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Aphasia is a devastating consequence of stroke, resulting in severe language impairment that is detrimental to an individual’s social,
emotional, and economic well-being. Predicting aphasia severity is difficult with current methods such as Western Aphasia Battery
(WAB) which is extremely resource and time-intensive and requires the presence of a speech and language pathologist. There is
also a need to look beyond behavioral and communicative data to additional critical information such as patient demographics and
neural characteristics. In this study, we used and compared 5 types of machine learning models with optimization on a clinical data
set of patients with chronic post-stroke aphasia to automatically predict their aphasia severity. We also made our Al explainable
using game theory based shapley values to understand which patient factors from demographics, aphasia type, and MRI scans of
stroke lesions are most predictive of aphasia severity. We found that the random forest model had the highest accuracy prediction
of aphasia severity with mean accuracy of 0.7504 £ 0.1079%. Using Al explainability, we showed that lesion volume from MRI
and patient age were the best predictors of aphasia severity. Applying this research will make the diagnosis process more efficient
and less burdening on patients and healthcare providers. Interpreting explainability results will also help understand patient
variability to develop tailored treatments. Our findings can provide valuable insights into factors contributing to an individual
patient’s aphasia severity, allowing healthcare providers to create more personalized treatment and rehabilitation that can better

suit patients’ needs.
Introduction

Aphasia is a severe language and communication disorder most
often caused by a stroke. One-third of stroke victims develop
aphasia, and over two million people in the United States suffer
from post-stroke aphasia'l. Those with aphasia have difficulties
speaking, understanding speech, reading, writing, and may be
incapable of communication. It has damaging consequences on
a patient’s emotional well-being, leading to a loss of freedom
and disrupting daily life, potentially causing depression and
social isolation”.

The diagnosis process for determining aphasia severity is
time-consuming and tedious. Western Aphasia Battery (WAB)
is mostly commonly used by speech-language pathologists to
assess the linguistic skills of adults with aphasia. It tests for
both verbal and nonverbal language and is used to identify and
classify the type of aphasia as well as its severity. However, this
method is not efficient or feasible for all patients. With over
8 subsets and 32 tasks, it can take over two hours®, and along
with the rigor of the testing, it can place a burden on patients,
families, and the healthcare team. Additionally, it can induce
financial strains on patients and families, with the evaluation
being too expensive to be accessible to all patients”. This calls
for the need for quicker and more efficient methods of diagnosis
that can test for aphasia severity.

Even with those diagnostic methods, it is difficult for health-
care providers to predict whether the aphasia will affect patients
short or long-term, as some can recover in a few days or weeks
while others may take years, decades, or suffer lifelong®. Most
diagnostics and treatments focus on behavioral aspects of pa-
tients and their ability to communicate, disregarding important
neural factors and an individual’s demographic profile”. Addi-
tionally, there is significant unexplained variability in language
recovery for each individual®. This is due to aphasia treatment
being effective at the group level but varying significantly among
individuals. This makes the task of recovery prediction difficult
and has called for further research with a holistic approach to
better understand how different factors affect an individual for
personalized rehabilitation.

There is a gap in knowledge on how individual profiles lead
to varying aphasia severity levels, making it difficult to diagnose
and treat aphasia. This study takes a novel approach towards
developing personalized treatment through the use of explain-
able Al, one of the first few applications in aphasia severity
research, making this study clinically usable. Previous studies
have mainly focused on acute aphasia, less than 6 months post
stroke®, 2 1Y, However, this study advances existing work by fo-
cusing on chronic stroke, which is important to research because
it takes up a much larger period of a patient’s life. This study
also compares 5 different models to identify which machine
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learning approach will lead to the best predictions of aphasia
severity, providing a foundation for future work.

By using machine learning to create models that can predict
the severity of aphasia and find the most important factors in
determining severity, more optimal treatment can be used to
tailor to each patient’s need, making recovery more manageable.
The goal is to make the lives of patients, families, and healthcare
providers easier by providing a tool to efficiently diagnose the
severity of aphasia and reduce the current uncertainty and frus-
tration surrounding aphasia treatment and recovery. Different
variables of stroke characteristics and patient demographics can
affect aphasia severity, and this study will help understand the
connection to help create more personalized treatment options
with a more comprehensive understanding of each individual,
thereby making the recovery process easier.

When comparing 5 different AI models in predicting an in-
dividual’s aphasia severity based on patient demographics and
stroke severity, we expect our best-optimized model to exceed
70% accuracy. Given dataset constraints and prior knowledge
about Al model architecture, we expect random forest to per-
form best in this research context. Further, we expect the lesion
volume to have the most significant effect on aphasia severity
and aphasia type, sex, and race to have the least effect.

This is a retrospective study on publicly available data of
chronic aphasia patients, taking in factors including aphasia
type, age of stroke, lesion volume, sex, race, and wab days
(days after stroke). 5 machine learning models were used, and
parameters were tuned to get the best-fit model to determine the
highest accuracy of aphasia severity prediction.

Results

Table 1 Cross validation results of each machine learning model.

Model Accuracy | Precision | Recall F-1Score | AUC-ROC
Logistic Re- | 0.596 + 0.6399 £ 0.596 £ 0.5765 £ 0.6084 £
gression

0.1012 0.1059 0.1012 0.1121 0.1006
K-Nearest 0.6857 £ | 0.7086 = | 0.6857 & | 0.6845 + 0.6851 £
Neighbor

0.1164 0.1251 0.1164 0.1136 0.1173
Support 0.7136 £ | 0.7272+ | 0.7136 = | 0.7051 + 0.7004 £
Vector Clas-
sifier

0.0626 0.0756 0.0626 0.0685 0.075
Random 0.7504 £ | 0.7724 £ | 0.7504 = | 0.7464 + 0.746 £
Forest

0.1079 0.1161 0.1079 0.1089 0.1134
Neural Net- | 0.5353 + 0.757 £ 0.5353 £+ | 0.3766 £ 05+
work

0.0759 0.0016 0.0759 0.0844 0

Note: All of the metrics in the table are from a ten-fold cross

validation with the standard deviation. AUC-ROC = Area Under
the Receiving Operating Characteristic Curve.

Analysis of Machine Learning Models
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Fig. 1 Logistic regression optimization and best performance. [A]
Optimization shows that the max iter of 25 provides the best cross
validation accuracy. [B] Confusion matrix shows the breakdown of
model performance.

The optimized max iteration value of the logistic regression
model was 25 as shown in figure 1 A, resulting in a ten-fold
cross validation accuracy mean and standard deviation of 0.5960
4+ 0.1012 %. Based on figure 1 B, there is a high true positive
and negative, meaning patients are likely to be correctly diag-
nosed, but the model is a lot more likely to call severe cases as
severe rather than non-severe cases as non-severe. According
to Delong’s test, the logistic regression model is statistically
different from the random forest model (z score = -6.065, p <
0.01) and neural network model (z score = -6.222, p < 0.001),
but not significantly different from the KNN model (z score =
0.672, p=0.502) and SVC model (z score =-3.181, p = 0.0015).

K-Nearest Neighbor
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Fig. 2 K-Nearest Neighbor optimization and best performance. [A]
Optimization shows that the neighbor number of 25 provides the best
accuracy. [B] Confusion matrix shows the breakdown of model
performance.

According to figure 2 A, the optimized neighbor number of
the KNN model was 25, resulting in a cross validation accuracy
of 0.6857 £ 0.1164%. Based on figure 2 B, there is a high true
positive and negative, meaning the model is likely to correctly
diagnose severity. While the model is more likely to correctly

2 | NHSJS 2025

© The National High School Journal of Science 2025



diagnose non-severe aphasia as non severe, the prediction of non-
severe and severe aphasia is overall balanced. From the Delong’s
test, it can be seen that the KNN model is significantly different
from the random forest model (z score = -5.861, p < 0.01) and
neural network (z score =-7.179, p < 0.01) but not significantly
different from SVC (z score = -2.824, p = 0.0047) and logistic
regression.

Support Vector Classifier
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Fig. 3 Confusion matrix of the Support Vector Classifier model shows
the breakdown of model performance.

The cross validation accuracy of the SVC model was 0.7136
=+ 0.0626%. Based on figure 3, there is a high true positive and
negative. However, the model is significantly more likely to
call non-severe cases as not severe compared to severe cases as
severe. According to DeLong’s test, the SVC model is statisti-
cally different from the random forest model (z score = -4.617,
p<0.01) and neural network (z score = 12.622, p < 0.01) but
not statistically different from the logistic regression and KNN
models.

Random Forest
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Fig. 4 Random Forest optimization and best performance. [A]
Optimization shows that max depth of 22 provides the best accuracy.
[B] Optimization shows that a number of estimators of 55 provides the
best cross validation accuracy. [C] Confusion matrix shows the
breakdown of model performance.

We tested a range of values for max depth and number of
estimators and found that the best max depth was 22 and the

best number of estimators was 55. With those parameters, the
random forest classifier trained using tenfold validation gave a
mean accuracy of 0.7504 = 0.1079%. Based on figure 4 C, there
is a significantly high true positive and negative, meaning the
predictions are likely correct. The model is slightly more likely
to call severe aphasia as severe compared to calling non-severe
aphasia as non-severe, but the diagnosis is generally balanced.
The random forest model performed significantly better than the
other models in every aspect of the accuracy report including
accuracy, precision, recall, f-1 score, and AUC-ROC as shown
in table 1. This is supported by DeLong’s test which gave a p
value < 0.01 when compared to every other model, showing
how the performance of the model is statistically better. The
cross validation scores also show that the random forest model
is performing well across different subsets of data.
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Fig. 5 Panel A displays the optimization graph, and panel B displays
the confusion matrix of the neural network model.

The neural network model was not optimized due to the con-
straints of a small data set. Even when the model was optimized
with a different number of hidden layer sizes, it still didn’t
perform optimally, with the mean cross validation accuracy at
0.5353 £ 0.0759%. The significantly low performance of the
neural network model is also supported by the DeLong’s test,
which resulted in a p value < 0.01 when compared to the other
machine learning models.

Explainability of Random Forest Model

In figure 6 A, we can see that lesion volume is the most signifi-
cant predictor of aphasia severity, with a smaller lesion volume
predicting less severity and a higher lesion volume being asso-
ciated with more impairment. Aphasia type and age at stroke
are also significant predictors of severity, with smaller ages di-
agnosing less severe aphasia and larger ages identifying severe
aphasia. Additionally, different types of aphasia are associated
with different severity of aphasia. WAB days (days post stroke)
show some correlation to prediction but much less significant.
The initial days are scattered between severe and non severe
while the later days are leaning towards more severe. The plot
shows that sex and race aren’t as significant in the severity pre-
diction. Figure 6 B shows how lesion volume and aphasia type
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are significantly more predictive than the rest of the features
as the error bars do not overlap with the other features. Age at
stroke and days post stroke are also significantly different from
race and sex.

A B

Fig. 6 The Shapley beeswarm plot shows feature explainability for best
random forest model [Panel A]. The features are arranged from most
significant at the top to least significant. The x axis shows the SHAP
value. Negative values indicate a prediction closer to 0 and severe, and
a higher positive value pushes the model to predict more moderate
aphasia. The y axis displays candidate input features, and the color
scale is based on each individual feature’s value, high or low. For the
numerical features, red indicates a greater amount, and blue indicates a
lower value of the feature. For the categorical features, from blue to
red, the colors indicate anomic, broca, conduction, global, transcortical,
and wernicke respectively. For sex, blue = female and red = male, and
for race, red = white and blue = African American. Panel B displays
cohort level mean SHAP values with standard deviation error bars.
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Fig. 7 Displays the scatter plots of each feature value. The y axis
indicates the aphasia severity prediction by each factor. Positive values
refer to less severe, and negative values refer to more severe. A=
Lesion Volume, B = Age at Stroke, C = days post stroke, D = Sex, E =
aphasia type, F = Race

The relationships of the key features are shown in figure 7.
The strong correlation of lesion volume reinforces the idea that
lesion volume does have a significant effect on severity predic-
tion. The downward linear trend clearly shows that a greater
lesion volume results in higher severity while a smaller lesion
volume results in less severity. Age also has a strong correla-
tion, and older patients have more severe aphasia compared to
younger patients. WAB days creates an inverse parabolic curve.

At the start of the graph, the data is inconsistent because it’s
difficult to predict whether a patient will have severe or non
severe aphasia during the beginning stages. However, as the
WAB days increase further, there is a downward trend where the
model predicts more severe aphasia. For WAB type, the model
shows that anomic and conduction aphasia are less severe while
global and wernicke aphasia are more concentrated towards be-
ing severe. This aligns with the literature as anomic aphasia is
a milder form, where patients are able to speak and use correct
grammar but struggle to find the right word, and this aligns with
the model. Global aphasia is also known to be one of the most
severe forms of aphasia as it affects all aspects of language''".
Additionally, for female patients, the data is more spread out
while the prediction for male patients is leaning towards not
severe. However, this is not as significant.
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Fig. 8 Shapley waterfall plots show how much each factor contributes
to the severity level for an individual patient. Red pushes prediction
towards less severe while blue pushes prediction to more severe. [A]
Example of a patient who has non-severe aphasia. [B] Example of a
patient who has severe aphasia.

Figure 8 A displays a correct prediction of a non-severe pa-
tient. Lesion volume is clearly the greatest predictor of severity
level. Age at stroke is also a factor, although much less. Race
and wab type have barely any significance, and wab days and sex
have almost no significance in predicting severity, and are even
pushing the diagnosis of the patient towards more severe. For
figure 8 B, a patient is correctly diagnosed with severe aphasia
with WAB days being the most significant predictor followed
by lesion volume. WAB type also has a minor role.

Discussion

In this study, we successfully created 5 optimized machine learn-
ing models with feature explainability. Based on optimization
results, the highest performing model was random forest with
the best mean accuracy of 0.7504 £ 0.1079%, higher than other
studies in the literature. We have also applied cutting edge ex-
plainability work, making our results transparent and trustable.
The insights from feature importance means that the model can
be applied and implemented in healthcare, expediting the diag-
nosis process and paving the way for personalized treatment and
rehabilitation.

This research extends beyond prior models in the literature
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by achieving notable accuracy and incorporating explainability
techniques that enhance clinical applicability. Day et al. (2021)
applied natural language processing and machine learning to
classify aphasia severity based on discourse transcripts, achiev-
ing 73% classification accuracy with a random forest model.2.
Kristinsson et al. (2021) used multimodal neuroimaging classifi-
cation to predict aphasia severity with support vector regression
models!. However, their study did not focus on classification
accuracy or explainability. Lee at al. (2021) used diffusor tensor
imaging to classify aphasia severity based on language-related
white matter integrity but did not include machine learning
explainability methods to show the importance of individual fea-
tures'. In contrast to these works, our study not only achieves
a high classification accuracy but also uniquely incorporates
SHAP-based explainability to identify key predictive features,
such as lesion volume and age. By combining strong model
performance with interpretability, this study encourages oth-
ers to use tree based classification models with explainability
in healthcare applications to address a critical gap in clinical
transparency.

As hypothesized, out of all the models, the random forest
model is the most likely to diagnose severe aphasia patients
as severe and non-severe aphasia patients as non-severe. Even
with the slight imbalance of severe aphasia being more likely
to be called as severe, in an actual diagnosis situation, patients
are better off having a misdiagnosis of severe aphasia as extra
treatment is safer than less treatment. In addition, the model pre-
dicted both severe and nonsevere aphasia with similar precision,
recall, and f-1 score, making the model the most reliable. The
high performance of the random forest model could be due to
the reduction of overfitting through averaging multiple decision
trees, making the model robust while maintaining higher accu-
racy especially with a smaller dataset in this study. Additionally,
internal cross validation is built into the random forest model
through bootstrapping, where each tree within the forest takes a
random subset of data and features to prevent overfitting.

Explainability results show stroke lesion volume to be the
most significant predictor of aphasia severity. This has con-
firmed insights from prior literature suggesting that larger, more
severe strokes have led to worse outcomes' ', In addition to the
type of aphasia, patient age was also shown to have an associa-
tion with aphasia severity, where younger patients were more
resilient and had less impairments. This is insightful in clinical
decision making as a strong predictive role of lesion volume can
help healthcare practitioners identify patients at a higher risk of
persistent aphasia, allowing for early intervention with intensive
speech-language therapy for those with larger lesions. Similarly,
recognizing the effect of age will guide the tailoring of rehabili-
tation plans as older patients may need more rigorous treatment
and support. When considering the role of time elapsed post
stroke in severity prediction, the results showed that less time
makes prediction more difficult. However, a longer amount of

time is a more significant predictor given that patients who have
aphasia for more time tend to have more severe aphasia. This
may be explained by the fact that the data is from a cohort that
volunteered to participate in long term research, so someone
with chronic deficits would be more likely to be captured by
this data collection rather than someone who has recovered.
Although temporal factors are not the most relevant to this re-
search, future work could investigate them more systematically
by looking at different temporal factors across many different
patients which would inform rehabilitation planning. Regard-
ing treatment implications, there is evidence that the first three
months post-stroke have a critical period of neuroplasticity, in
which patients are most responsive to therapy'2. This suggests
that early intervention could have more successful long term
outcomes. Future studies could use a more representative data
set including patients with different times lapsed after stroke,
various ages, and different types of aphasia.

The insights from this study will be beneficial for future trans-
lations in clinical settings, as we created an automatic diagnosis
for aphasia severity with a successful prediction rate of over 75%
that is more efficient than current methods. By using machine
learning to accelerate the diagnosis process, it alleviates the
burden on speech-language pathologists, patients, and families.
This is a research model that has not been deployed to the clinic.
However, it has a high translational potential because it requires
information that is easily accessible. The random forest model
can easily be deployed through a website or an app where a
clinician or patient could securely input their information and
receive the model’s predictions. However, clinical validation for
how useful the predictions would be is a necessary step before
deployment. Patient privacy will also be an important consider-
ation. Integration with electronic health records could improve
the workflow.

The use of explainability allows healthcare providers to un-
derstand individual profiles of patients to create personalized
treatment and reduce uncertainty surrounding recovery. It can
help healthcare professionals by providing them with insights to
make informed and accurate decisions. By taking into account
individual characteristics and demographic profiles, clinicians
will be able to provide patients with personalized treatment pro-
grams that are likely to work. When rehabilitation and treatment
are tailored to an individual’s severity level, it results in the
most improvement in recovery for a patient. Additionally, it
informs healthcare providers on what features the model is using
so that they can trust it when making clinical judgments. Mak-
ing distinctions between patient subgroups also gives clinicians
an expectation on how patients will recover as younger peo-
ple with smaller lesions are predicted to do better and recover
more quickly while older people with larger lesions might need
more support when receiving treatment. By researching apha-
sia patients with chronic stroke rather than acute, it advances
the literature by moving towards understanding and alleviating
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an otherwise overlooked aspect of aphasia that has impaired
individuals for a large portion of their life.

The limitations of this research include the constraint of a
smaller dataset, especially in the context of machine learning,
which limited the methods to using more basic models to pre-
vent overfitting and lowered the performance of more complex
models such as neural network. Neural network models are
prone to overfitting, resulting in poor generalization of data'!®.
In our case, this occurred due to an extremely small dataset (N =
168), resulting in the neural network memorizing data L7 In the
future, with larger datasets, convolutional neural networks could
be used to boost performance. This was secondary analysis on
publicly available data which means we were constrained by the
original dataset'8 which was obtained from people participating
in research and therefore was not representative of the average
post stroke aphasia population but more so of people who were
more likely to participate in research. Additionally, only lesion
volume was used from neuroimaging, so future studies could
incorporate the use of more images to widen the scope of factors
for prediction, such as multimodal imaging which integrates
multiple neuroimaging techniques, giving more accurate predic-
tions and tailored treatment. This study also only accounted for
a patient’s aphasia severity at one point in time, so further stud-
ies could test for aphasia severity at multiple points of patient
recovery because recovery progress fluctuates over time, and
predicting future aphasia would be helpful for patients. This re-
search could also be developed to study the change from acute to
chronic aphasia, so that it could predict the severity of a patient
not just currently, but also at a future point in time. Additionally,
it was not feasible to break the data up into multiple classes in
this study due to the small sample size. However, this is not
uncommon as other studies predicting severity have classified
the data similarly into two classes L3 However, future studies
could predict levels of severity such as mild, moderate, and
severe instead of only predicting severe vs non severe aphasia.
This study ultimately provides the foundation for future work,
showing the importance of significant features such as lesion
volume which can be studied further.

This study highlights the potential of machine learning in
expediting the diagnostic process of aphasia severity with ef-
ficiency and enabling personalized rehabilitation approaches.
The use of explainable Al is a novel approach to revolutionizing
aphasia prediction, as it doesn’t just take the model but it takes
the insights to open up a new field of aphasia treatment. By
integrating this study in clinical practices, it advances the future
of precision medicine, enhancing patient outcomes with reliabil-
ity and transparency, ultimately transforming the treatment and
care for individuals with aphasia.

Methods

The study used explainable machine learning in a retrospective
approach to predict aphasia severity based on demographic,
clinical, and neural factors.

The data was obtained from a publicly available dataset, Apha-
sia Recovery Cohort, from OpenNeuro, pre-collected by original
researchers, containing clinical, demographic, and neuroimag-
ing information on patients with chronic post-stroke aphasia‘®.
The dataset is fully anonymized, and all data collected was ap-
proved by the Institutional Review Board at the University of
South Carolina, making it usable for public sharing. The study
included 168 participants from the dataset, excluding partici-
pants with missing values and those with a WAB AQ, aphasia
severity level, of over 90. The exclusion of WAB AQ > 90 is
common in research and was done to remove patients who have
such mild aphasia that they can be considered non-impaired‘.
After data pre-processing, patients were categorized into severe
aphasia, with WAB AQ (severity level) less than 50 and non-
severe aphasia, with WAB AQ greater than 50. This clinical
threshold is an extremely common clinical practice and is sup-
ported by other studies who have chosen a WAB AQ of 50 to be
the shift between severe and moderate aphasia®!?. Everything
was coded in Python 3 using Google Collaboratory, and Python
libraries pandas and sklearn were utilized.

The input feature variables of the data include sex, age at
stroke, race, wab days, lesion volume, and wab types. These
features were selected based on prior research on aphasia sever-
ity which have shown their importance. It has been consistently
found in the literature that lesion related factors, age at stroke,
and time post stroke are associated with language impairment
severity 1420, Only lesion volume was considered from neu-
roimaging because it was the only available metric available
in the dataset. Future data should include complex metrics of
the imaging that will enable future analysis using connectivity,
white matter tractography, and additional modalities including
functional imaging. Lesion volume of each patient was extracted
using FMRIB Software Library (FSL) and command line to cal-
culate the lesion volume from MRI brain imaging data. While
other demographic and health factors such as sex and race have
shown more inconsistent results?l, some studies have found
that including these factors can lead to a better understanding of
individual variations in aphasia severity beyond just lesion fac-
tors, therefore leading to more holistic treatment 22 The features
were used as inputs to predict the output variable of binarized
wab aq, aphasia severity, and the highest performing model was
used to analyze relationships between the features and aphasia
severity.

Data preprocessing was completed to clean the dataset, mak-
ing it usable for this study. The dataset includes 230 participants,
and after dropping missing values, there were 195 participants.
The participants that were excluded had empty columns for ei-
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ther race or WAB type, where the information for those inputs
was not in the dataset. There are 8§ features including participant
id, sex, age at stroke, race, wab days, wab aq (severity), wab
type, and rounded lesion volume. Categorical variables in this
dataset were encoded using label encoding, which assigns each
category a unique integer because the categorical variables were
binary or were manageable as integers. This was done using
LabelEncoder from the sklearn.preprocessing module. A bina-
rized column was created for aphasia severity, where wab aq
greater than 50 is 1, and WAB aq less than 50 is 0. O is severe,
and 1 is not severe. Participants with wab aq greater than 90
were dropped (27 participants) which made the total participants
168. 70 participants had severe aphasia, and 98 participants did
not have severe aphasia. A label encoder was used for input
data, where female is 0 and male is 1, and for race, black is
0, and white is 1. Regarding WAB type, anomic is 0, broca is
1, conduction is 2, global is 3, transcortical is 4, and wernicke
is 5. These encoded values were then used as numerical input
features in the machine learning model.

The input feature variables of the data include sex, age at
stroke, race, wab days, lesion volume, and wab types, and other
columns of binarized wab aq, wab type, and participant id were
dropped. The output was binarized wab aq, which is aphasia
severity. A train test split was done with a test size of 0.2 and a
random state of 5. Stratified sampling was also done, so there
is the same ratio of two groups in training and testing, and the
classes have equal weight. The X_train dimension was (134, 6),
and the percentage was 80%. The X_test dimension was (34,
6), and the percentage was 20%. The y_train dimension was
(134,0), and the y_test dimension was (34,).

Using the same train test split, 5 machine learning classifi-
cation models were developed. Logistic regression, k-nearest
neighbor, support vector classifier, random forest, and neural
network models were developed and optimized, and parameters
were tuned to get the highest accuracy.

Machine Learning Models

Logistic Regression Model

A logistic regression model is a statistical algorithm used to
predict the probability of a binary outcome based on multiple
input features. It fits a sigmoid function to the data and returns
the output between 0 and 1 for prediction?®,

K-Nearest Neighbor (KNN) Model

The k-nearest neighbor model is a non-parametric method
that makes predictions based on the similarity of data points in
a given dataset. It works by finding the k-nearest neighbors to a
data point, and the output is determined by the majority class
among the nearest neighbors%.

Support Vector Classifier (SVC) Model
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Fig. 9 The schematics of the 5 machine learning models used are
shown. A = logistic regression3, B = K-Nearest Neighbor?¥, C =
Support Vector Classiﬁerzs, D = Random Forest26, E = Neural
Network??

A support vector classifier is a type of support vector machine
model that finds the optimal hyperplane that separates data

points belonging to different classes=?.

Random Forest

The random forest model takes random subsets of the training
data and creates multiple decision trees, and at each split in the
tree, a random subset of the features is considered. The final

prediction is the result of a majority vote across all trees=.

Neural Network

A neural network consists of an input layer, hidden layers,
and an output layer. During forward propagation, data passes
through these layers, with each neuron calculating a weighted
sum of inputs, adding a bias, and applying an activation function.
In backpropagation, the network calculates the error (loss) and
adjusts the weights using gradients to minimize the loss. This
process repeats iteratively, allowing the network to learn patterns

and improve its predictions over time=1.

Optimizing Models

The Logistic Regression model was optimized for the number
of max iterations (range 10-85); KNN for number of neighbors
(range 3-100, increment 2); Random Forest for max depth (range
1-50) and nearest neighbors (range 1-100); and Neural Network
for hidden layer sizes using both a range from 50-500 (increment
20) and [(2.,4,6,8),(3000,300,300),(16,32,64,128,256)].

Analyzing Model Performance

To analyze the results, the models were trained using tenfold
cross-validation, where the dataset is split into ten parts, with
nine parts used for training and one for testing in each iteration.
This was done to ensure that evaluation metrics were not biased

© The National High School Journal of Science 2025

NHSJS 2025 | 7



by a specific train-test split and that models generalize well to
unseen data. After completing the cross-validation, the mean
values of accuracy, precision, recall, F-1 score, and area under
the receiving operating characteristic curve (AUC-ROC) were
calculated and compared among each model to identify the high-
est performing model based on the numerous metrics. DeL.ong’s
test was also performed to evaluate the statistical significance in
model comparison.

In this study, accuracy, which refers to the fraction of correct
predictions over total predictions, was used as a baseline metric
to see which model generally is performing the best. However,
given the slightly imbalanced nature of the dataset, precision,
recall, and F-1 score were also compared for each model to
ensure the suitability of each model’s performance.

Precision refers to the accuracy of positive predictions, and
a higher precision indicates fewer false positives, meaning the
model is less likely to incorrectly label a negative outcome as
positive®2. In the context of this study, positive refers to non-
severe aphasia, and negative refers to severe aphasia. Evaluating
precision is important in this study because it helps ensure that
severe cases are not mistakenly identified as non-severe. Max-
imizing precision reduces the risk of false positives, which is
critical for making sure that individuals with severe aphasia are
not overlooked and receive the appropriate level of treatment.

n True Positive
Precision =

True Positive + False Positive

Recall refers to how well a model can predict true positive
cases. A higher recall score indicates a model is more likely to
predict all positive cases and has a lower false negative, meaning
it is less likely to miss positive cases=>. In this study, a higher
recall score indicates that the model is likely to correctly predict
non-severe aphasia, which is a less important metric to evaluate
in this study as predicting the severe cases is more important.

True Positive

Recall = — n
True Positive + False Negative

F-1 score combines precision and recall into a single value. It
is calculated using a confusion matrix, and a higher f-1 score in-
dicates a better balance between precision and recall. Weighted
average weighs the precision, recall, and f-1 scores by the num-
ber of instances in each class®%. F-1 score is useful to evaluate in
this study because it takes false positives and false negatives into
account rather than just the number of predictions, which gives
a more reliable approach in assessing the model’s performance.

Area under the receiving operating characteristic curve (AUC-
ROC) is another metric that represents the probability that the
model will correctly distinguish between a randomly chosen pos-
itive and negative case. This is valuable in medical classification
tasks because it evaluates the model’s performance across all
classification thresholds, rather than at a single decision point.

A confusion matrix is also another tool used to evaluate the
performance of a model, as it compares the predictions to the
actual results, helping understand where the model is making a
mistake=.

* True negative: the model correctly predicts a negative out-
come

* True positive: the model correctly predicts a positive out-
come

* False negative: the model incorrectly predicts the outcome
as false (actually true)

* False positive: the model incorrectly predicts the outcome
as true (actually false)

Explainable AI

To interpret the results of the best model, explainable Al was
used through SHAP to visually display the contributions of vari-
ous factors in aphasia severity prediction. SHAP is a framework
used for interpreting models by assigning importance values to
each input feature based on Shapley values from cooperative
game theory=?. The results of this study were analyzed using
SHAP to see how well aphasia severity can be predicted and
what is the most predictive of aphasia.
Link to coding notebook:

SanviC_AphasiaProjectNotebookLesions.ipynb
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