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Spinning black holes, or Kerr black holes, house within them a kind of singularity that is quite different from what the common
folk imagine them to be. At the heart of Kerr black holes lies a singularity that takes the form of a one-dimensional circular ring of
substantial radius and, at the same time, negligible thickness, which brings with it some pretty mind-boggling implications and
possibilities. The primary aim of this paper is to provide a comprehensive analysis of the physical and causal properties of the
Ringularity (ring singularity) and of the bizarre implications that it comes with. These implications include possible inter-universal
travel and travelling back in time using the “Carter Time Machine”, both of which will be explored in the paper. The research
dives into the underlying math to theoretically investigate the ring while exploring its physical interpretations through various
schematic diagrams. By the end of the paper, the reader should have an in-depth understanding of the ring singularity.
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1 Introduction

The common notion of a black hole is the one in which the black
hole is perfectly static and non-rotating. The one in which a
tiny point of infinite density is hidden behind a large, terrifying
Event Horizon, the boundary that separates the known from the
unknown. These black holes are called Schwarzschild Black
holes [1], and they are far from the truth. In reality, there are no
perfectly spherical and non-rotating black holes with a point-
like singular [2] Core within. The reason being that since all
black holes (at least according to our current knowledge) form
from the collapse of a dying star, and since all stars spin, it is
quite logical to assume that the black hole formed will have
no choice but to account for the angular momentum of the star
and hence possess some spin too. Hence, along with a huge
fraction of the mass of the star, the black hole will also have a
characteristic spin associated with it. This assertion is supported
by observational findings too since a non-spinning black hole is
yet to be discovered. So, there are 2 fundamental properties of
black holes to talk of: its mass and its spin (there is also charge,
but for convenience, neutrality is assumed), instead of just the
mass. Now, the addition of spin as a fundamental property
changes things a lot!

For starters, the black hole goes from a uniform sphere to an
ellipsoidal, bulging at the equator and flattening at the poles.
It also doubles the number of event horizons, as it has 2 of
them: the inner and outer horizons. Finally, the dimensionless
point sitting at the centre becomes a one-dimensional ring of

1. Mathematically represented by the Schwarzschild metric: dτ2 =(
1− Rs

R2

)
dt2 − 1(

1− Rs
R2

)dR2 −dΩ2

2. Here, singular refers to the points geodesic incompleteness

infinite density. The ringularity is a crucial component of the
Kerr Metric, the ultimate solution to Einsteins Field Equations
for uncharged and rotating black holes. The metric sits at the
heart of black hole astrophysics as it is one of only 4 metrics that
describe space-time near/inside black holes and is the closest
among them to describe a real-world black hole (since they are
usually uncharged and spinning).

Coming back to the ring, the existence of this ring instead
of an “end of space-time” singularity opens up a wild variety
of possibilities, some of which will be explored in this paper.
However, it is necessary to prove the existence of the ring itself
before discussing any of those possibilities. Since this proof
cant be based on observational findings (for obvious reasons), a
thorough mathematical proof must suffice. This, will become a
frequent occurrence throughout the paper.

2 Mathematical proof of the existence of the ring.
1.

2.1 Using Boyer-Lindquist coordinates[3]

the Kerr Metric, in BL(Boyer-Lindquist) coordinates, is given
by:

The line element is given by:

ds2 =

(
dr2

∆
+dθ

2
)
+(r2+a2)sin2

θ ,dφ
2+

2Mr
Σ

(
asin2

θ ,dφ −dt
)2−dt2

where Σ = r2 +a2 cos2 θ and ∆ = r2 −2Mr+a2.

3. Boyer-Lindquist coordinates are given by: (t,r,θ ,)
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Also, the BoyerLindquist to Cartesian transformation is:

x =
√

r2 +a2,sinθ cosφ

,
y =

√
r2 +a2,sinθ sinφ

,
z = r cosθ

Now, since the core lies at r = 0 and θ = π

2 :

x = acosφ

y = asinϕ

A point lying on r = 0 and θ = π

2 is given by:
P(acosφ , asinφ), which are the parametric coordinates of a
circle.

2.2 Using Kerr-Schild Coordinates:

x =
√

r2 +a2 sinθ cos
(
φ + tan−1

( a
r

))
y =

√
r2 +a2 sinθ sin

(
φ + tan−1

( a
r

))
z = r cosθ

x2 + y2 = (r2 +a2)sin2
θ

z2 = r2 cos2 θ
x2+y2

r2+a2 +
z2

r2 = 1
Which implies that the geometrical makeup of the interior

takes the form of several confocal ellipsoids, each corresponding
to a particular r value, as illustrated in the following figure:

Figure 2.1
Ellipsoidal surfaces in Kerr-Schild frame for different r values
when r = constant.1.

Another way to approach the equation is as follows:
Since z2 = r2 cos2 θ , ⇒ r =

z
cosθ

, therefore: x2 + y2 =(
z2

cos2 θ
+a2

)
sin2

θ ⇒ x2 + y2 − z2 tan2 θ = a2 sin2
θ

Dividing by sin2
θ :

x2 + y2

a2 sin2
θ
− z2

cos2 θ
= 1

Keeping θ constant, the above equation describes a hyper-
boloidal structure as shown.

Figure 2.2
Half-hyperboloidal surfaces are obtained at =constant. The disc
at the centre represents the ring singularity1.

In both cases, there comes a point where these 3-dimensional
structures lose one of their spatial dimensions and become one
dimensional circular curves. In both cases, at r=0, the z-axis
component vanishes (since z2 = r2 cos2 θ ) and hence only 2
spatial dimensions are left. As a result, a symmetrical ellipse
(or a circle) is obtained in the xy plane (represented by the solid
line at the centre). To conclude, it can be said that the existence
of the ring is quite unavoidable, regardless of the choice of
coordinates or constancy [4]

3 Comparing a traditional singularity with a
Ringularity

Now that the mathematical proof of the rings existence is dealt
with, it’s time to study its properties through a brief comparative
analysis of it with a traditional point-singularity. The first and
the most obvious difference between them is their geometrical
makeup- a singularity is a dimensionless point with no spatial
dimensions to define. While the ring is a one-dimensional cir-
cular curve with a substantial radius and 0 thickness. Its radius
is given by the spin parameter a, which is equal to the ratio of
the black holes angular momentum to its mass. i.e. a = J/M.
The main differentiating factor however, is the fact that while

4. Refers to keeping r or θ constant
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the ringularity is a physical ring in space, the point singularity
doesnt exactly have a physical existence, instead, it is a mo-
ment, a point in time itself. This property of the point is called
spacelike nature, while the ring is timelike2.

This means that while the ring is a physically approachable ce-
lestial body, the point singularity is an inevitable point in the life
of an astronaut who has found himself beyond the inescapable
event horizon of a non-spinning black hole. To understand
why this discrepancy arises, the behaviour of light cones in the
vicinity/inside both black holes needs to be analysed:

Figure 3.1
Depiction of light cones in the vicinity of a Schwarzschild Black
hole. Here, Rs = Schwarzschild radius, i.e. radius of the event
horizon. Block I is analogous to Minkowski(flat) spacetime,
while Block II is the interior of the black hole2.

Starting with the simpler, non-rotating case, the light cones
in block I behave as normal light cones do, i.e., they point in
the time direction. However, upon crossing the event horizon
(denoted by Rs), these cones flip in such a way that they now
point in the r direction (r = radial distance from the centre of
the black hole), with all the cones leading to R = 0. This means
that R = 0, i.e., the singularity has become an unavoidable point
in time that anything crossing the horizon will eventually reach.
The reason for this “flipping” of cones is that for values of r <
Rs, the coefficient of dR2 and that of dt2 switch signs, signifying
the fact that space and time “switch roles” beyond Rs. Thus, as
one moves forward through time on Earth, if one finds oneself
inside a black hole, the inevitable progression through different
values of r occurs before finally reaching annihilation at R = 02.

On the other hand, if one observes the behaviour of light
cones near/inside a Kerr black hole, it can be deduced that
although the initial flipping does occur at R+ (outer horizon),
this flipping is cancelled out by an equal and opposite flipping
which occurs at R - (inner horizon). Therefore, beyond the inner
horizon, the light cones point up in the direction of time, and
hence space and time are reverted to their initial roles. This
implies that the inner ergospherev[5] is a region that can be
explored physically, just like any other place in space-time. It
should be noted however that this seemingly flawless flipping
of time cones is only possible in the most ideal conditions, with

5. The region between R- and R=0

Figure 3.2
Light cones near and inside a Kerr black hole. Their behaviour
resembles that of those near a non-rotating black hole up until
block II, after which the discrepancy arises, the light cones flip
back to their initial orientation upon crossing the inner horizon
(R-), resulting in a timelike ringularity at R=02.

no matter to cause any perturbations. The gravity of the hole is
kept at bay by the anti-gravitational effect of the spinning black
hole. A couple of Penrose diagrams will now be used to help
visualize this stark difference between the two singularities.

Figure 3.3 and Figure 3.4
Penrose diagrams of Schwarzschild and Kerr Black Hole space-
time. The vertical curved lines represent the singular space
coordinate while the horizontal ones represent the time coordi-
nate2.

Here, the vertical-ish lines represent the singular space coor-
dinate (for simplicity, only one of 3 dimensions is taken) while
the horizontal ones represent the time coordinate. Again, if
the non-spinning case is taken first, it can be seen that upon
crossing the event horizon, space and time switch places. This
means that inside the black hole, the horizontal lines represent
the space coordinate. The singularity is not a point in space,
but instead is represented by a horizontal line in the Penrose
diagram, implying that it is a point in time that must be hit if
one plunges into the black hole. Now, shifting attention back
to the Kerr Black hole, the ring is represented by two vertical
lines (corresponding to the two sides from which the ring can
be approached). This means that the ring is, in fact, a physically
occurring entity, unlike its non-rotating dimensionless counter-
part. While the singularity is an unavoidable point in time that
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everything and everyone has to reach once crossing the horizon,
the ringularity is a physical body that can be very much avoided.
This apparent avoidability of the ring has some pretty interesting
implications, which will be explored soon enough.

4 The Pseudo-Singular Nature of the Ring

This section can be considered as a continuation of the previous
one, as the primary aim here is to highlight the apparent “pseudo-
singular” nature of the ring singularity and show how it is quite
different from the traditional “end of space-time” singularities
found at the centre of Schwarzschild black holes. To do so, lets
understand what is meant by the “singular” nature of the point
singularity. In 1965, Roger Penrose published the Penrose Sin-
gularity Theorem, in which he provided a comprehensive proof
of the fact that point singularities are inevitable consequences of
gravitational collapse at the end of the lifespan of a sufficiently
massive star, and that these points are singular, i.e. they are
regions where null geodesics terminate. He basically proved
that all geodesics that cross the event horizon are incomplete
in finite affine length, which proves the existence of a singular
point (a point where geodesics are incomplete) beyond the hori-
zon. The main crux of his proof was the existence of FALLs
(Finite Affine Length Light) beyond the event horizon, which,
according to him, implied an inevitable singularity inside the
black hole.

The issue here is that while this logic stands for Schwarzschild
black holes (black holes that arent even real!), it doesnt hold for
Kerr ones (the ones that do exist). In the Kerr case, geodesics
with a finite affine length dont always end up at the ringularity3),
thereby defying the apparent inevitability of the singularity and
showing that all trajectories that cross the event horizon(s) do not
have to face imminent annihilation at the hands of a singularity.
To provide substance to this assertion, the focus will be on 2
families of null geodesics, the “fast” ones and the “slow” ones[6]

that, despite having a finite affine length, do not terminate at
the ring singularity. They are given by the general equations:

k− = ∂t −∂r ⇒
dr
dt

=−1

k+ = (∆k−)+(4Mr+2a2 sin2
θ)∂r

or,

dr
dt

=
r2 −2Mr+a2

r2 +2Mr+a2

4.1 The Slow ones(k+):

The “slow” ones are given by:

6. “fast” and “slow” are terms used to signify whether the geodesic is ingo-
ing/outgoing.

dr
dt

=
∆

r2 +2Mr+a2 , where ∆ = r2 −2Mr+a2

The roots of this quadratic give the radii of the inner and outer
horizons. So, when r = R+orr = R−,∆ = 0, which means the
velocity of the light ray at those radial distances is also 0. Due to
this, an outgoing/slow light ray can never penetrate either of the
horizons because its velocity tends to 0 as it approaches them.
Hence it can be deduced that these geodesics are asymptotic to
both the horizons as t →−∞ and t →+∞, meaning they never
cross them. Now, since r is an affine parameter for this ray, the
affine length of it comes out to be = 2

√
M2 −a2 ) , which is

obviously a finite quantity, making it a FALL. It is interesting to
note despite having a finite affine length, this geodesic does not
terminate at a singularity, contrary to Penroses assumption.

4.2 The Fast ones:

What about the slightly “faster” ones? For simplicity, the choice
will be the one with the least complications and the one that
is easiest to track: The Axial one, an incoming axial light ray
falling head-on into the black hole from either of the poles. This
ray faces no problem whatsoever in its journey as it penetrates
straight through both R+ and R-. Now, since nothing is com-
pelling it to end up at the ring, this ray goes through the ring and
emerges out the other side as a slow geodesic (strictly theoreti-
cally speaking, and well, also according to the math). One might
argue that the ray being talked about here doesnt have a finite
affine value and hence cant be considered in this discussion,
but to the cynics dismay, the geodesic can be parameterized to
show that it is in fact a FALL, by proving that the integral of its
affine parameter is finite. The parameterisation can be found in
the appendices. The fact that there are 2 FALLs that do NOT
terminate at a singularity shows how the ring is not a traditional
singularity that gobbles up all the geodesics that fall inside the
black hole3 This indicates that the ring is quite “pseudo-singular”
by nature. The singularities that exist in real life might not be as
terrifying as often imagined. The question that might arise next
is where this fast FALL ends up. Mathematically speaking, there
is no reason to doubt that it does in fact go straight through the
“throat” of the black hole and reach the “other side,” but where
does it go? What lies on this “other side” and, more importantly,
is this other side reachable?

5 Venturing beyond the Ring singularity

It is time to take the plunge and explore what might lie beyond
the Ringularity. Contrary to common lines of thought, the focus
will NOT be on the Maximal extensions of Kerr spacetime, since
these mainly emphasise paths that avoid the ring altogether
or those that go around it. Instead, an unconventional (but
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mathematically sound) approach will be used to predict what
might lie beyond the ring.

To begin, lets view the Kerr metric again, but in Kerr-Schild
coordinates(t,x,y,z):

ds2 =−dt2 +dx2 +dy2 +dz2

+
2Mr3

r4 +a2 + z2(
dt +

r(xdx+ ydy)−a(xdy− ydx)
r2 +a2 +

zdz
r

)2

Which mainly depends on a function r (x,y,z) given by:

r4 − (x2 + y2 + z2 −a2)r2 −a2z2 = 0

Now, not counting the 2 complex solutions, the given bi-
quadratic will have 2 solutions: a positive and a negative one4.
An engineer or an experimental physicist might be tempted to
discard the latter as a ”fake” or non-physical solution. But for a
theoretical physicist? But for a theoretical physicist, such things
arent thrown out that easily. As long as something is mathe-
matically valid, it is keptbecause sometimes, the universe hides
its best secrets in the places that dont make immediate sense.
Another reason for considering r values ¡0 is that if r is only re-
stricted to positive values, for a timelike geodesic, the derivative
of its tangent vector dxµ

dλ
and d2xµ

dλ 2 becomes discontinuous.
This problem is fixed if r is allowed to assume negative values
as well. This newfound freedom bifurcates the Kerr space-time
into 2 regions: one for r¿0 and the other for r < 0, separated by
the ring at r=0. The spacetime identified by r < 0 is asymptoti-
cally flat and lacks any horizons5. The following figure helps
in visualising a manifold formed by patching the 2 space-times
together. The top of r¿0 side of the disc is identified with the
bottom of the r < 0 side, and vice versa.

Now heres the interesting part: this new universe that has
just been discovered through plain math isnt just a carbon copy
of the existing universe. In this region, gravity pushes instead
of pulls, producing a sort of anti-gravitational repulsion that
counteracts the gravity of the original universe. Crossing the
ring and emerging on the other side means encountering no
horizons, but instead being expelled into space with tremendous
force4,6. This force is unofficially termed as “anti-gravity” and
the universe harbouring it an “anti-verse.” The root cause of such
anomalous behaviour can be derived from the underlying math.
As always, math opens doors that dont appear to exist! In the
Kerr metric, the term ( 2Mr

Σ
) governs the gravitational potential

of an object in the vicinity of a Kerr black hole7. Now its clear
that if r becomes negative, so does the term, which implies the
effective gravitational potential (Ve f f ) of an object on the other
side also becomes negative. The negative sign, according to the
standard sign conventions of physics, indicates repulsion, which

Figure 5.1
The 2 manifolds on either side of the r=0 ring. The region
denoted by r > 0 represents our universe, while the latter rep-
resents the one on the other side. The thick arrows are the
trajectories of astronauts brave enough to venture beyond the
ring. So, a person entering the ring from the r > 0 side will
emerge from the top side of the r < 0 space-time5.

causes the in falling objects to accelerate away from the ring on
the other side instead of toward it. This force also causes the
incoming geodesics to curve away from the ring on the other
side, which produces a sort of apparent repulsion effect. This
“anti-gravity” is not to be confused with a similar theorized effect
produced as a result of the existence of a positive cosmological
constant (such as dark energy), and instead is a result of the
geometry of the Kerr Black holes, which cause the effective
gravitational potential to flip signs for r < 0.

It should be noted, however, that this possibility is purely the
result of blindly following the math, without any correlation
to the observational findings of the real thing. When dealing
with realistic situations, however, the infalling matter creates a
substantial hindrance by causing what’s known as “mass infla-
tion” instability: a bizarre phenomenon in which the infalling
matter experiences relative infinite blueshift near the inner hori-
zon (since particles gain infinite energy upon approaching it).
The incoming and outgoing streams (here, outgoing streams
refer to the backscattered waves which get reflected outward)
collide with such immense energy that they create a feedback
loop: the process in which the accelerated interactions of the
mass particles cause the effective mass parameter (Me f f ) [7]

inside to increase exponentially. This ultimately leads to the
destruction of the inner horizon and the creation of a spacelike
singularity,

While it does seem as though a brick wall has been hit, there
is a way to solve this problem, too, even though that way is as
impractical as it gets. If, somehow, some “negative mass” is
introduced into the mix, it could, in theory, disrupt the pile up of
energy near the horizon by repelling some of the mass away and
hence prevent the consequent feedback loop from growing too
rapidly and greatly. Additionally, it would suppress the energy

7. Total energy within a given radius of a black hole
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growth of Me f f by introducing negative energy density into the
mix and hence prevent the spacelike singularity.

6 Naked singularities and possible to-and-fro
traversability

In the previous section, the bizarre possibility of an anti-verse
looming beyond the ringularity was discussed. Now the sad part
is that even if such universes do exist, they are forever locked
behind the dual event horizons of black holes, which means that
although its theoretically possible to get to the other side of the
ring, coming back to our universe isnt exactly an option, or is
it? The answer to this question for a Schwarzschild black hole
is a stone-cold “no”; it isnt. But those fictional, non-existent
black holes arent the focus here. When considering real-world
black holes (the ones that spin), a wild possibility arises. To
explore this possibility, a term called the Radius of the innermost
stable circular orbit or RISCO, is defined, which is the least
distance from which one can have a stable circular orbit around
a body. For Kerr black holes, this value is dependent on the spin
parameter: a = J

Mc or a = J
M

[8] . In general, for prograde [9]

orbits, the greater the value of a, the smaller the RISCO value. The
reason is that the tremendous angular momentum of the black
hole produces a sort of anti-gravitational effect that opposes
the gravity of the black hole, allowing objects to orbit in stable
circles closer than if it werent spinning. So basically, as the a
value (ratio between the angular momentum and mass of the
black hole) increases, the RISCO value shrinks. But how far can
it shrink? If it shrinks and becomes equal to or less than the
radius of the outer event horizon, it would cause the horizon
to disappear altogether, making to-and-fro travel into the black
hole a real possibility. But is it possible to reduce RISCO to that
extent? To answer this question, theres a need for a connecting
variable that relates the radius of the event horizon with that
of the innermost stable orbit, and the spin parameter perfectly
meets that requirement: For Kerr black holes, the radius of the
outer event horizon is given by:

REH =
GM
c2

(
1+

√
1−a2

)
Clearly, for a = 1, REH = GM

c2 or = M. Computing RISCO for
a = 1 shows that it also shrinks down to the same value8. The
calculation demonstrating this can be found in the appendices
section. If the value of a is increased beyond unity, RISCO <REH
implying that there are stable circular orbits even beyond the
event horizon. This would cause the horizon to disappear since
it is no longer the boundary of no return. The disappearance
of the event horizon would leave the ringularity “Naked” and

8. In geometrized units: (G=c=1)
9. Orbits with the same direction as the spin of the black hole.

quite accessible to the rest of the universe, with the potential for
returning.

Now, it is a well-known fact that the cosmic censorship con-
jecture does not allow such exposed singularities to exist, since
the theory clearly suggests that all singularities must be hid-
den/locked behind an event horizon in order to preserve the
deterministic nature of the universe. Despite this, the possibility
of an exposed ringularity is considered because the monstrous
singularity capable of violating the deterministic nature of the
universe is not the one located at the core of Kerr black holes. In-
stead, a pseudo-singular one exists (as discussed earlier), which
doesnt represent the end of space-time and hence doesnt defy
the laws of physics as known.

So, the implication is that if the value of a is somehow tipped
above 1, even by a small fraction[10] , then theoretically, it would
be possible to go through the ring while also having the option to
return. This opens up prospects of utilizing the ringularity as a
doorway for inter-universal travel. The question now, is that how
can it be done? How can the seemingly universal threshold limit
set for the spin parameter be exceeded, be it through natural
occurrence or through artificial interference? Or in other words,
how to increase the value of a beyond unity?

According to the existing research in the field, the largest
possible value of a for near-extremal black holes is given by
a ∼ 1−10−9, a result that could be observationally verified by
LISA (Laser interferometer space antenna for gravitational wave
measurements), a space based gravitational wave detector ex-
pected to be launched in 20359. Now, while this is the generally
accepted limit for naturally occurring black holes, it is theo-
retically possible to exceed this limit artificially. It is possible
to “overspin” the black hole by adding objects which possess a
substantial angular momentum in the same direction as that of
the black hole. These objects should preferably oblate spheroids,
which are geometrically similar to the physical structure of spin-
ning black holes10The number of such objects needed depends
upon how close the initial value of a is to reaching 1.

7 The Carter Time Machine

It must be said that some pretty bizarre properties and implica-
tions of the ring have been discussed so far, but the one about
to be discussed might just top the list. Having already plunged
through the ring and explored the uncharted area ahead, its time
to take a step back and talk about the region that is bounded by
the ringularity., the region where it is theoretically possible to
explore all those time paradoxes that have been meddling with
the minds of physicists and physics enthusiasts alike for quite
some time. This region, where it is possible to travel backwards
in time, has our ring as its equator and is denoted by ξ . Now,

10. By convention, spacelike components have positive values while timelike
ones are negative

6 | NHSJS Reports © The National High School Journal of Science 2025



the reason for such sci-fi like property lies in the sign of the Kerr
metric component: gφφ , which determines the behaviour of the
azimuthal angle , and is given by:

gφφ =

(
r2 +a2 +

2Ma2r sin2
θ

r2 +a2 cos2 θ

)
sin2

θ

now for values of r¿0, this component stays positive and
therefore spacelike[ ]. However, since r assumes negative values
in the region , for sufficiently large values of 2Ma2r sin2 θ

r2+a2 cos2 θ
, the

entire component gφφ becomes negative and hence timelike.
Meaning, as the azimuthal angle changes for an object, it can
travel through time in a timelike curved path (called CTCs:
Closed Timelike Curves) and return to the same spot in space
(and time!) from which it began.

7.1 Construction of a CTC
11

A comprehensive mathematical derivation of a CTC is given
below: Lets take any 2 points: p,qεξ ; now our goal is to prove
that there exists a future as well as a past pointing timelike curve
from p to q.

Let p = (r0,θ0,φ0, t0) ; and q = (r∗, π

2 ,φ0 +∆φ , t0 +∆t)
Let the future pointing and past pointing curves and be the

future and past pointing timelike curves from p to q. α is defined
as:

α(s) = (r(s),θ(s),φ0 +A(s), t0 +AT (s))

Where A is an arbitrarily large constant and s is the space-time
interval (ds = cdt +dx). Also, r(s) and θ(s) ∈ ξ . Now, in order
to know about the behaviour of the curve as it progresses, it
is differentiated with respect to s to obtain its tangent vector:
α ′. Now this vector is timelike if and only if its dot product
with itself, i.e. ⟨α ′(s),α ′(s)⟩ is negative, this condition can
be satisfied by setting a large enough value of A, which only
signifies the rate at which the azimuthal angle changes (∂φ ).

Similarly, a past pointing curve β can be defined as:

β (s) = (r(s),θ(s),φ0 +B(s), t0 −BT (s))

Here, the terms φ0 +B(s) and t0 −BT (s) determine how the
azimuthal angle and the time coordinate of the curve change. For
a large constant B, the curve remains future pointed in the sense
of the regions timelike vector field while the time coordinate
steadily decreases, implying a past-pointing curve. Equipped
with 2 disjointed curves that have the same endpoints but differ
in their causal direction, there is now a need for a timelike curve
that will take one back in time and also act as a “bridging curve”
connecting α and β , thereby completing a fully functional CTC.
This bridging curve is given by:

λ (s) =
(
r∗, π

2 , φ̄ −B(s), t̄ − s
)

Where t̄ = t0 +∆t, φ̄ = φ0 +
∆φ , and r∗ is sufficiently smaller than 0.

Now, its tangent vector is: λ ′(s) = (0,0,−B,−1)
To check the timelike nature, the dot product with itself must

be negative: ⟨λ ′(s),λ ′(s)⟩= B2gφφ −2Bgtφ +gtt
[11]

Now, since gφφ < 0, the term B2gφφ will dominate over the
other terms for large values of B, making the dot product nega-
tive, and hence it can be said that the curve is timelike.

It can also be proven from further analysis that it is a future-
pointing curve. A fully functional time machine (CTC) can now
be constructed from the curves taken:

= α ∪λ ∪β

7.2 Working of a CTC: Travelling through its segments

Let us now use our very own time machine (CTC) to travel back
in time!

• First, follow curve α to go from point p = (ro,θo,φo, to)
to q = (r∗,π/2,φo +∆φ , to +∆t) where r∗ is sufficiently
negative.

• From point q, follow the curve λ that will take you back-
wards in time while keeping your spatial coordinates con-
stant (here, only r and θ are spatial). The amount of time
gone backwards can be determined by letting (t̄ − s) run as
long as desired.

• Say the curve λ brings you to time t2 and azimuthal angle
φ2. Now, to return to the starting position, follow the curve
β . You are now at the same position you began from but at
a time much before yours.

Now, while the existence of CTCs is mathematically sound,
it is purely based on classical mechanics. When the quantum
effects are also considered into the picture, their usage as poten-
tial time machines seems far from feasible. According to the
Quantum field theory, no region in space-time is really empty,
even spaces with complete vacuum are fille with invisible quan-
tum fields which fluctuate millions of times per second, giving
rise to virtual particles which get instantly annihilated after be-
ing formed. However, when these particles are formed in the
vicinity of the inner horizon, they are infinitely blue shifted by
the extreme curvature, which provides them enough energy to
turn into real particles. This creates an infinite flux of particles,
which prevents the CTCs from ever being formed. This is the
main crux behind the chronology protection conjecture12) ac-
cording to which the quantum mechanical laws of the universe
prevent causality from being violated, thereby preventing CTCs
as well. Nonetheless, the prospect of man somehow managing
to counteract the quantum effects in the distant future in order
to access time travel is an exciting one to say the least.

11. ⟨λ ,λ ⟩= φ 2gφφ −2φgtφ + t2gtt
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8 Future Research Directions

In the last few sections, the discussion focused on how the
ringularity could theoretically serve as a medium to a) venture
into another universe and b) travel back in time, whilst also
outlining the practical impossibility of both based on current
technological capabilities. Mitigating the discrepancy between
theory and practicality appears to be well out of reach, but a
couple of ground-breaking discoveries and inventions could do
the trick, so let’s talk about them individually.

In section 6, the possibility of a naked singularity was exam-
ined, illustrating that in order to expose the ringularity to the rest
of the universe, there is a need to increase the ratio of the angular
momentum of the black hole to its mass beyond unity, which is
the focus moving forward. The process is surprisingly simple in
logic, though obviously not in practice (not yet, at least). The
idea is to throw in objects with the same direction of spin as
the black hole, which would cause their angular momentum to
simply add up to that of the black hole. The main hurdle lies at
the point when a = 1. Since naturally occurring black holes cant
have the value of a greater than 1, uncertainty remains regard-
ing whether it is possible to artificially push its value beyond
1, which is essential for progress. Although the nearest black
hole is quite far (about 10,000 light years away), once reached,
exposing the ring should be the next move to venture beyond it
and explore the “antiverse” that lies beyond.

The other concept to pursue is even more far-fetched than
trying to spin a black hole so fast that its event horizon disap-
pears: Negative mass. As discussed in section 5, to survive a
trip to the centre of the black hole long enough to use the Carter
time machine or travel to the other side, it will be necessary to
address the perturbations caused by the presence of mass in that
region. This, in theory, can be achieved by introducing some
negative mass into the equation. The challenge is that negative
mass does not currently exist, so that must be addressed. The
invention or discovery of this type of exotic matter would rep-
resent a significant step toward the exploration of black holes.
Theoretically, placing a sufficiently large negative-mass shell
near the ringularity could counteract the effects of normal mass
in the vicinity, potentially preventing the theorized infinite blue
shifting of any infalling normal matter and thus averting the
creation of a spacelike singularity.

9 Conclusion

The following section serves as a summary to conclude the en-
tire paper. The paper began by proving how the ring singularity
is an inevitable consequence of the geometry of spinning black
holes, regardless of the coordinate system used or perspective.
The ellipsoidal and hyperboloidal structures formed by holding
r and theta constant respectively, lost one of their spatial dimen-
sions at r=0 and transformed into a one-dimensional ring. The

properties of the ring were examined by comparing it with a tra-
ditional singularity, noting how one is spacelike while the other
is timelike, implying that while a point singularity represents
a moment in time, the ring is a physically occurring celestial
body.

In section 4, the pseudo-singular nature of the ring was discov-
ered, suggesting it doesnt consume all the geodesics that cross
the horizons and that navigation around or through the ring is
indeed possible. This apparent avoidability of the singularity
opened up the possibility of exploring what lies beyond the ring,
as discussed in section 5, albeit from a purely theoretical stand-
point. The prospect of an antiverse was also considered, arising
from a value of r less than 0.

Now, The existence of an entire universe beyond the ring
holds no meaning unless there is a means of exploring it, while
also having the option of returning. Although returning to our
universe isnt feasible for naturally occurring black holes, de-
creasing the radius of the innermost stable circular orbit around
a black hole to below that of the outer event horizon makes
two-way travel a viable option. This can theoretically be accom-
plished by tipping the value of the spin parameter over unity,
even by a tiny fraction. Doing so would result in a naked sin-
gularity that is accessible, allowing for a return to the universe.
In a nutshell, the potential of utilising the ring as a medium for
inter-universal travel was explored.

In the last and concluding section, the prospect of travelling
backwards in time by using the unconventional geometry of the
area bounded by the ring was examined. The timelike nature
of the azimuthal angle for r values less than 0 indicated that
an object would travel back in time as its azimuthal coordinate
continued to change inside the region denoted by . In conclu-
sion, the exploration of ring singularities within Kerr black holes
reveals a profound shift in the understanding of black hole struc-
ture and behaviour. By dissecting the mathematical framework
and physical implications of the ringularity, it is highlighted how
it sharply contrasts with traditional singularities. This opens
avenues for theoretical advancements, including concepts like
closed timelike curves and potential traversability.

As the complexities of these spinning giants continue to be
grappled with, the research presented lays the groundwork for
future investigations into the nature of black holes and their wild
properties. That said, this research is merely a culmination of
the work done by those who came before. The aim of the paper
was to take the existing information and present it in a brief but
comprehensive manner, and the author feels that the objective
has been achieved.

10 Methodology

The entire research was carried out independently by the au-
thor over the course of 5 months: from December 2024 to
April 2025, which included gathering all the available informa-
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tion/knowledge on the subject, finalising the topics and concepts
to be included, structuring the paper in a way that is coherent
and smooth, and formulating the very drafts. Extensive reading
on the topic was done prior to this period to gain conceptual
understanding as well as the mathematical aptitude required to
take on this task. The apparatus used included the authors lap-
top, his phone, along with various books like “The Geometry of
Kerr Black Holes” by Barrett O Neill, “Black Holes” by Brian
Cox and Jeff Forshaw, etc. The majority of the information,
however, was obtained from IPs available online, including a
recently published paper by R.P. Kerr himself, titled “Do Black
Holes have singularities?”; notes on the Kerr metric and gravi-
tation by the Department of Physics, University of Rome ”La
Sapienza”, among others. All the sources mentioned, along with
a few others, have been referenced in the bibliography section.
The mathematical analysis was conducted using tensor calculus
and geodesic equations in Kerr spacetime. The Kerr metric was
studied in multiple coordinate systems (e.g., BoyerLindquist
and KerrSchild coordinates), and its implications were analysed
in the context of PenroseCarter diagrams and causal structures.
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11 Appendices
1. Parameterization of the fast geodesic[13]

Let us first write down the radial equation of the incoming geodesic. Since
the angular momentum and the polar angle are null, the equation simplifies to:( dr

dλ

)2
= E2 ⇒ dr

dλ
=±E

dλ =± dr
E

Integrating both sides:
λ −λ0 =± r−r0

E
Which gives: r(λ ) = r0 ±E(λ −λ0)
Now, taking r0 = 0 and λ0 = 0:
r(λ0) =±Eλ or λ =± r

E
Now, at r = 0, clearly λ = 0 i.e. the affine parameter λ remains finite as well

as smooth at r = 0, no blow-up, no divergence. Hence proved, the ingoing axial
geodesic is in fact a FALL, at least on our side of the ring (r ≥ 0).

2. Relation between RISCO and the spin parameter a 8

The Kerr ISCO formula is given by:
R
M = 3+ z2 ±

√
(3− z)(3+ z+2z2)

Where
z = (1+χ2)1/3

(
(1+χ)1/3 +(1−χ)1/3

)
z2 =

√
3χ2 + z2

And χ = a
M

Putting a = M ⇒ χ = 1
z = (1)(1) = 1
z2 =

√
3+1 = 2

So, R
M = 3+2−

√
(2)(8)

Which gives: R
M = 1 ⇒ R = M

Hence proved, for a = 1, RISCO = REH = M

12. In geometrized units, where (G=c=1), and using the Boyer-Lindquist coordi-
nates (t,r,θ ,φ ).
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