ARTICLE https://nhsjs.com/

Investigating Delta Encoding with Error Control for Scientific Data
Reduction

Kaitlin Zhang

Received March 22, 2025
Accepted July 07, 2025
Electronic access August 31, 2025

As scientific computing reaches new heights with the next generation of processors, such as graphics processing units (GPUs),
scientific discovery can operate at a fidelity previously unattainable. The data generated by scientific applications has grown
immensely, resulting in significant storage overhead for knowledge discovery. In recent years, scientific data reduction has
gained renewed attention due to the development of new algorithms for compressing floating-point data. This paper develops a
delta encoding algorithm that guarantees bounded error after decompression, and evaluates its performance in conjunction with
run-length encoding. In the literature, there were no comprehensive performance results on delta encoding for scientific data, and
this paper aims to fill this gap. As shown in this work, delta encoding with run-length encoding outperforms state-of-the-art in
some scenarios and therefore needs to be adopted into compression tools. The methodology includes calculating the difference
between data points delta based on the reconstructed value, instead of the actual value, of the previous data point. This way, after
decompression, the error will not propagate throughout the datum. We evaluated four real datasets and compared the compression
performance, including both compression ratios and throughput of delta encoding against the scenario where data is directly
quantized. The results show that the error after reconstruction can be effectively bounded. Overall, delta encoding is shown
to deliver performance improvements in some scenarios as compared to the case where data is directly quantized as well as
state-of-the-art, motivating future research into automatic algorithm selection

1 Introduction

As scientific computing advances to the next level through state-
of-the-art processors, such as graphics processing units (GPUs),
scientific discovery can run with a fidelity that was previously
unattainable. The data generated from scientific applications has
become increasingly large, which creates high storage overheads
for knowledge discovery. Figure 1 below illustrates the trend of
storage throughput versus computing speed in 1 million floating-
point operations per second (FLOPS) for supercomputers at Oak
Ridge National Laboratory over the past 15 years, where the
gap between computing and storage has continued to widen.'!
As a result, scientists may need hours, days, and even weeks to

retrieve and analyze data. The scientific computing community 3T
has proposed numerous methods at various computer system lay- e ~—

ers to accelerate the knowledge discovery process. For example, o0 2012 2004 2006 2018 2020 2022 2024
at the storage system layer, scalable and high-performance stor- Year

age devices, such as solid-state drives (SSDs) and non-volatile
memory (NVM), have been developed to accelerate the read and
write speeds of scientific applications. At the data management
layer, researchers have developed in-situ processing where data
are analyzed while they are in memory thereby minimizing the
need for expensive input/output (I/O) operations to persistent
storage systems.

125

100 -+

75 +

50 +

Bytes per sec/1M FLOPS

Fig. 1 Trend of storage vs. compute speed of supercomputers at Oak
Ridge National Laboratory [1

In recent years, scientific data reduction has resurfaced due

© The National High School Journal of Science 2025 NHSJS Reports | 1

to the development of new lossy algorithms for floating-point
data compression, and it has become increasingly indispensable
in scientific workflows. In general, floating-point data compres-
sion consists of lossless and lossy compression. For the former
(e.g., Zstd?, Z1ib* after decompression, the data is identical to
the original data at the byte level. Such a stringent requirement
often leads to lower compression, and the resulting overhead
of data retrieval can still be high, given that compression is not
free and will involve substantial computational overhead itself.
As such, lossless compression is often used in scenarios where
the loss of accuracy is not permitted, such as for checkpointing.
For the latter, information will be lost during data reduction,
and therefore, the decompressed data will not be identical to the
original data. The key benefit of lossy compression is that the
compression ratios, defined as the ratio of the input and output
data size, will be significantly higher than lossless compression
so that the amount of data to be placed onto or retrieved from
computer storage systems is less than the case without compres-
sion. Compared to state-of-the-art lossy compressors, including
SZ#, Compressed Floating-Point and Integer Arrays (ZFP)>,
and MultiGrid Adaptive Reduction of Data (MGARD)? (see the
Literature Review section for more details), this paper aims to
explore a unique combination of delta encoding and run-length
encoding, which was not implemented in existing compressors,
and evaluate its performance. As shown in the results, this work
achieves performance improvements in certain scenarios over
the state-of-the-art, indicating further potential for performance
gains in compression tools. For lossy compression, error control
is often employed to ensure that the deviation of the decom-
pressed data from the original data is small enough to control
the loss of information. There are various ways to enforce er-
ror control, such as absolute error, relative error, and L-infinity
error. For a particular data point with its value of d, assume its
value is d after decompression. For the absolute error bound, de-
noted as e, |d — d'| < e. For the relative error bound, M‘_T‘d/‘ <e.
For the L-infinity absolute error, —d-d—max e, while for the
L-infinity relative error,ldlji“l% < e . This paper implements
delta encoding, which is commonly used in signal processing
to manage data that do not change substantially across adjacent
time steps. The quantized data will be further compressed using
run-length encoding to reduce its storage footprint. In particular,
this work developed a key technique for error control where the
delta is calculated based on the predicted value, rather than the
original data value as commonly used in signal processing. This
study evaluated the performance of delta encoding utilizing a
set of real scientific floating-point data and compared it with
the case where data is directly quantized without using delta
encoding. The significance of this research lies in the fact that,
with error control, the delta encoding used in conjunction with
quantization can now limit the error, ensuring that the outcomes
of scientific data analysis do not deviate substantially from the

ground truth, while significantly accelerating the process. For
example, in the fusion simulation, scientists need to make near
real-time decisions to avoid instabilities that develop in the sys-
tem. Without error control, the fusion instabilities captured in
the data may be discarded by the analysis routine, which can
result in significant repair costs for the fusion device. This pa-
per focuses on the widely used lossless compression algorithm,
run-length encoding (RLE), and basic uniform quantization.

Literature Review

State-of-the-art lossy compressors include SZ, ZFP, and
MGARD. In particular, SZ employs a multi-algorithm predic-
tion and regression approach for curve fitting. For those data
points that can be curve-fitted, quantization followed by Huff-
man encoding will be performed further for entropy encoding.
Meanwhile, ZFP uses an orthogonal transformation to decor-
relate data points within a block and uses embedded coding to
compress each bitplane. MGARD converts data to multi-level
coefficients through interpolation and an L2 projection.

Methods

Our study implements a scientific data compression pipeline
using delta encoding, followed by quantization and run-length
encoding. The general idea of delta encoding is to capture the
change of adjacent data points, rather than the value of data
itself. During the compression process, the quantization step
is lossy making error control necessary to ensure the error is
within a reasonable threshold. The decompression process is
opposite to compression and begins with run-length decoding,
followed by dequantization and delta decoding. In what follows,
we further describe the algorithms of each step.

Quantization

Quantization is a lossy compression technique where continuous
values are assigned to discrete buckets. The reason for using
quantization is that data points that are close to each other can
be mapped into the same bucket, allowing the data to be better
compressed using lossless compression. Although quantization
retains the overall characteristics of data, it introduces errors to
the data and, therefore, needs to be done carefully. For uniform
quantization, where each bucket has an equal interval, the error
is half the size of a bucket. In this paper, based on the error
(denoted as error) prescribed by the user, the size of a bucket
is 2*error. Further, the quantization buckets are arranged as
follows. The first bucket (bucket 0) is allocated to the range of
[-error, error], and the second bucket (bucket 1) is allocated to
the range of [error, 3*error], and so on. In general, bucket i has
arange of [i - error, (i +2) - error].

2 | NHSJS Reports

© The National High School Journal of Science 2025

Algorithm 1: Compression with Delta Encoding

Input: Dataset 1, error bound errar
Output: Compressed data x
| Allocate memory space for x

2 last «— 0.0
3 — Foreach d[i] € D do
4 current «— d[i]
5 defta «— current - lase
[if (delta ==0) then
7 sign — |
8 else
9 sign « =1
10 bucker number «— sign * (abs(delta) + ervor) [(2 * error)
11 reconstructed «— last + bucker number * 2 * error;
12 xfif «— bucket number
13 — last +— reconstructed
14 Return x
Delta Encoding

Delta encoding is a method of representing a sequence of values
as the differences between consecutive data points. The intuition
behind delta encoding for compression is that many scientific
datasets have local smoothness. By using delta encoding, we
can further expose the inherent redundancy in data and achieve
higher compression ratios.

Algorithm 1 shows the pseudo-code for delta encoding. The
data to be compressed is denoted as D, and the user-prescribed
error bound is denoted as error. The algorithm begins by allo-
cating memory space using the malloc() function. The variable
last, initialized to O, represents the value of the previous data
point. Lines 3 to 13 are a loop that goes through all data points
in D and generates the compressed value. In particular, for a
data point d[i], the delta is calculated in Line 5 by subtracting
last from the current data point. Lines 6 to 10 further quantize
the delta. This is done by first obtaining the sign of the delta;
a negative value will result in a negative bucket number. The
bucket number that the delta falls in is calculated in Line 10 as
sign* @zfrgfr , where abs(delta) represents the absolute value of
delta. Our quantization is a simple uniform quantization where
the range of the bucket 0 is [-error, error] and the range of the
second bucket is [error, 2 - error] , and so on. As such, the term
abs(delta)+error calculates the distance between the value of
delta and the lower end of bucket 0. Then, the bucket number
can be obtained by dividing the distance by the size of a bucket.
To control accuracy and satisfy the prescribed error, the delta
calculated is based on the reconstructed value rather than the
true value of the previous data point.

In Fig. 2, we show an example of error control we imple-
mented in the delta encoding. Assume we compress four data
points: 10, 170, 760, and 920, with an error tolerance of 100.
As a result, the size of a bucket in quantization is set to 200.
Without error control, the delta encoding will transform the data
to 10, 160, 590, and 160. These three delta values will be next
quantized into buckets 0, 0, 2, and 0. During reconstruction, the

Algorithm 2: Decompression with Delta Decoding

Input: Compressed data x, error bound error
Output: Decompressed data D
1 Allocate memory space for D
Obtain the error of x
last « 0.0
— For each D[] € D do
bucket ~— xfif
Dfi] = last + bucker * 2 * error
last = Dfi}
Return D

D0 ~1 @ LA da L ba

Algorithm 2 shows the pseudo-code for delta decoding. Similar
to Algorithm 1, it starts by allocating memory space at Line 1.
The decoding for a data point d[i] is done in Lines 5 to 7. In
particular, we retrieve the bucket number from the quantized data
x[i], and the reconstructed value D[i] is calculated by computing
the delta, which is the midpoint of the associated bucket (bucket
* 2 * error), and add it to the previous reconstructed value (last).

1000 _ Error = 100

Bucket 4 ® 920 pf3j -
Original

800 D: 10, 170, 760, 920

Bucket 3 @ 760 D2}
Without Error Control
Delta: 10, 170-10=160, 760-170=590, 920-T60=160
Bucket: 0,0,2,0
Reconstructed delta: 100, 100, 500, 100
Reconstructed: 100, 200, 700, 800 (out of bound)

Delta: 10, 170-100=70, 760-200=560, 920-700=220
Bucket: 0,0, 2, 1

Reconstructed delta; 100, 100, 500, 300
Reconstructed: 100, 200, 700, 1000 (within bound

600 —
Bucket 2
400 —
Bucket 1
200 —
@170 Dflf
@10

Bucket 0

nfoy

Fig. 2 Error control in delta encoding.

deltas will be decoded to the mid-value of each bucket, which
will be 100, 100, 500, and 100. After applying for delta decod-
ing, the reconstructed data will be 100, 200, 700, and 800. The
first three data points are within the error tolerance, whereas the
absolute error of the fourth data point, which is 120, exceeds the
error tolerance of 100.

In this paper, we developed an error control technique for
delta encoding. In contrast to the case without error control,
the deltas calculated will be using the reconstructed data as a
reference. For example, the second delta is calculated as 170-
100=70, rather than 170-10=160. As such, the error from the
previous iteration will not be propagated further, preventing
the error from compounding. In Fig. 2, the delta after error
control is 10, 170-100=70, 760-200=560, and 920-700=220.
The delta is further mapped to buckets 0, O, 2, and 1. During
decompression, the reconstructed delta is 100, 100, 500, and
300, and after delta decoding, the data is 100, 200, 700, and
1000. All data points are now within the error bound. As a
result, the error will not be propagated to the subsequent data
points and will not exceed the prescribed error bound.

© The National High School Journal of Science 2025

NHSJS Reports | 3

Run-Length Encoding (RLE) » Exaalt: This data is produced by a molecular dynamic
simulation developed by Los Alamos National Laboratory.
In particular, we tested the vx.dat2 file, which is the velocity
field in the X-dimension. This is 1D data with 2,869,440
data points.

RLE is a lossless compression algorithm that compresses se-
quences of repeated values by representing them as pairs of the
value and its frequency. For example, the sequence of symbols
[A, A, A, B, B] is encoded as [A, 3, B, 2], indicating that the
value A appears three times and B appears twice. By doing * NYX: This data is produced by an adaptive mesh N-body

this, the storage footprint of highly repeated symbols can be cosmological simulation and has 6 fields of 3D data with
reduced. In this paper, to ensure the repetition of symbols in dimensions of 512 x 512 x 512. In particular, we tested the
data, we perform either quantization directly or delta encoding field of baryon_density.f32.

followed by quantization so that data points near each other can
be converted into the same bucket, making them suitable for * QMCPACK: This data is produced by a many-body ab
RLE. Algorithms 3 and 4 provide further details for encoding initio quantum Monte Carlo simulation. It has 1 field and
and decoding of RLE, respectively. For encoding, Lines 5 to 7 288 orbitals of 3D data, with dimensions of 69 x 69 x 115.
calculate the length (count) of a run in the data. After that, the
encoded symbol and its length will be recorded at x[x_index]
and x[x_index+1], respectively.

* Hurricane ISABEL: This is produced by a weather sim-
ulation and consists of 13 fields. Each field is 3D, with
dimensions of 100 x 500 x 500. In particular, we tested the

field of Vf48.bin.f32.
Algorithm 3: Compression with Run-Length Encoding
Input: Dataset D, length len The preprocessing steps of the data include the followmgs 17)
Output: Compressed data x, length of compressed data x_index The datasets are downloaded from the SDR benchmark website
L Allocate memory space for » and stored on the local disk. 2) A C/C++ function called float *
2 x_index «— 0 % s .
3 Fori from 0 to fen - 1 do: readdata(char * fname, int * num_elements) is used to read the
4 count 1 binary data from each dataset. Within this function, the C/C++
5|~ While i+ 1 <lenand D[i] = DIi+1] do: function fread() is used to retrieve data from the file.
6 count «— count + 1
7 L el
8 x[x_index] «— D[i]
9 x[x_index+1] « count Results
10— x_index « x_index+2

11 Return x_index

4 Delta encoding + Quanization + RLE tization + RLE " .
elta encoding + Quantization © Quantization 4 Delta encoding + Quantization + RLE @ Quantization + RLE

10000000

0.8

Algorithm 4: Compression with Run-Length Decoding E B < /-
e — e . £ 100000 =
Input: Compressed data x, length of compressed data x_index £ £ ///
- S 04 4
Output: Reconstructed dataset D £ g m
1 Allocate memory space for D g 02 5 //
. - % H 10 —
2 ie—0 £ 00 £
3 —Foreach from 0 to x_index - 1 with step size 2 do: S LOOE-0S 1.00E-04 1.00E-03 1.00E-02 100E01 © 1.00E-051.00E-04 1.00E-03 1.00E-02 ~1.00E-01
4 value — ¥[j] Error tolerance (dimensionless) Error tolerance (dimensionless)
5 count «— x[j+1] (a) EXAALT (b) NYX
6 For £ from 0 to count -1 do: 4 Dela encoding + Quantization + RLE @ Quantization + RLE 4 Delta encoding + Quantizaton + RLE. @ Quantization + RLE
) 7 30
7 [D[i] + value / -
L +2 Z
8 1e—te g 10 / g 20 /
9 Return D £ /]
2 s N
! — E o0
i Z
£ o £
3 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 S 1.00E-05 100E-04 1.00E-03 1.00E-02 1.00E-01
Error tolerance (dimensionless) Error tolerance (dimensionless)
Experimental Setup (c) QMCPACK (d) Hurricane

Fig. 3 Compression ratio as a function of error tolerance with and

This work was conducted on an Apple Mac computer. The without delta encoding.

processor is Apple M3 with 16 GB of DDR3 DRAM. The
disk space is 1 TB. The code was written using C, and the
compiler we used was GCC. The code is publicly available on
GitHub (https://github.com/katezhxng/Delta.git). We measured Discussion

the compression performance in terms of compression ratios

and throughput. We tested out the compression algorithms using In Fig. 4, the impact of delta encoding about the compression
four datasets from SDRBench5. They are all single-precision ratio for four real datasets, EXAALT, NYX, QMCPACK, and
floating-point data and are described below. Hurricane, is evaluated. In particular, the performance of the

4 | NHSJS Reports © The National High School Journal of Science 2025

4 Delta encoding + Quantization + RLE @ Quantization + RLE

4 Delta encoding + Quantization + RLE @ Quantization + RLE
400

1000

e« — =

300

750

throughput (MB/sec)

Table 3 Computational cost breakdown (NYX, with an error of 1E-5).

é
a 200 w00 Compression Compute time (secs) | Memory us-
H S routine age (GB)
: o Delta encoding | 2.65 1
; » -Error .mle;ance édin;ensio;lles-s) o :]'OUE';;O:'::’IZ:]C::;izs;:zizz o Quantization 01 l
(a) EXAALT (b) NYX RLE 0.23 1.5
% -) A ; »
g 7 £ / Table 4 Computational cost breakdown (NYX, with an error of 1E-5).
o H0 7 : Decompression | Compute time (secs) | Memory us-
él ml SN _/ routine age (GB)
T e vlence ey Eroroleancs (o Delta decoding | 0.35 1
(¢) QMCPACK (d) Hurricane Dequantization | 0.1 1
Fig. 4 Compression throughput as a function of error tolerance with RLD 0.29 1.5
and without delta encoding.
3 le4 le7
10 6
8 400 o2 -
c c4
6 3 3
Q 1 ()
4 200 2
2 0 0 . . .
0 25 50 75 100 0 10 20 30 40 50
0 400 Error Error
(a) Original data (b) Reduced data (with an error of 1E-5) (2) EXAALT (b) NYX
. . .. le7 1le5
Fig. 5 NYX visualization. 4
3
3
€ =)
Table 1 Compression ratios (with a relative error of 1E-1). § 2 §
Dataset Delta encoding + | SZ 7Z¥P 1 1
quantization + RLE
EXAALT | 0.6 11.94 4.21 Bo o024 o8 12 16 80 12 24 36 48
NYX 645277.5625 4264265 | 128 Error Error
QMCPACK 34.264912 414.01 12.9 - (9 QMCPACK (d) Hurricane
Hurricane | 14.182482 199.69 6.67 Fig. 6 Error histogram (with an error of 1E-1).

Table 2 Compression throughput (with a relative error of 1E-1).

Dataset | Delta encoding + | SZ ZFP
quantization + RLE

EXAALT| 121.977959 119 171

NYX 309.158966 148.2 23379

QMCPA(KI84.927307 141.8 784

Hurricane 181.749451 145.4 454.1

following two cases was tested: Case 1: We directly quantize the
data based on the prescribed error and further compress it with
run-length encoding (RLE); Case 2: We apply delta encoding
to preprocess the data, and the resulting deltas are then further

quantized and compressed. The relative error varies from 1E-5
to 1E-01 to test the compression sensitivity to error bounds.
Opverall, the delta encoding performs relatively better at tight
error bounds. As the error bound loosens, direct quantization can
increasingly accommodate data points into a single bucket, and
therefore outperforms delta encoding substantially. Contrary
to the common belief, delta encoding does not consistently
improve the compressibility of data. For example, for NYX
data, as shown in Fig. 3(b), which is highly compressible, delta
encoding makes the overall performance worse as compared
to case 1. This is because RLE requires the strict consecutive
occurrence of symbols to compress data, and delta encoding
can reduce the length of a run in RLE. On the other hand, it
is observed that the compression ratios of the EXAALT data

© The National High School Journal of Science 2025

NHSJS Reports | 5

are less than one (Fig. 3(a)), indicating that compression is
not beneficial in this case. This behavior is largely attributed
to RLE, where the run-length pair can increase the data size if
there are no repeated symbols. For NYX, on the other hand,
both cases can result in highly repeated symbols leading to an
efficient RLE performance and high compression ratios. Fig.
4 evaluates the compression throughput for the four datasets
across error bounds. Although case 1 involves less computation,
it has a much higher throughput than case 2.

Fig. 5 further illustrates a scientific visualization of NYX.
In particular, the left subfigure shows the baryon density of
the original data, while the right subfigure shows the visual-
ization of the reduced data with an error tolerance of 1E-5.
Overall, it is observed that the reduction maintains a decent
fidelity of the data with error control. Tables 1 and 2 further
compare delta encoding with two state-of-the-art compressors,
SZ and ZFP, concerning compression ratios and throughput,
respectively. It is demonstrated that delta encoding offers an
alternative to these tools, providing either higher compression
ratios or improved throughput in certain scenarios. Tables 3
and 4 further break down the computational cost of compress-
ing and decompressing NYX, respectively. In particular, the
pipeline of compression/decompression is broken into delta en-
coding/decoding, quantization/dequantization, and RLE/RLD.
While the delta encoding is the most time-consuming step, RLE
consumes the largest memory space, as it needs to reserve extra
space in case the data is not highly compressible. Fig. 6 plots
the error distribution for all datasets at the relative error of 1E-1.
Overall, the results show that the errors are mostly in either
Gaussian or Uniform distribution, which largely depends on the
characteristics/compressibility of the data.

This work aims to design an error control scheme for delta
encoding. The results show that a wide range of errors can be
satisfied using the proposed design. This work is limited to
using RLE as the back-end lossless compression algorithm. As
aforementioned, RLE requires consecutively repeated symbols
to reduce data. This stringent requirement often leads to lower
compression ratios. Future research will study more advanced
algorithms, such as the Huffman tree, which can capture and
compress non-consecutive repeated symbols, and examine the
performance of delta encoding. On the other hand, a simple
uniform quantization scheme is utilized in this paper to con-
vert data to buckets. More adaptive quantization can be used
to enhance compression efficiency and accuracy. Overall, it is
observed from this work that the error control scheme needs to
be carefully designed, and its performance is highly sophisti-
cated depending on many factors, including the complexity of
the algorithm and the back-end lossless compressor.

Conclusion and Future Work

This paper proposes a delta encoding scheme with error control
for reducing scientific data. We implement it using the C lan-
guage and evaluate the performance of delta encoding across
four real datasets. By using the reconstructed value of the previ-
ous data point as a reference, we can effectively bound the error.
Regarding performance, the added delta encoding improves the
performance as compared to the state-of-the-art in certain scenar-
ios, and thus can be considered to be incorporated into existing
tools. For future work, we will test delta encoding and RLE for
a wider range of data from different domains with different char-
acteristics. More in-depth studies of other lossless compression
algorithms, such as the Huffman tree, and adaptive quantization
schemes, will be conducted in future work. In particular, the
Huffman tree is a more promising technique than run-length
encoding because it does not require repetitive symbols to occur
consecutively. As such, the Huffman tree can better compress
data. Meanwhile, the idea of adaptive quantization is that for
data ranges where more data points fall, smaller buckets can
potentially reduce the error.

Acknowledgments

I would like to thank Dr. Qing Liu from the New Jersey Institute
of Technology for conceiving the idea of lossy compression
for scientific data and suggesting the set of experiments to be
performed.

References

1 WikiChip, Summit (OLCF-4) - Supercomputers, |https://
en.wikichip.org/wiki/supercomputers/summit) 2018.

2 Zstandard, Fast real-time
//www.zstd.net, 2025.

compression algorithm, https:

3 J. Gailly and M. Adler, Zlib, https://www.zlib.net, 2024.

4 S. Di and F. Cappello, 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Chicago, IL, USA, 2016, pp. 730-739.

5 P. Lindstrom, IEEE Transactions on Visualization and Computer Graphics,
2014, 20, 2674-2683.

6 X. Liang et al., IEEE Transactions on Computers, 2022, 71, 1522-1536.

7 K. Zhao et al., IEEE International Conference on Big Data, 2020, pp. 2716—
2724.

6 | NHSJS Reports

© The National High School Journal of Science 2025

https://en.wikichip.org/wiki/supercomputers/summit
https://en.wikichip.org/wiki/supercomputers/summit
https://www.zstd.net
https://www.zstd.net
https://www.zlib.net

	Introduction

