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Background/Objective:

To promote sustainability and reduce the carbon footprint of everyday actions, this project focuses on improving the recyclable
content of household waste. Despite widespread awareness, individuals often struggle to determine whether a given item is
recyclable, particularly when waste items are cluttered together and often in deformed states. This study aims to address this gap
by developing an Al-driven tool for more accurate waste classification.

Methods:

A two-step Al-based approach was implemented, integrating Vision Transformers (ViTs) for image segmentation and Convolutional
Neural Networks (CNNGs) for classification. The segmentation model was trained on 4500 waste images with different levels of
diversity and complexity. Transfer learning image classification model VGG16, enhanced with five additional layers, was trained
on 22,500 images of organic and recyclable objects. An optimal learning rate of 0.01 was used for stability and convergence.
Results:

The classification model achieved a training accuracy of 93% and demonstrated strong performance on a test set of 2,511 images,
achieving an F1 score of 83%. The model was deployed in a secure web application, RecycleBot, and successfully tested on

real-world field images, validating its ability to improve the accuracy of recyclable object identification.

Conclusions:

The developed Al models show significant promise for automating waste management processes and enhancing recycling efforts.
Future work can focus on expanding the dataset and refining classification across broader waste categories.
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Introduction

Background and Context

The rapid increase in disposable goods across various industries
has led to a significant rise in municipal solid waste (MSW),
presenting numerous environmental challenges. In 2018, the
United States generated approximately 292.4 million tons of
MSW, averaging about 4.9 pounds per person per day. This
waste stream includes everyday items such as packaging materi-
als, food scraps, furniture, and electronics, encompassing both
hazardous and non-hazardous materials. Effective management
of MSW is crucial to maintaining ecological balance, which has
been increasingly disrupted over the past few decades'.
Recycling is an important mechanism to improve the sustain-
ability of our ecosystem and despite increased awareness, only
13% of trash is currently recycled on the global level. Globally,
400 million tons of* plastic waste is produced annually. In the
US only 6% of 40 million tons of plastics produced are recycled.
Specifically, 85% of plastic packaging goes to landfill. In the US
between 2019 and 2020, plastics recycling decreased by 5.7%2.

In addition to preventing pollution, recycling helps in preserv-
ing natural resources, saves energy, and protects the environment
and human health, e.g. it takes 95% less energy to recycle alu-
minum than it does to make it from raw materials. As a leading
example, Sweden only puts 1% of its waste in the landfill and
recycles rest into reuse and generating energy. The rest of the

world is lagging significantly in recycling metrics®.

Problem Statement and Rationale

A major obstacle in waste management is the widespread confu-
sion about which items are recyclable. This uncertainty leads to
improper disposal, where recyclable materials are often mixed
with non-recyclables, complicating the recycling process. Such
contamination can result in entire batches of recyclables being
diverted to landfills, thereby diminishing the efficiency of re-
cycling efforts. Improper separation not only causes the loss
of valuable materials but also places an additional burden on
sustainability initiatives. In real-world settings, waste items are
often mixed, deformed, or partially obscured, making manual
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classification both challenging and error prone. When waste
is excessively mixed, the recycling process becomes less effi-
cient and more labor-intensive, diluting the recovery of precious
materials.

Furthermore, the overaccumulation of waste in landfills poses
significant environmental hazards. Hazardous chemicals can
leach into groundwater, and the decomposition of organic mate-
rials produces methane a potent greenhouse gas contributing to
climate change. Implementing comprehensive waste classifica-
tion practices can significantly reduce greenhouse gas emissions.
For instance, adopting effective waste management and recy-
cling solutions worldwide could lower emissions by between
2.1 and 2.8 billion tons of CO per year by 2030, accounting for
around 5% of global GHG emissions2.

Addressing these challenges requires a multifaceted approach.
Educating and empowering consumers on proper recycling prac-
tices and tools can reduce confusion and improve waste separa-
tion at the source. Implementing advanced sorting technologies
can efficiently separate mixed waste, recovering valuable mate-
rials and reducing contamination. By adopting these strategies,
we can enhance the efficiency of recycling programs, conserve
resources, and mitigate the environmental impacts associated
with improper waste management. The challenge is not new;
however, the opportunity is to leverage emerging technologies
to address this®.

Although Al applications have been successfully deployed
across various industries, their integration into everyday recy-
cling practices remains limited. Current solutions often fall short
when faced with cluttered or degraded visual inputs. Addressing
this problem is critical to improving recycling efficiency and, by
extension, reducing environmental harm. This project aims to
fill this gap by developing a robust Al-driven system capable of
accurately distinguishing recyclable items from organic waste
in complex real-world scenarios.

Significance and Purpose

This research contributes to the growing field of sustainable
technology by demonstrating the practical application of Al in
household waste management. The system developed Recycle-
Bot offers a scalable, accessible tool for improving individual
recycling efforts. Beyond individual use, the underlying models
have potential applications in municipal recycling programs,
industrial waste sorting, and educational initiatives aimed at
promoting environmental responsibility.

Theoretical Framework

Artificial Intelligence (Al) has the potential of revolutionizing
waste management by enhancing efficiency, accuracy, and sus-
tainability*>. Traditional waste sorting methods often face
challenges such as contamination and inefficiency, leading to
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Figure 1: (a) Visual Transformer architecture for image segmentation, (b) Deep learning architectures for waste
classification using Convolutional Neural Network (CNN)
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increased landfill usage and environmental harm. Al addresses
these issues by automating and optimizing waste processing.
Al-powered systems can accurately identify and separate var-
ious waste materials, reducing contamination and increasing
recycling rates. This automation not only improves operational
efficiency but also minimizes human error and exposure to haz-
ardous materials. Additionally, Al can predict waste genera-
tion patterns, enabling more efficient scheduling and routing
of collection vehicles, thereby lowering operational costs and
environmental impact®.

In recent years, machine learning and deep learning tech-
niques have emerged as powerful tools for image recognition.
These Al techniques are trained on large amounts of data to
identify structures and patterns in images, resulting in improved
classification F1 score. In real-world situations, waste disposal
can be complex, with different types of waste items mixed
in a cluttered manner and often in deformed states. In these
situations, an efficient approach involves image segmentation
followed by image classification.

For image segmentation, Vision Transformers (ViT) offer a
novel approach by dividing an image into a grid of equal-sized
patches, like cutting a picture into puzzle pieces. Each patch
is then transformed into a numerical representation, capturing
its essential information”. The ViT processes these patches
simultaneously, assessing the relationships and patterns between
them to comprehend local details and the broader context of
an image, enabling the recognition of complex patterns and
structures (Fig. 1 (a)). This process of semantic segmentation,
classifying each pixel or region of image to a particular waste
category, is essential for robust waste classification’.

For waste classification, a computer vision approach called
Convolutional Neural Network (CNN) is applied?. A CNN is
a type of artificial intelligence designed to process visual in-
formation, much like the human brain interprets images. By
training these networks on extensive datasets, Al systems learn
to recognize and categorize materials such as plastics, metals,
glass, and paper. CNN models contain many layers of neu-
rons (combinations of variables and image features) used for
building correlations. Each of the convolution layers acts as
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Figure 2: Transfer Learning based on VGG16 for Image Classification

a specific filter applied to generate a feature map, extracting
distinct characteristics or qualities of the original image (Fig.
1 (b)). CNN models rely on large amounts of training data to
achieve high classification accuracies. However, datasets of this
scale are not always available for waste classification. In such
situations, transfer learning techniques have been employed to
achieve higher prediction F1 score. Transfer learning is a class
of deep learning techniques in which a CNN model trained on a
different large dataset is used as a starting model. For instance,
the VGG16 algorithm, trained on the ImageNet dataset contain-
ing images of fixed size of 224x224 pixels with RGB channels,
has been explored for this purpose. Studies have shown that
models like VGG16 can achieve high F1 score in classifying
various types of trash objects (Fig. 2).

By integrating these advanced Al techniques, waste manage-
ment systems can become more efficient, accurate, and sustain-
able, significantly contributing to environmental conservation
efforts.

Objectives

The primary focus of this research study is to evaluate the ef-
fectiveness of the machine learning models in identifying and
classifying trash items under real-world complex situations and
optimize the accuracy of the classification by adjusting training
parameters. Key objectives of this study are:

* To develop an Al-based system capable of classifying waste
items into recyclable and organic categories.

* To implement and evaluate a two-step deep learning
pipeline combining Vision Transformers for segmentation
and CNN:ss for classification.

* To assess the real-world performance of the system using
field images beyond the training dataset.

* To demonstrate the potential of Al-driven tools in support-
ing broader environmental sustainability goals.

This research introduces a novel two-step Al-driven approach
for waste classification, integrating Vision Transformers (ViTs)
for image segmentation and Convolutional Neural Networks
(CNNis) for classification. By leveraging the strengths of both
architectures, the proposed method aims to enhance the F1 score
and robustness of automated waste detection in real-world set-
tings. The best-in-class model will be implemented in an in-
teractive web app that can be used by everyone at the point of
disposal.

Key research questions addressed in this work are (1) How
effective is the two-step ViT + CNN approach in detecting &
classifying trash items? (2) What impact do algorithm param-
eters (e.g., learning rate, dropout fraction) and training cycles
have on segmentation and classification F1 score?

Towards the goal of developing an Al-enabled waste classifi-
cation system, current study hypothesizes: If the training data
set is consistent, balanced and has sufficient diversity of features
representing the different classes and varied levels of complexi-
ties, then combining ViT-based segmentation with CNN-based
classification in terms of organic and recycle classes enhances
overall F1 score by ensuring that only refined, segmented waste
objects are classified, reducing misclassifications due to back-
ground clutter.

Scope and Limitations

This study focuses on the classification of waste items into two
broad categories: recyclable and organic. Other waste types,
such as hazardous materials or electronics, are not addressed.
The dataset, while diverse, is limited to images readily avail-
able or collected in controlled settings, and field testing was
conducted on a relatively small set of real-world samples. Lim-
itations include possible biases in dataset composition, model
performance variability under extreme conditions, and the need
for further training to generalize across different regions with
varying recycling rules.

Methodology Overview

A two-stage Al pipeline was implemented. First, a Vision Trans-
former model was trained for image segmentation on a dataset
of 4,500 diverse waste images. Following segmentation, a CNN-
based classifier, leveraging a VGG16 architecture enhanced with
additional deep layers, was trained on 22,500 images of recy-
clable and organic items. An optimal learning rate was selected
to stabilize training. The final system was evaluated on a test set
of 2,511 images, and practical application was demonstrated via
deployment in a web application, RecycleBot.
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Results

The two-step Al approach using ViTs for segmentation and
CNNss for classificationproved to be effective in handling com-
plex, cluttered waste image data. The system achieved strong
validation performance and retained high F1 score during real-
world testing, supporting the hypothesis that segmentation prior
to classification improves classification outcomes in challenging
visual environments. For CNN models, several studies were
performed with different network architectures to arrive at the
optimal setting of the convolution templates, batch size and
strides. The best model is selected, and corresponding weights
are stored.

The decision to combine ViT with VGG16 reflects a strategic
balance between robust segmentation and efficient classifica-
tion. ViTs self-attention mechanism enables effective pixel-
level object localization by capturing global spatial relation-
ships, making it particularly suitable for cluttered or overlap-
ping waste images. This strength in handling visual complexity
is leveraged during the segmentation stage. VGGI16, on the
other hand, provides strong performance on moderately sized
datasets through transfer learning, offering faster convergence
and lower risk of overfitting compared to deeper architectures,
like ResNet50. While lighter model such as EfficientNet was
considered, VGG16 was selected for balanced performance and
easier integration within our two-stage pipeline. Together, the
ViT+VGG16 pipeline integrates global scene understanding
with reliable classification, optimizing the system for real-world
waste analysis.

Confusion Matrix

All the models were trained on standardized data following the
same steps for data preparation and using optimal parameters
as described in a later section. Trained model was used to
predict the class labels for the validation data and a confusion
matrix was generated using Scikit Learn. Figure 3 shows the
confusion matrices for the most promising Al algorithms for the
classification system. The smaller the off-diagonal numbers, the
better the F1-score for that model. The most common metric is
classification accuracy; However, final classification accuracy
is most reliable when the dataset contains an equal number of
samples from each class. The unbalanced nature of the dataset
requires evaluation of performance metrics.

Performance Metrics

From the confusion matrix, the precision, recall, and F1-score
were calculated for each of the algorithms. Table 1 summarizes
the performance metrics for the validation data. VGG16 model
augmented with five additional layers with optimal algorithm
parameters resulted in a very high F1 score of 0.83 on the vali-
dation data as well as highest precision of 0.93. A dropout value

Confusion Matrix

1000

w

= o

w L 750
g

e -500
2

(¥}

<0 -250

Predicted Labels

Figure 3: Confusion matrix showing classification results on the training dataset. The X-axis represents predicted labels, and
the Y-axis represents true labels. Numeric valuies inside each cell represent the numberofimages falling into eachclasspair
The diagonalcells indicate correct classifications; off-dia gonal vatues indicate misclassifications. This matrix correspondsto
the best-performing VGG16-based model

Table 1 Performance metrics, Accuracy, precision, recall, and F1 score
for binary detection task using different algorithms. Highlighted row
represent best-performing model configurations selected for final
deployment.

Binary Clas- | Accuracy | Precision | Recall | F1
sification Al- Score
gorithm

Convolutional | 0.71 0.88 0.6 0.71
Neural Net-

work (CNN)

Transfer 0.77 0.91 0.67 0.77
Learning

(ResNet50)

Transfer 0.79 0.91 0.69 0.79
Learning

(VGG16)

ViT+ VGG16 | 0.83 0.93 0.75 0.83

of 0.2 is ideal. The training and testing times per epoch were
also recorded and none of them were exceptionally high for the
classification problem. Recall is the most critical statistic for
improving the recycling content of the trash. Even high preci-
sion is important for making sure that organic is not mixed up
with the recycled items. High accuracy is not always desirable
as that may be based on overfitting, and it leads to lower F1
score. Performance metrics for various classification algorithms
are summarized in table 2. It was interesting to find that hybrid
algorithm performed best with the highest F1-score of at least
0.83.

To evaluate the individual contributions of the segmentation
and classification components in the pipeline, ablation analysis
conducted on the subset of images with low environmental
complexity and diversity by modifying the architecture in the
following ways:

¢ Classification without Segmentation: The VGG16 classifier
was trained directly on full waste images (without prior
segmentation by ViT). The F1 score dropped by 10 points,
indicating that background clutter significantly reduces
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classification precision.

* Reduced VGG16 Depth: The number of added dense lay-
ers after VGG16 was reduced from two (Dense-128 and
Dense-64) to one (Dense-64). This resulted in a 5-point
drop in F1 score and increased overfitting on the train-
ing data, suggesting that deeper post-VGG layers improve
generalization.

These findings validate the importance of both the segmenta-
tion stage for isolating relevant features and the added classifier
depth for enhancing prediction robustness in complex real-world
scenarios.

Accuracy = TP+ TN =
Y S TP+ FP+ TN +FN

1048+1033
1048+79+353+1033

= 82.8%

TP
TP + FP

1048
T 1048+79

= 93%

Precision =

TP
Recall = TParN =

1048
1048+353

=74.8%

F1 Score = Harmonic Mean (.93,.748) =82.7 %
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Figure 4: Contingency matrix showing true vs. predicted labels for the field trial dataset. This visualization highlights
classification performance in real-world conditions, including areas of confusion between organic and recyclable classes.

Before deploying the solution, the best model was tested on
several field images to demonstrate the benefits of using a clas-
sifier to improve the fraction of the recycling objects correctly.
To evaluate the models performance in realistic conditions, we
conducted a field trial using 60 images of household and com-
munity waste collected under natural lighting conditions, with a
range of backgrounds including kitchen countertops, bins, and
outdoor grass or pavement. The test set included a mix of recy-
clables (e.g., plastic bottles, cardboard, cardboard, aluminum
cans) and organic waste (e.g., fruit peels, food scraps, paper
towels). Pictures for each of the items are taken in a consistent
setting and they are uploaded to the web app to make a predic-
tion. True class and predicted class for some of the selected

samples are compared in the confusion matrix (Fig. 4). Model
also provides the probability value for a given item to be re-
cyclable, which is key for the user confidence. These results
demonstrate technical feasibility in controlled field tests and
offer a foundation for further exploration in real-world recy-
cling applications. The current trial does not constitute a formal
cross-domain generalization test and broader deployment will
require additional testing across different regions, device types,
and image conditions.

Misclassifications and Diagnostics

To better understand the limitations of the classification system,
we analyzed misclassified images from the validation and field
trial datasets. A notable number of false positives occurred
with certain organic items, such as soiled paper or food-stained
cardboard, which visually resembled recyclable materials. Con-
versely, dark-colored recyclable plastics and semi-transparent
containers were occasionally misclassified as organic, especially
under low-light conditions or in the presence of background
clutter. These failure cases highlight two key challenges: (1)
background interference and object occlusion during segmen-
tation, and (2) insufficient visual distinction between certain
organic and recyclable classes. Further model refinement could
include class-specific data augmentation (e.g., lighting varia-
tions, rotations). Future versions of RecycleBot may also bene-
fit from ensemble methods or a human-in-the-loop correction
mechanism for ambiguous cases.

Figure §: Screenshot ofthe RecycleBotweb application interface. The inferface allows users to upload waste images and view
predicted classifications

Web Application

Best-in-Class models for waste classification were imple-
mented in a novel, easy-to-use web application, RecycleBot
(https://recyclebot.streamlit.app). Streamlit library, which al-
lows for easy linking of different python models was used to
create a web interface with different end-user options. Figure
5 shows the application interface which is used to predict the
class of a trash item in two simple steps:

© The National High School Journal of Science 2025

NHSJS 2025



* Upload a picture of a trash item from the computer or smart
phone.

* Model is used to predict class: Recycle or organic and
associated probability to be in the predicted class.

Users can choose to check the box on the left to get the model
performance metrics and confusion matrix associated with the
prediction.

To evaluate the feasibility of real-world deployment, runtime
performance metrics were collected from the RecycleBot web
application running on a mid-range consumer laptop (Intel Core
i5 processor, 8 GB RAM). The average prediction latency (in-
cluding preprocessing, segmentation, and classification) was
approximately 0.8 seconds per image. Peak memory usage dur-
ing active session was around 420 MB, and CPU utilization
remained under 40% post-initialization. These results confirm
that RecycleBot is lightweight enough for household deploy-
ment on standard devices.

Data Privacy and Safety Considerations

The RecycleBot web application does not store or share any user-
uploaded images. All classification is performed in-session and
images are processed temporarily for prediction. No personally
identifiable information (PII) is collected or retained. While
the current version does not handle sensitive categories (e.g.,
medical waste), future iterations, especially those intended for
regulated environments will require formal risk assessments,
data encryption, and compliance with data protection standards.

Discussion

Automating waste classification at the point of disposal ad-
dresses key barriers to effective recycling, particularly the con-
tamination of recyclable materials due to human error. Image
segmentation and classification approach using a combination
of Visual Transformer (ViT) and Convolutional Neural Network
(CNN) models is effective in classifying trash items into organic
and recycling classes under real-world, cluttered conditions.
The segmentation model achieved approximately 70% pixel
accuracy in isolating waste items from complex backgrounds.
Data supported the original hypothesis that the transfer-
learning based Convolutional Neural Network (CNN) classi-
fication models can be built on the training data which will
effectively classify trash items. VGG16 enhanced with five deep
layers performs at greater than 90% accuracy in predicting the
recycled objects for training data. The classification model was
applied on a validation data of 2511 images achieving accuracy
of 83% (17% false positive & negatives). Learning rate is an
important parameter in model training and an optimum value of
0.01 was used to arrive at the best predictive model (F1 score
of 83%). Drop Out of 0.2 is optimal. Furthermore, this novel

approach provides the recycle content of the real-world cluttered
waste stream to help the users of the app to make an optimal
decision in recycling as well as efficient waste management
collection at the community level. The current model provides
deterministic probability outputs without uncertainty estimation.
To enhance reliability in real-world scenarios, there is an op-
portunity to integrate uncertainty quantification methods such
as Monte Carlo Dropout in the future to provide confidence
intervals alongside predictions.

As a final product of this work, best-in-class models for detec-
tion and classification were implemented in a novel, easy-to-use
waste classification application, RecycleBot. It was used on
several field images to demonstrate the benefits of using clas-
sifier to improve the fraction of the recycling objects correctly.
Even though RecycleBot was tested on real-world waste im-
ages captured in varied household environments, the current
evaluation focused solely on model performance. No structured
user studies or behavioral trials were conducted to observe hu-
man interaction with the app or measure recycling outcomes.
Therefore, although the web application is designed for ease
of use, we do not claim to have demonstrated its effect on user
decision-making or waste-sorting behavior. Assuming Recycle-
Bot improves household sorting accuracy by just 10% and is
adopted in 10,000 households, this could divert an additional
estimated 500 - 700 tons of recyclable waste from landfills an-
nually, based on EPAs average per-household waste generation
numbers“. Future work will include formal user trials to assess
how effectively RecycleBot supports human recycling decisions
in everyday contexts. These studies will explore metrics such
as classification trust, behavioral changes in waste sorting, and
user feedback on app usability features.

While the RecycleBot system demonstrated strong overall per-
formance, several limitations were identified. Poorly lit images
occasionally resulted in incomplete segmentation or misclassi-
fication, particularly for darker-colored waste items. Crushed,
partially burnt, or heavily contaminated items were more chal-
lenging for the model to accurately classify. Although the seg-
mentation model mitigated some clutter effects, scenarios with
significant object overlapping or extreme background noise still
impacted accuracy. While diverse, the datasets used may not
fully represent the range of waste materials encountered globally,
limiting the system’s applicability without further retraining.

RecycleBot, in its current form, is best suited for prelimi-
nary sorting at the consumer or household level. This phase of
classification is nonetheless critical; incorrect separation at the
source remains one of the leading causes of contamination in
recycling plants. Future iterations may incorporate multiclass
classification models or hierarchical pipelines to address more
granular categories relevant to industrial use. This system is
not yet equipped to identify specialized waste types such as
electronics, biohazards, or multi-material composites, which are
often encountered in industrial waste streams. As such, claims
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of applicability to industrial or municipal systems are limited to
early-stage sorting and educational use.

Future Research

To improve the model robustness, images from the field trial
could be included in training as well as there may be value in
including additional data sets. As a next step, F1 score of the
classifier can be improved by including multiple views of an
object in the training as well as standardizing the image capture
process in terms of zoom level, background, and lighting. An-
other idea for potential improvement in the F1-score is the fusion
of diverse features from multiple transfer learning approaches.
Besides improving the predictive power of the classifier, classi-
fication models can be extended to include other types of trash
items to build comprehensive waste management tool1?. To im-
prove the confidence and explainability of the predictions, there
is an opportunity to further extend the feature-extraction models
based on multiple objects in a picture. This can be accomplished
by implementing image segmentation in composite pictures as a
precursor to image classification. To realize the true potential of
this technology, there is work required to integrate RecycleBot
into recycle bins to make the waste management activity fully
autonomous. Smart recycling bins will enable faster adoption
of this approach.

Environmental Applications

The implementation of RecycleBot offers practical applications
across multiple environmental and public health domains:

1. Household Waste Management
RecycleBot enables individuals to identify recyclable and
organic waste at the point of disposal, improving house-
hold recycling habits and reducing contamination in waste
streams. This can ease the burden on municipal waste
facilities and increase the rate of successful recycling.

2. Smart Recycling Infrastructure
The core models developed in this study can be integrated
into smart recycling bins or kiosks, allowing real-time
waste classification and automated sorting. This integration
can streamline collection processes and support large-scale
deployment in urban and campus environments.

3. Biohazard and Medical Waste Sorting
With appropriate retraining and safeguards, the model
could be adapted to assist in the classification of medi-
cal or hazardous waste, an area where misclassification
can have serious consequences. Further risk assessment
and regulatory compliance would be essential before such
applications.

4. Environmental Education and Awareness
RecycleBot can also be used as an educational tool to
promote recycling literacy in schools and communities.
By offering real-time feedback and visual explanations of
waste classification, it can foster greater engagement with
sustainability initiatives.

Methods

Research Design

This study employed an experimental cross-sectional design
aimed at developing and optimizing an Al-driven system for
waste classification to identify if something is recyclable or
organic. This is achieved in two key steps:

1. Develop a visual transformer based semantic segmentation
approach to partition an image into meaningful segments
to isolate individual waste items.

2. Identify and implement an efficient algorithm using Con-
volution Neural Network (CNN) approach to detect and
classify sub-images into two categories (organic or recy-
clable) along with estimating the recycled content of the
waste.

For each of the above steps, partitioned test dataset is used
for fine tuning the F1 score and speed of the segmentation and
classification models by changing the training parameters. The
effectiveness of model performance was evaluated under varying
environmental complexities and waste diversities to simulate
real-world waste stream conditions.

Table 2 Algorithm Options Evaluated for Detection and Classification
Model Parameter | Range Description
Learning Rate [LR] | (0.001,0.1) Rate at which CNN
move towars solu-
tion

% of neurons left
out of the prediction
Iterations of model
training on full set
of images

Search  algorithm
used to maximize
accuracy

Drop out [DO] (0.1,0.4)

Epoch (2,10)

Opt. Method (Adam,SGD)

As part of building an accurate and robust system, paramet-
ric studies on relevant training parameters were performed to
arrive at the best models in terms of minimizing false positives
and false negatives. For the classification step, four distinct pa-
rameters were considered in this project, namely, (1) Learning
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Rate: which indicates the speed at which CNN algorithm moves
towards solution (2) Drop-out: % of neurons left out of the
prediction (3) Epoch: Number of times the CNN is trained on
the full dataset of images (4) Optimization Method: Adam and
Stochastic Gradient Descent (SGD) as the search approaches.

Variables and Measurements

For the research study, the following two independent variables
were used to capture the real-world conditions of the waste
stream:

* Environment Complexity: This is a categorical variable
with two levels representing the cluttered-ness and state
of deformation of waste items. Depending on the extent
of clutter, obscurity of items and deformation, the waste
scenes are labeled as [Low, High].

» Waste Diversity: This is a categorical variable based on
the diversity in the waste stream [glass, plastic, cardboard,
paper, organic, electronic, medical]. Low level represents
one or two types of waste items; and High level indicates
three or more types.

PREDICTED

Recycle

Organic

TRUE POSITIVE
TP

FALSE NEGATIVE
FN

Recycle

ACTUAL

FALSE POSITIVE
FP

TRUE NEGATIVE
TN

Organic

Figure 6: Confusion Matrix for binary classification of waste items

In designing robust and efficient models for segmentation and
classification, several critical parameters are evaluated as part of
the independent variables design space. Some of the key model
parameters and their ranges or settings are described in table 3.

The performance of an algorithm for a given set of test-
ing/validations images is summarized in a confusion matrix
(fig. 6) that displays the number of accurate and inaccurate
labeling of waste items based on model predictions. Using the
data from confusions matrix, model performance is calculated
for the following four Dependent Variables:

1. Accuracy measures the overall prediction performance of
the model. It is the ratio of total correct instances to the
total instances:

_ TP+TN
 TP+FP+TN+FN

2. Precision measures the accuracy of a models positive
predictions (specific to target). It is the ratio of true positive
predictions to the total number of positive predictions made
by the model:

TP
P=——
TP+FP

3. Recall measures the effectiveness of a classification model
in identifying all relevant instances (targets) from a dataset.
It is the ratio of the number of true positive (TP) instances to
the sum of true positive and false negative (FN) instances:

TP
R=——"
TP+FN

4. F1-score is used to evaluate the overall performance of a
classification model. It is the harmonic mean of precision
and recall:

2-P-R

F=
P+R

The goal is to develop models that have high model F1 score
but at the same time do not give too many false positives or
false negatives. This is critical for building a robust prediction
and F1 score is the most important metric used in selecting the
best model. Additionally, it is important for model training and
predictions to be computationally efficient. Training times are
kept as a secondary dependent variable.

Controlled Variables: Models are trained on the same par-
titions of the data sets, following exactly similar standards for
images with resolution of 224x224 pixels, augmentation and
preprocessing of images.

Experimental Control: Model F1 score and precision
achieved on the training partition is cross validated on the testing
partition.

Data Sets

The dataset used in this study for classification was publicly
available on Kagglelm, 22,500 images of organic and recyclable
objects. Images for typical recyclable objects are shown in
figure 7. In terms of target variable, each image is labeled
as organic or recycle. These images were collected in diverse
environments, including indoor and outdoor settings, and exhibit
arange of lighting conditionsnatural daylight, indoor ambient
light, and some low-light scenes. Backgrounds vary from plain
white and gray surfaces to textured or cluttered backgrounds
such as countertops, garbage bins, and soil. Camera angles
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also vary, with a mix of top-down, oblique, and side views,
contributing to greater variability in item orientation and scale.
These conditions, while realistic, may introduce unintended
noise into the model training process. A chart summarizing the
two classes for training and validation is shown in fig. 8. The
graph clearly shows the balanced attribute of this dataset with
both the classes almost equally represented in both the training
and validation partitions, which prevents model bias toward
the majority class. The validation dataset has 2511 images.
Additionally, VGG16 model is trained on ImageNet data set
with 14,197,122 annotated images.

Figure 7: Sample 1images of recyclable objects (target class)

For training the segmentation model on highly deformable
and often translucent objects in cluttered scenes, Zerowaste
dataset comprising 10,000 high quality images, including 4500
images with target labehng . These images depict waste items
in complex and cluttered environments, aiming to evaluate the
performance of ViT in realistic waste segmentation scenarios.
These images simulate practical challenges such as overlapping
objects, partial occlusion, object deformation, and mixed mate-
rial composition. They are representative of common household
and municipal waste scenarios but may still underrepresent re-
gional waste diversity, especially in rural or developing areas. To
experiment and test the performance of different segmentation
algorithms in a structured way, all these images were binned

15000
Class Training + Testing | Validation

Organic 12600 1401

12000 Recycle 9999 1112
9000
6000
3000

o I [

Figure 8: Class summary statistics of the Kaggle waste classification dataset used in this study.

in two x-variables: Environment complexity (Low and High)
as well as Waste Diversity (Low and High). Within these im-
ages, the areas were labeled into 6 classes: Background, Plastic,
Metals, Cardboard, paper, organic.

While these datasets offer valuable training diversity, we ac-
knowledge limitations. Both sources may have geographic and
cultural biases in the types of waste featured (e.g., U.S.-centric
packaging types). Additionally, specific waste categories like
electronic or hazardous waste are underrepresented or excluded
entirely. These biases suggest that while the models generalize
well within the dataset domain, further real-world data collection
and fine-tuning are needed for broader deployment.

Modeling Environment and Libraries

For model development and testing work, Python language
was selected for its ease of use and availability of open-source
functional libraries.

* Modeling and Computing Environment: Google Colab

* Numerical and Statistical Libraries: numpy, pandas, math,
sklearn, keras, XgBoost

* Visualization Library: Matplotlib

* Web development environment: Streamlit

Procedure

Data collection and PreparationData preparation steps are
key for building efficient ML/DL models. Model development,
execution and testing were performed in Google Colab high
RAM python environment. The data sets are downloaded from
Kaggle on Google Drive and files loaded into the model devel-
opment file using operating system libraries. Following image
pre-processing and standardization methods are used.

» Image Pre-processing and Normalization: As a first step,
images were resized to 224x224 pixels and normalized to

© The National High School Journal of Science 2025
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scale the intensity values between 0 and 1. For the Transfer
learning, all the three channels of the original images were
used.

 Target Labeling: For the Kaggle dataset, type labels were
changed to numerical values by assigning 0 to organic,
1 to recycle. For the zero-waste data set, areas within
the images were labeled in six target classes (0-5) for the
(background, plastic, metals, cardboard, paper and organic
respectively.

» Data Augmentation: Size of datasets is critical for improv-
ing the predictive power of the models. Towards this cause,
horizontal reflection was used to double the size of the
dataset.

 Data Partition: The dataset was divided into 80% and 20%
for training and testing, respectively based on randomized
sampling

A

RecycleBot

Waste
Classification

Figure 9: Illustration of the two-step Al-enabled pipeline used in RecycleBot. The process involves initial segmentation
of waste objects using a ViT-based model, followed by classification into recyclable or organic categories using a VGG16-

Model Training

The model is developed and tested in python. Figure 9 de-
scribes the two-step Al-enabled process for waste segmentation
and classification, leveraging advanced technologies like Vision
Transformers (ViTs) for segmentation and Convolutional Neural
Networks (CNNs) for classification.

VGG16 Base
(Frozen)

Dense
128 RelU

Dense
64 ReLU

Output

Dropout
Flatten 0.2 Sigmoid

Figure 10: Architecture diagram for VGG16 + Custom Binary Classifier

The objective of the first step is to detect and isolate indi-
vidual waste items from a complex waste stream, separating
relevant objects from cluttered backgrounds. A Vision Trans-
former (ViT)-based segmentation model is applied to analyze
the input images from the zerowaste dataset with labeled areas.

The model identifies regions of interest (ROIs) corresponding
to distinct waste items. Each waste item is highlighted with
bounding boxes or masks, separating it from the surrounding
clutter. The segmented regions, containing individual waste
items, are isolated and prepared for further classification. In
the classification step, VGG16 model with 16 layers of neu-
rons is imported from keras library and five additional layers
are added to build a classifier for the binary target: Recycle vs.
Organic. The VGG16 base model was initialized with ImageNet
weights and its convolutional layers were frozen during training.
Only the added fully connected layers were trainable. This strat-
egy helped retain robust low-level visual features and mitigated
overfitting due to the limited size of the custom dataset. The
classification head appended to the frozen VGG16 base consists
of a Flatten layer, followed by a Dense layer with 128 units and
ReL.U activation, a Dropout layer (rate = 0.2), another Dense
layer with 64 units and ReLLU, and a final Dense output layer
with a sigmoid activation for binary classification. This archi-
tecture is illustrated in Figure 10. The flatten layer converts
the output of CNN into a 1-dimensional array, input to fully
connected /dense layer. In the final layer, the sigmoid activation
normalizes the output of the network to a probability of an item
being recycled. One of the key steps in converging to the opti-
mal training parameters for the model is to perform parametric
study to see how the performance metrics change with respect
to these parameters.

Waste Diversity

Low High

,_
1)
H

69.7%

High 64.3%

Environment Complexity

Figure 11: Performance of the segmentation model measured by pixel accuracy across different waste stream
categories. Results indicate the model's effectiveness in identifying broad object regions, which serve as input for

Model P with Learning Rate (Method Adam)
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0 00 004 006 008 01

0 0.02 008 o1

. 004 006
Learning Rate Learning Rate

Figure 12: Parametric study of learning rate impact on model performance using two optimizers: Adam (left) and SGD
(right). The plots highlight differences in convergence behavior and sensitivity to learning rate selection.
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Hyperparameter Optimization

Vision Transformers (ViTs) have several important parame-
ters that influence their performance, efficiency, and accuracy.
In this study SeFormer visual transformer was used for its hier-
archical transformer-based feature extraction from waste images
with diverse object sizes. Also, it is lightweight and efficient in
handling cluttered scenes 13 Patch size, number of layers and
attention head parameters were varied to optimize the accuracy
of the segmentation model. Patch Size of 16x16, 18 layers,
11 heads were found to be optimal to give a pixel accuracy of
~70% for all 4 types of waste streams as shown in Figure 11.
Even though metrics such as Dice score and mloU were con-
sidered, pixel accuracy was selected as the evaluation metric
for segmentation performance due to its computational simplic-
ity and effectiveness in quickly verifying whether the model
correctly isolates broad object regions. In this preprocessing
step, precise boundary alignment or detailed object shape is less
critical. Pixel accuracy thus serves as a practical and efficient
first-pass measure to ensure reliable object extraction before
proceeding to more complex classification stages.

VGG16 Model Loss VGG16 Model Accuracy
0.40
—— Train
0.35 Validation 0.96
>
2 g
§0.30 30.94
< —— Train
0.25 \/\ Validation
0.92
0 . 4 6 0 2 4 6
Epoch Epoch

Figure 13: Training progress of the VGG16 transfer learning model. The plots show model accuracy (right) and loss (left)
over epochs, illustrating convergence behavior and training stability.
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Figure 14: Training performance of the VGG16 transfer learning model. The left plot shows the impact of dropout rate on
model F1 score, the right plot displays performance trends across training epochs.

For transfer learning models, there are several parameters
including epochs, dropout and optimizers that were varied to
identify the optimal settings. Towards the goal of minimizing
the false positives and false negatives, F1 Score was used as a
key criterion to maximize. Figure 12 shows the model training
with two different optimizer options.

Figure 13 shows the variation of accuracy and model loss as
a function of the epochs for the VGG16 model for both training

and validation datasets. Performance metric in terms of F1 score
is calculated for different learning rates. Optimal learning is
based on maximizing the F1 score for test data. With both
algorithms a learning rate of 0.01 gives the best outcome. Figure
14 shows the variation of the performance metrics as a function
of the dropout and epochs for the VGG16 model. Five epochs
were used as the optimal setting.

In this study, hyperparameters were selected manually based
on empirical observations due to resource constraints. While this
approach yielded strong performance, future work will incorpo-
rate automated tuning methods such as grid search or Bayesian
optimization to more systematically explore the parameter space
and potentially enhance model performance. Toolkits such as
Optuna may be used to facilitate this process.
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