj includes all homology classes that appear
by or before #; and that remain non-trivial at least until ¢;.

Definition 11 (Birth and Death of Homology Class). We say
a n-dimensional homology class o is born at t = by if a is
nontrivial in H,(Kp,, ) and o was trivial in H,(K;,) for all t; < bg,.
Similarly, we say that a homology class o dies att = dgy, if &
remains nontrivial for all thresholds t < dy and o becomes
trivial in H,(K,) for allt' > dg.

If a class never dies within the range considered of t, we
conventionally set dy = oo.

The main way to visualize birth-death information is via the
persistence diagram.

Definition 12 (Persistence Diagram). A persistence diagram
in dimension n is a multiset of points in the plane R*. Each
homology class o that appears in the filtration is represented by
a point (by, dy), where by, and dy, are the birth and death of o.

4 Methods

We used a total of 461 MRI images from a Kaggle OASIS data
set, categorized into four distinct classes: Non-Demented, Very
Mild Demented, Mild Demented, and Demented. The Kaggle
data set did not disclose any personal information about the
participants to protect their privacy. The severity classification
is based on the provided data and also the Clinical Dementia
Rating (CDR) scores. Of the 461 subjects, 230 were labeled
Non-Demented (cognitively normal), 77 Very Mild Demented,

7
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Fig. 3 An Example of a Persistent Diagram.®

73 Mild Demented, and 81 Demented. Table [1| summarizes
the class distribution. This imbalance (with the majority class
being Non-Demented and the minority class Demented) may
introduce significant bias. Therefore, we will address potential
class imbalance by using stratified sampling in our data splits
and by applying class-weighted loss functions during model
training (assigning higher weight to underrepresented classes).

Class Number of Subjects
Non-Demented (CDR 0) 230

Very Mild Demented (CDR 0.5) 77

Mild Demented (CDR 1) 73
Demented (CDR 2) 81

Table 1 Distribution of the 461 MRI subjects by diagnostic category.
(Note: Very Mild and Mild Demented are sometimes collectively
referred to as the Mild Cognitive Impairment (MCI) group, totaling
150 subjects.)

This Kaggle set is a publicly available version of the OASIS-1
MRI dataset.? The MRI data (NiFTI files) were converted into
2D JPEG images along the axial (z) axis. Each 3D volume was
divided into 256 slices; slices from index 100 to 160 (approxi-
mately 60 slices per subject) were selected for analysis, as these
central slices contain the most relevant brain structures. We then
conducted intensity normalization on the selected slices to scale
voxel intensities into [0, 1]. We attempted to experiment with
Gaussian smoothing (with o = 1.0) to reduce high-frequency
noise; however, this preprocessing step had a negligible impact
on the topological features, so it was omitted from the final
pipeline for simplicity.

4.1 Persistent Homology Feature Extraction

After preprocessing, the next step was topological feature extrac-
tion via persistent homology. Every 2D slice can be viewed as
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a topological space (a grayscale intensity function defined on a
2D grid of pixels) where pixel intensities represent scalar values
on that domain. We constructed a VietorisRips (VR) filtration
on the set of pixels, treating pixel coordinates as points with
an intensity-based inclusion criterion. Specifically, for a given
intensity threshold ¢, we include all pixels with intensity > ¢ and
consider their spatial arrangement: each such pixel is treated as
a point in R?. We build a VR complex on these points using
the Euclidean distance between pixel coordinates as the metric.
As the threshold ¢ decreases from O to 1, more pixels are added
and the VR complex grows. We sampled 100 linearly spaced
intensity thresholds between min = 0 and max = 1. The dis-
tance threshold for the Rips complex at each step was gradually
increased (from O up to the images diagonal length) to ensure
connectivity; at the final intensity threshold # = 1.0, all brain pix-
els are included and eventually all components merge into one,
ending the filtration. At each threshold, one observes the appear-
ance or merging of topological features: connected components,
loops, or voids corresponding to 0-dimensional, 1-dimensional,
or 2-dimensional homology classes, respectively. These events
give rise to persistence diagrams (PDs) that summarize the birth
and death scales of every topological feature throughout the
filtration process. In our context, the O-dimensional homology
classes (Hp) correspond to connected components of bright re-
gions in the slice (which appear as separate islands at high thresh-
olds and merge as the threshold lowers), and the 1-dimensional
classes (Hp) correspond to loops (enclosed voids or cavities that
form around darker regions such as ventricles or sulci as the
space fills in). We restricted our computation to Hy and H;
(connected components and loops) because 2-dimensional holes
(H>) do not appear in 2D image data, which also helped reduce
computational load. We used the Ripser library for efficient
VR persistence computation. Additionally, we also filtered out
short-lived topological features, whose persistence is less than 5
voxels in intensity units, as these were likely noise.

Although for 2D image data one could use a cubical complex
(treating each pixel and its 8-neighbors as a grid complex), a
method which is more computationally efficient, we decided
to choose the VietorisRips complex for compatibility with our
pipeline and prior implementations. We acknowledge that cubi-
cal complexes offer significant speed benefits for pixel data and
plan to evaluate such alternatives in future work.

For each 2D slice, we computed separate persistence dia-
grams in dimensions 0 and 1. We then needed to aggregate the
information from a subjects multiple slices into a single feature
vector. We achieved this by using persistence images'? as a
vectorization of the persistence diagrams. In brief, a persistence
image is a summarized representation where each point in a per-
sistence diagram is mapped to a Gaussian kernel on a discrete
grid, and the contributions are summed. In our implementation,
we first combined all persistence diagram points from the 60
slices of a subject (treating the collection of that subjects Hy and

H;j points as one large set). We then defined a 20 x 20 grid over
the birth-death plane and placed a Gaussian bump (with standard
deviation o = 0.1 in normalized intensity units) at the coordi-
nates of each persistence point; the intensities of overlapping
Gaussians were summed. The result is a 20 x 20 persistence im-
age encoding the distribution of persistent topological features
for that subject. This image was then flattened into a vector
to serve as the input features for classification. This approach
replaces the earlier method of slice-wise diagram summation
with a standardized and more reproducible vectorization of a
persistent homology'l’. Note that in our current aggregation,
all slices were weighted equally; this uniform weighting may
introduce noise since not every slice carries equal diagnostic
information. In future work, we plan to explore weighting slices
(or selecting a subset of key slices) based on anatomical regions
of interest (for example, giving more weight to slices that in-
tersect the hippocampus or ventricles) to further enhance the
persistence-based features.

Following the extraction of topological features, we trained
two conventional machine learning models on the persistence
image vectors: a regularized multivariate logistic regression
(with L, regularization to avoid overfitting) and a random forest
classifier. The logistic regression model served as a simple
baseline, while the random forest (with 100 decision trees by
default) could exploit non-linear interactions among topological
features. We performed a grid search with cross-validation
(10-fold within the training set) to tune key hyperparameters
for these models, such as the regularization strength in logistic
regression and the maximum tree depth and number of trees in
the random forest. (The chosen random forest used 100 trees
and a maximum depth of 10, based on validation performance.)

4.2 CNN Architecture and Training

In parallel to the persistence-based approach, we developed a
deep CNN to serve as a benchmark on the raw image data. We
used an architecture inspired by the AlexNet model, similar
to the design by Fuadah et al.”® for AD classification. Our
CNN consisted of three convolutional layers (with 33 filters)
each followed by a ReL.U activation and a max-pooling layer.
The numbers of feature maps in these layers were 32, 64, and
128, respectively. After convolution and pooling, the network
included two fully connected layers with 128 and 64 neurons,
respectively. We applied a dropout of 0.5 after the first fully
connected layer to reduce overfitting. The final output layer
was a softmax classifier that produced probabilities for each
of the four AD severity classes. This architecture is relatively
compact to mitigate overfitting given the data size, while still
deep enough to learn meaningful spatial features.

We trained the CNN on the same set of subjects (using their
stack of slices as input). To aggregate slice-level predictions into
an overall subject-level classification, we employed a simple
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strategy: the CNN produced a prediction for each 2D slice, and
these were averaged across the 60 slices of a subject to yield the
subjects predicted class (effectively a majority vote/mean proba-
bility approach). We augmented the training data with random
rotations, flips, and translations of slices to artificially increase
data diversity. The network was trained using a cross-entropy
loss and optimized with the Adam optimizer. We split the data
into 70% training, 15% validation, and 15% test sets, using strat-
ified sampling (with a fixed random seed = 42) to ensure each
split maintained the class proportions from the full dataset. All
model selection (e.g., early stopping and hyperparameter tuning)
was done on the training/validation sets, with the test set held
out for final evaluation. We conducted five independent runs
with different random weight initializations to assess robustness.
Key hyperparameters for the CNN (learning rate, weight decay,
dropout rate) and for the random forest (number of trees) were
tuned via grid search on the validation set. Table [2] lists the
hyperparameter search space explored.

Hyperparameter (Model) Candidate Values
Learning rate (CNN) 1072, 1073
Weight decay (CNN) 107>, 1074
Dropout rate (CNN) 0.3,0.5
Number of trees (Random Forest) 100, 200

Table 2 Key hyperparameters and the values considered during grid
search for model tuning. Optimal settings chosen were a learning rate
of 1073, weight decay 10~>, dropout 0.5 for the CNN, and 100 trees
for the random forest.

In an exploratory experiment, we also constructed a hybrid
model that combines deep learning with persistent homology
features. In this approach, we took the feature vector from the
CNNs penultimate layer (the 64-dimensional output of the last
fully connected layer before softmax) and concatenated it with
the 400-dimensional persistence image vector for each subject.
A simple feed-forward classifier (a single hidden layer of 64
neurons with ReLLU, then softmax) was trained on this com-
bined representation. This hybrid model achieved a slightly
higher accuracy than either model alone (Table [3), suggesting
that the persistence-based features provide complementary in-
formation to the CNN. However, for the focus of this research
paper, our primary analysis is centered around comparing the
pure topological method classifier to the pure CNN.

4.3 Ethical Considerations

All the images are from the OASIS project, which is publicly
available. All patients’ information is anonymous, and all data
used are in accordance with the OASIS data usage policies. Our
secondary analysis did not require further institutional review
as the data do not contain identifiable personal information.

Classifier Accuracy Precision Recall AUC

Logistic Regression 78.2% +3.5% 0.79 0.78  0.85+0.02
CNN (AlexNet baseline) 86.5% +2.8% 0.87 0.86  0.904+0.02
Random Forest (TDA) 91.8% +2.0% 0.92 0.91 0.93+0.01
Hybrid CNN+TDA 92.8% +1.5% 0.93 093  0.94+0.01

Table 3 Classification performance (mean 4 SD over five runs) of the
different models on the test set. Precision, recall, and AUC (area under
the ROC curve) are macro-averaged across the four classes. The
persistence homology-based Random Forest outperforms the CNN
baseline in all metrics, and the hybrid model combining CNN and
TDA features shows a further modest improvement in accuracy.

5 Results and Discussion

The model performance for the three individual classifiers and
the hybrid model is shown in Table 3] In particular, the ran-
dom forest classifier using persistence image features achieved
the highest overall accuracy of 91.8%, followed by the CNN
(86.5%) and logistic regression (78.2%). The random forest
also attained an averaged area under the ROC curve (AUC) of
approximately 0.93, indicating excellent discrimination capabil-
ity. Figure 4| shows the CNNs training and validation accuracy
curves over epochs.

CNN Accuracy Graph

Training Accuracy
-=- Validation Accuracy

o
o
)

Accuracy
e o = o o
@ @ = o @
S & =l vl =
W
L)

e
n
]

ki 1 2 3 4 5 6 7 a8 9 10 1n 12 13 14 15

Epochs
Fig. 4 CNN training curves for training and validation accuracy. The
model converges after about 25 epochs, with validation accuracy
peaking around 85-88%. We applied early stopping based on
validation performance to prevent overfitting.

A one-way ANOVA on the accuracies of the three main clas-
sifiers yielded an F statistic of 55.32 (with p < 0.001). Post-hoc
Tukey’s HSD tests indicated that each pair of models had a
significant difference in mean accuracy, where the random for-
est classifier is statistically superior compared to the logistic
regression and CNN. To further validate the performance gap,
we also conducted a McNemars test comparing the CNN and
the persistence-based classifiers output labels, which was signif-
icant (p = 0.03), and a paired #-test on accuracy across the five
repeated runs (p < 0.05). These statistical tests reinforce that
the inclusion of topological features provides a real performance
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benefit. Over five random train/test splits, the random forests
accuracy was 91.5% £2.0%, indicating the model is reasonably
stable and suggesting a 95% confidence interval roughly in the
range [89.5%,93.5%] for its accuracy.

We also evaluated the models in terms of their ROC curves
and confusion matrices for more detailed insights. Figure 5a
shows the ROC curve for our topological random forest classifier.
The curve hugs the upper-left corner, and the AUC of 0.93
reflects that the model achieves a high true-positive rate for
a given false-positive rate. Figure 5b presents the confusion
matrix for the four-class classification on the test set. Most
misclassifications occurred between adjacent severity categories
(e.g., Very Mild vs. Mild), which is expected. The model
was especially accurate at distinguishing the endpoints: Non-
Demented vs. Demented. In fact, for distinguishing cognitively
normal versus demented subjects, the models sensitivity was
about 88% and specificity about 95%. This suggests that the
topological features are capturing patterns strongly indicative of
severe disease while occasionally confusing intermediate stages.

Confusion Matrix for Four-Class Classification

Tuned ROC Curve for Topological Random Forest

v MCl

M
Predicted Class

(a) ROC Curve (AUC = 0.93) (b) Confusion Matrix
Fig. 5 (a) Receiver Operating Characteristic (ROC) curve for the
persistence image + Random Forest classifier. The model achieves an
area under the curve (AUC) of 0.93, indicating high overall
classification performance. (b) Confusion matrix for the four-class
classification on the test set. True labels are on the vertical axis and
predicted labels on the horizontal axis (CN = Non-Demented, MCI =
Very Mild/Mild Demented, AD = Demented). The model shows strong
sensitivity and specificity, correctly identifying most Non-Demented
and Demented cases. Misclassifications are primarily between
adjacent categories (e.g., some Very Mild vs. Mild).

Beyond overall performance metrics, we examined the actual
learned topological patterns distinguishing the classes. Figure 6
displays persistence diagrams for three subjects: a cognitively
normal (Non-Demented) control, an MCI case (combining Very
Mild/Mild Demented), and an AD patient (Demented). Each
diagram plots the persistence of topological features (with Hy
features shown as blue points and H; features as orange trian-
gles). We observe qualitative differences: the AD persistence
diagram (Figure 6¢) contains several features with long lifetimes
(points farther from the diagonal) in both Hy and Hj, indicat-
ing the existence of prominent topological structures such as
large voids corresponding to enlarged ventricles or pronounced

separations of tissue due to cortical thinning. The cognitively
normal case (Figure 6a) tends to have most features concen-
trated near the diagonal which have shorter lifetimes, showing
that the brain structure is more topologically “connected” and
homogeneous when thresholded. The MCI case (Figure 6b) lies
in between, showing moderate persistence features. These visu-
alizations help confirm that our persistence-based features align
with known anatomical changes: as the disease progresses, one
can see an increase in long-lived topological features, consistent
with greater atrophy and structural disintegration in the brain.

R 5 X

(a) Non-Demented (CN) (b) MCI (Very Mild/Mild) (c) Demented (AD)

Fig. 6 Representative persistence diagrams for individual subjects in
each diagnostic group: (a) cognitively normal (CDR 0), (b) mild
cognitive impairment (combined CDR 0.5/1), and (c) Alzheimers
dementia (CDR 2). Each point represents a topological feature: blue
circles for Hy (connected components) and orange triangles for H;
(loops), plotted at coordinates (birth threshold, death threshold).
Features near the diagonal have short lifetimes, while those farther
away are longer-lived. The AD case (c) exhibits several long-lived
features (e.g., orange triangles far from diagonal), indicating persistent
loops/voids consistent with enlarged ventricles and pronounced
cortical atrophy. The cognitively normal case (a) has features mostly
with brief persistence (clustered near the diagonal), reflecting a more
topologically cohesive brain structure.

We also analyzed which topological features were most im-
portant for the random forest classifiers decisions. Figure 7 plots
the top ten feature importance scores from the random forest
averaged for all trees. The two most important features were
the maximum H lifetime and the number of H; features above
a certain persistence threshold, respectively. Intuitively, this
suggests that having a large connected component persist for
a long range of intensity thresholds and the overall count of
significant loops were key discriminators. These correspond
to anatomical observations that a very large Hy lifetime might
occur if one brain region remains isolated until a low threshold,
and numerous H; loops could indicate complex patterns of holes
in diseased brains. Other important features included the total
persistence in Hy and Hj, further emphasizing that the overall
“topological signal” differentiates the classes. This feature im-
portance analysis increases the interpretability of the model as
the most predictive variables are linked with the topological
characteristics of the MRI data.

Limitations: Despite encouraging results, our study has sev-
eral limitations.

1. First, the sample size is modest, which may limit general-
izability. The model could overfit subtle features of this
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Fig. 7 Feature importance scores from the random forest classifier (top
10 features shown). The most important features were derived from the
persistence images, including the longest-lived Hy feature (connected
component persistence) and the count of H; loops with high
persistence. These features align with known AD-related changes: for
example, a large Hy lifetime might correspond to a region of the brain
(such as a ventricle) that remains topologically separate until a low
threshold, indicating significant tissue loss, and a high count of loops
reflects more numerous voids or cavities in the brain structure.

dataset despite our cross-validation and regularization ef-
forts. Testing on an independent cohort from a different
demographic or scanner will be important to ensure the
result generalizes.

2. Second, our analysis was based on 2D slice data rather
than the full 3D MRI volumes. While aggregating multi-
ple slices captures some 3D information, it does not fully
leverage spatial continuity across slices. A truly volumetric
3D persistent homology approach could potentially im-
prove performance by capturing patterns that span across
adjacent slices, at the cost of increased computational com-
plexity. We plan to explore applying persistent homology
to 3D brain volumes in future work to better exploit the
rich structural information in MRI data.

3. Third, while we introduced interpretability via topological
features, the method still ultimately relies on statistical
learning and could be affected by confounding factors. For
instance, if the AD group systematically had slightly lower
image quality or a particular preprocessing artifact, the
persistent homology might pick that up rather than true
anatomical differences. We tried to minimize such biases
through careful preprocessing and by including only well-
matched cases, but this risk remains.

4. Fourth, our persistent homology analysis focused on struc-
tural MRI intensity topology; however, other data modali-
ties or TDA strategies might capture additional information.

We did not incorporate functional MRI or diffusion MRI,
which could contain complementary topological signatures
of functional brain networks or white matter tract integrity
in AD. Additionally, our current pipeline computes per-
sistent homology on the many slices of the entire brain;
a more targeted approach might examine specific regions
(like the hippocampus or ventricles) to reduce noise and en-
hance sensitivity to localized changes. Another limitation
is the computational complexity of persistent homology for
high-resolution images. Although we optimized the pro-
cess by restricting it to Hy and H; and also using software
optimizations, computing persistence on full 3D volumes
or very large images can be slow for larger datasets or
higher homology dimensions. Fortunately, ongoing ad-
vances in TDA algorithms and hardware are continually
improving feasibility. In practice, one might also consider
downsampling images or focusing on extracted surfaces to
simplify the topology computation.

Demographic Fairness Considerations: We acknowledge
the importance of evaluating demographic fairness in clinical Al
models. Bias can arise if a model performs differently across de-
mographic subgroups such as sex or ethnicityl. In our dataset,
the proportion of females vs. males and the distribution of ages
were roughly similar between diagnostic groups. We conducted
a preliminary subgroup analysis. We found that the models accu-
racy for male versus female subjects differed by less than 2% on
the test set, and similarly, no large disparity was observed when
comparing younger vs. older subjects (using the median age
to split). However, our sample of non-Caucasian participants
was very small, reflecting the OASIS cohorts lack of diversity.
This precludes any meaningful analysis by ethnicity and could
hide biases. Recent work on AD prediction models has found
that even when overall accuracy is high, fairness metrics may
not be satisfied. Although our data did not allow a thorough
fairness evaluation, we stress that this is an important issue. In a
clinical deployment, the model should be tested on more diverse
populations. Techniques such as re-sampling or adding fairness
constraints during training could be applied to mitigate bias. We
have included this discussion to prompt awareness and future
investigation into the fairness of TDA-based diagnostic tools.

Outlook and Future Work: This work provides several
paths for future research. One very promising direction is to
develop hybrid models that combine both deep learning and
TDA. Our preliminary experiment with a hybrid model (concate-
nating CNN features and persistence features) hinted at a slight
improvement (Table [3), and recent studies suggest that topologi-
cal features can indeed enhance neural network classifiers'? A
more sophisticated fusion could involve injecting persistence
features into intermediate layers of a network or designing a
neural architecture that computes topological summaries as part
of its structure. For example, one could imagine a multi-branch
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model where one branch is a CNN processing the raw images
and another branch computes a persistence-based feature map,
with the two merged for a final decision. Such approaches might
yield even higher accuracy while retaining interpretability.

Furthermore, applying TDA to other aspects of AD is an
interesting future direction. For instance, analyzing longitu-
dinal changes in persistence diagrams could quantify disease
progression over time. Also, extending persistent homology
to functional connectivity networks (from fMRI or EEG) or
multimodal data (combining imaging with other biomarkers)
could provide complementary information beyond structural
MRI alone. Integrating multi-modal data (imaging, genetics,
cognitive scores) within a topological framework might uncover
complex relationships that elude standard models.

Finally, we emphasize the need to validate and refine our
model based on a broader and larger datasets. Of course, gaining
access to the entire dataset from OASIS would be a great first
step into improving the reliability and applicability of the model
in real world scenarios. By addressing these limitations and
exploring the outlined future directions, we hope to move closer
to the clinical deployment of TDA-inspired tools that aid in the
early detection and understanding of Alzheimers disease.

6 Conclusion

We presented an application of topological data analysis for
Alzheimers disease diagnosis using MRI data. By leveraging
persistent homology, our approach extracts robust topological
features that characterize differences between AD and healthy
brains. The proposed TDA-based model achieved accuracy and
AUC a little lower compared to the accuracy of the state-of-
the-art deep CNN models, while providing more interpretable
results linked to known anatomical changes in AD. Overall, the
encouraging results and insights obtained suggest that topologi-
cal features capture meaningful structural biomarkers of AD. We
envision that continued refinement of this approachespecially in
combination with deep learning and evaluation on more diverse
test subjectswill pave the way for more effective and successful
tools for AD diagnosis and severity classification.

In comparison to other approaches on similar data, our mod-
els performance is competitive. Table ] highlights metrics from
two recent studies that applied deep learning to the OASIS MRI
dataset. Fuadah et al.” achieved about 95% accuracy using an
AlexNet-based CNN, and Hussain et al. 13 reported 98% accu-
racy by fine-tuning pre-trained CNN models (transfer learning).
Our persistence-based models accuracy (91.8%) and AUC (0.93)
are in a similar range. It should be noted that direct comparisons
can not be made abruptly. For example, Hussain et al. combined
OASIS with additional data and tackled a slightly different clas-
sification setup, while my machine learning model had access
to a limited amount of data from OASIS. Moreover, some re-
ports in literature pertain to binary classification (AD vs. CN)

Study (Method) Accuracy AUC
Fuadah et al. 2021 (CNN, AlexNet)> ~ 95% —(n/a)
Hussain et al. 2025 (Transfer Learning CNN) 98.2% ~0.98
Our TDA + Random Forest (this work) 91.8% 0.93

Table 4 Comparison of our persistence homology-based classifier with
results from two leading studies using the OASIS MRI dataset. Fuadah
et al. employed an AlexNet CNN on MRI slices (reporting around 95%
accuracy) and Hussain et al. utilized transfer learning with pre-trained
CNNs (achieving 98% accuracy with extensive data augmentation).
Our approachs accuracy and AUC are competitive with these,
especially considering that we address a 4-class classification problem
without transfer learning. Differences in cohort selection and
methodology (e.g., some studies perform binary classification or
leverage external training data) make direct comparison challenging,
but our methods performance falls within the range of reported
state-of-the-art results on OASIS.

rather than classifying into four different classes. Nonetheless,
the fact that our TDA approach approaches the performance of
pure CNN models is encouraging. It suggests that topological
features can provide a powerful alternative (or complement) to
deep learning, with the added benefit of interpretability. By
integrating TDA with machine learning, as we have done, re-
searchers may gain new perspectives on the dataidentifying not
just what the model predicts, but why, in terms of brain structure
differences. We plan to further refine this approach and test it
against other state-of-the-art methods on larger and more diverse
datasets to fully establish its efficacy.
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