ARTICLE https://nhsjs.com/

Enhancing Reasoning Efficiency and Domain Adaptability of Server-
Linked LLMs by Combining with a Customized Deep Learning Model

Junbum Cho

Received May 12, 2025
Accepted August 11, 2025
Electronic access August 30, 2025

Generative Als capabilities rely on neural networks pre-trained on vast datasets, but this approach faces challenges from data
irregularities and high computational costs up to millions of dollars. Even after extensive training, task contamination from
overlapping training data often compromises few-shot learning evaluations, creating false impressions of Large Language Models
(LLMs) true capabilities. This research introduces the DL-LLM Modular System, a novel method that enhances server-linked
language models on-device performance in audio classification by integrating a specialized Deep Learning (DL) model with LLM
through a modular architecture. The modular system divides complex perceptual processing and reasoning tasks involving audio
data between specialized DL models and LLMs. For this research, a simple DL model using TensorFlow and Teachable Machine
architecture was developed to classify five distinct audio types and integrate with an LLM. Compared to baseline LLMs without DL
integration, this approach demonstrates significant improvements in audio-related reasoning efficiency and accuracy by allowing
LLM to focus solely on data interpretation and reasoning. Experiment results show the system requires significantly fewer prompt
shots for audio classification while reducing average end-to-end processing time from 23,979 ms to 18,824 ms for Gemini 2.5 Pro,
a net improvement of 21.5%. Furthermore, the modular nature of the architecture enables easy and cost-effective customization
to specific domain requirements and expanding potential applications across various fields involving audio classification tasks.
Moreover, this architecture reduces deployment costs by running the DL model on-device, which lessens the computational load

on the main server.
1 Introduction

1.1 Current Trend of LLM Training Methods and Their
Implications

Up to early 2025, three advanced training methodologies define
the landscape of Large Language Model (LLM) training. Prompt
engineering has evolved into a sophisticated practice for guid-
ing model outputs without modifying underlying architectures”,
with few-shot learning demonstrating particular promise for im-
proving performance?, though concern that it creates false im-
pression also exists=. Retrieval Augmented Generation (RAG)
has become a cornerstone of practical LLM implementation,
with hybrid systems combining knowledge graphs and vector re-
trieval representing the cutting edge of this approach. Efficient
fine-tuning methods such as LoRA have gained prominence
for their ability to adapt models with minimal computational
resources, making customization more accessible®.
Meanwhile, the economic landscape of LLM training reveals
a staggering investment across the Al industry, with costs rang-
ing from thousands to hundreds of millions of dollars, depend-
ing on model size and complexity. Frontier models like GPT-4
reportedly cost approximately $100 million to train®®, while

mid-sized models like GPT-3 (175B parameters) require more
than $4.6 million, and smaller 7B parameter models can be
trained for around $30,000. These expenses are primarily driven
by computational infrastructure, substantial energy consump-
tion (GPT-3s training consumed 1,287 MWh of electricity9,
and the high salaries commanded by Al researchers and engi-
neers. Cost-reduction strategies include efficient fine-tuning
methods like LoORA!?, model architecture optimization through
techniques such as mixed-precision training and knowledge dis-
tillation 12, and infrastructure optimization via strategic cloud
resource management:2.

1.2 Research Objective

Research prior to March 2025 had relied on generic multi-
modal integration'#, efficiency through existing architecture
optimization', Reinforce Learning Human Feedback (RLHF)-
based fine-tuning'®, and standard pre-training or fine-tuning
pipelines'”. These approaches face challenges from data irreg-
ularities and computational costs reaching millions of dollars.
This paper takes the first step toward improving server-linked
on-device LLMs reasoning efficiency and a cost-effective server-
adaptability through its combination with a DL model, primarily

© The National High School Journal of Science 2025

NHSJS 2025 | 1

focusing on audio processing, aiming to distinguish five cate-
gories - Background Noise, Screaming Noise, Gunshot, Glass
Shattering, and Siren.

This paper introduces the DL-LLM Modular System, a novel
framework that enhances LLM reasoning efficiency, decision
latency, and computational cost through the strategic integration
of specialized DL models with particular emphasis on complex
audio data analysis. The modular systems performance was
systematically evaluated across multiple frontier LLMs (OpenAl
ChatGPT, Google Gemini, DeepSeek, and Anthropic Claude) to
quantify improvements in all three areas compared to traditional
approaches. Fig 1 represents the operating mechanism of the

DL Model
(TensorFlow Modeling)

Audio
Analysis Output

Raw

Audio Data

) (ChatGPT, Gemini, etc)

Fig. 1 Simplified Operation Diagram of the DL-LLM Modular System.

DL-LLM Modular System. The raw audio file is accepted by the
DL model trained based on the TensorFlow modeling method,
whose analysis outputs are directly fed to the LLM in a text
format.

1.3 Related Works

Prior work in modular or hybrid architectures combining deep
learning with large language models has demonstrated promis-
ing adaptability in few-shot scenarios. Notably, Flamingo'®
integrates pretrained vision and language models using gated
cross-attention mechanisms, enabling rapid adaptation to mul-
timodal tasks such as visual question answering with minimal
fine-tuning.

Unlike Flamingo, which fuses multimodal inputs in a shared
transformer pipeline, our DL-LLM Modular System distinctly
separates perceptual processing (via a specialized audio DL
model) from reasoning (via an LLM), facilitating lower com-
putational cost and enhanced task-specific interpretability. This
architectural modularity allows greater flexibility in customiz-
ing domain-specific inputs while maintaining general reasoning
capabilities and efficiency.

2 Results

2.1 Overview

The evaluation of the DL-LLM Modular System was conducted
through two complementary testing branches. The first testing
branch assessed the system’s fundamental audio classification
capabilities and reasoning efficiency by comparing the sound
classification results and number of required shots the against
baseline server-linked LLMs without specialized DL model

integration. The second test extended beyond basic classifica-
tion to evaluate inference capabilities and reasoning efficiency
with latency measurements, challenging both systems with so-
phisticated tasks while conducting comprehensive performance
evaluation including processing time analysis.

Both tests were completed on identical hardware configura-
tions: a MacBook Pro (14-inch, 2021) equipped with an Apple
M1 Pro chip featuring a 10-core CPU (8 performance cores +
2 efficiency cores), 14-core GPU, 16-core Neural Engine, and
32GB unified LPDDRS memory running macOS 15.2 (24C101).
However, different software platforms as detailed in their re-
spective methodology sections.

2.2 Evaluating Modular System Performance Against
ChatGPT-40 in Audio Classification and Reasoning
Tasks

2.2.1 Overview

The analysis results and number of shot attempts taken between
the DL-LLM Modular System and a baseline model (raw GPT-
40) were compared. Conducted with a non-inference model,
this test strictly assessed the modular system and the raw LLMs
recognition accuracy and efficiency for four distinct acoustic
events: Screaming, Glass Shattering, Gunshot, and Siren. To do
so, each models response and the number of shots until reaching
the correct recognition were counted. Shot attempts refer to the
number of example instances provided to the model before clas-
sification: Zero Shot (no examples), One Shot (one example),
and Two Shot (two examples), with higher shot counts indicat-
ing the model required more contextual examples to achieve
accurate recognition. For the testing, audio files illustrated in
the Table 1 were utilized, where total eight test sessions were
done using all the eight prepared audio files were utilized. Some
of the results are illustrated in the following sections.

2.2.2 Challenges with Existing Multimodal LL.Ms
While seeking appropriate benchmarks for audio classification
tasks, several existing multimodal LLLMs were evaluated but
revealed significant limitations that precluded meaningful com-
parison.

Although OpenAI’s Whisper-Integrated GPT conducts audio
processing using a separate model, Whisper, this system proves
inadequate for the required comparison needs. Whisper primar-
ily focuses on transcribing human speech to text and cannot
effectively interpret brief non-verbal audio segments, such as
the 1-second audio files required for these experiments.

Microsoft’s Project Rumi presented similar limitations. Be-
yond being restricted to research access only, this system focuses
on enhancing LLM interpretation depth by separating vision
and audio models to extract sentiment and emotional cues from
user input. This approach does not align with the objective of
classifying discrete audio types.

2 | NHSJS2025

© The National High School Journal of Science 2025

Table 1 Details of Audio Files Used for DL-LLM Modular System Testing for Section 2.1. Duration and description of each test audio file is

illustrated by the table.

Audio Data Length | Audio File Informa- | File Detail of the Sound
(sec) tion Count
Screaming 1 WAV file format 1 The test utilized crowd screaming
16 kHz sampling rate audio featuring persistent, intense
shouting.
16-bit PCM (Pulse | 1 The test utilized female screaming
Code Modulation) en- audio featuring short, abrupt shout-
coding ing.
Mono channel config-
uration
Siren 1 WAV file format 16 | 1 The Siren sound had a repeating,
kHz sampling rate oscillating pattern typical of police
sirens and alternating frequency
bands, suggesting the classic wee-
WOoO pattern
16-bit PCM encoding | 1 The Siren sound featured a continu-
Mono channel config- ous rising and falling pitch in long
uration sweeps, creating a warbling, un-
dulating pattern typical of air raid
or tornado warning sirens, distinct
from the rapid alternating tones of
emergency vehicles.
Glass Shattering | 1 WAV file format 16 | 1 The glass shattering sound featured
kHz sampling rate a breaking glass cup, with the test
focusing on the peak impact mo-
ment that produces the most char-
acteristic shattering pattern.
16-bit PCM encoding | 1 The glass shattering sound featured
Mono channel config- a large window pane breaking, with
uration the test focusing on the cascading
fragments creating multiple over-
lapping crash sequences rather than
a single sharp impact.
Gunshot 1 WAV file format 16 | 1 The gunshot audio featured a sharp,
kHz sampling rate distinctive Tang firing sound typi-
cal of small arms discharge.
16-bit PCM encoding | 1 The gunshot audio featured a deep,
Mono channel config- booming rifle discharge with ex-
uration tended reverberation, creating a
thunderous echo rather than a sharp
crack.

Total eight audio files detailed in Table 1 were used for the following experimentations in setion 2.2 and 2.3, where the first of the
two audio file was containing a similar sound with the audio file used for the training while the other, second file, had a variation
from the training dataset. The detailed audio data description used for the training can be seen at table 12 located at section 4.3,
the Methods section.

2.2.3 Challenges through Direct Conversation with LLM output modalities, including audio, in a web environment (ac-
Given that ChatGPT-40 natively processes multiple input and ~ cessible through chatgpt.com), a direct approach was attempted

© The National High School Journal of Science 2025 NHSJS 2025 | 3

by playing the desired audio files directly to the model, ex-
ploting GPT-40s conversational system. This method proved
unsuccessful, reinforcing that language models alone have inher-
ent limitations accurately classifying audio signals, particularly
non-verbal audio content.

Table 2 — Experimental Conversation Testing ChatGPT-40’s
Direct Audio Processing Capabilities. Transcript of experimen-
tal conversation testing ChatGPT-40’s real-time audio process-
ing capabilities. “Time” indicates researcher’s audio input times-
tamps (ChatGPT responses are text-based). Results demonstrate
limitations in processing environmental audio versus direct file
uploads.

2.2.4 Approach

Sound classification accuracy and the number of shot exam-
ples required to achieve correct classification were quantified
using a web-based GPT interface, which allowed for iterative
testing and precise shot counting through direct response evalu-
ation. The baseline model received raw audio inputs paired with
prompts, while the DL-LLM system processed pre-classified
outputs from the DL model. This methodology enabled precise
tracking of response accuracy and facilitated an iterative ques-
tioning protocol for shot-attempt measurement. For both models,
audio files matching the DL models input specifications were
prepared, as illustrated in Table 1. All files were renamed to
“unknown_audio_file.wav” to eliminate filename-induced bias.

Table 2 Experimental Conversation Testing ChatGPT-40’s Direct
Audio Processing Capabilities. Transcript of experimental
conversation testing ChatGPT-40’s real-time audio processing
capabilities. “Time” indicates researcher’s audio input timestamps
(ChatGPT responses are text-based). Results demonstrate limitations
in processing environmental audio versus direct file uploads.

Speaker Transcript

Researcher Hello, GPT.

ChatGPT Hey there! How’s it going? What’s on

your mind today?

Researcher Can you distinguish the sound that 'm

playing through my cell phone?

ChatGPT I can’t directly hear or identify sounds
from your environment, but if you de-
scribe it to me or let me know what
you’re trying to figure out, I’'ll do my

best to help!

Researcher If I play the sound that I want through
my cell phone this time, can you distin-

guish it?

ChatGPT I can’t actually pick up or analyze audio
directly from your surroundings. But if
you tell me what kind of sound it is or
what you’re curious about, I can still try

to help out!

Researcher So, to be exact, you mean that you can-
not hear the sound in spite of that I'm

playing it through my cell phone?

ChatGPT Exactly! I can’t hear any real-time au-
dio from your environment. But if you
have any questions or need help with
something related to the sound, feel free

to let me know!

Researcher What happens if I give you the audio file

directly?

ChatGPT If you share the audio file with me di-
rectly, I can definitely help analyze it or
provide some insights based on whats in
the audio. Feel free to upload it when-

ever you’d like!

4 | NHSJS 2025

© The National High School Journal of Science 2025

2.2.5 Data Collected

* Screaming Sound
The first test evaluated the screaming sound of people,
truncated into 1 second. The table below shows results for

audio files similar to those used in training.

Table 3 Comparative Analysis of Sound Identification for Screaming

Sound: Raw GPT-40 vs DL-LLM Modular System. ’-’ symbols

indicate cases where the GPT model successfully classified the audio

input on the first attempt, requiring no additional trials.

* Glass Shattering Sound
The second test evaluated a 1-second glass-shattering
sound. The table below shows results for audio files similar
to those used in training.

Table 4 Comparative Analysis of Sound Identification for Glass
Shattering: Raw GPT-40 vs DL-LLM Modular System. ’-” symbols
indicate cases where the GPT model successfully classified the audio
input on the first attempt, requiring no additional trials.

Judgment Output GPT 40 (Recognition) - | DL (Recognition)
Input & GPT 40 (Judgement) - GPT 40 (Judge-
ment) Modular
System
Zero Shot Input 1 Can you identify what | Can you identify
sound this is? (Un- | what sound this is?
known_Audio_File.wav
attached.)
The current de-
tected class:
- Background
Noise: 0.0005
- Glass Shattering:
0.0000
- Gunshot: 0.0018
- Screaming:
0.9534
- Siren: 0.0443
Output 1
(Generates a frequency spec- | The dominant clas-
trum) sification is scream-
ing, which makes it
the most probable
sound.
Here’s the frequency spec-
trum of the audio file. (...)
To get a better idea of what
it is, would you like me
to: Visualize it as a spectro-
gram?, Try classifying it us-
ing a pre-trained sound recog-
nition model?, Or do you al-
ready have a few guesses you
want to confirm?
One Shot Input 2 Please proceed with your plan | -
to determine what sound this
audio file contains.
Output 2 -
We’re running into limitations
here the necessary library for
YAMNet (tensorflow) isnt cur-
rently available in this envi-
ronment.
Two Shot Input 3 Please simply proceed with | -
your own plan to make a final
decision on what sound this
audio file contains.
Output 3 | A microwave or oven timer | -
alert
A digital watch alarm
A sensor or equipment status
beep

As seen, the baseline GPT-40 model incorrectly inferred the
given sound signal as microwave or oven timer alert sounds
despite multiple shot attempts. In contrast, the DL-LLM Modu-
lar System successfully identified the correct sound-based DL
models classification outputs with a single-shot attempt.

Judgment Input & Output GPT 4o (Recognition) - | DL-LLM Modular System
GPT 40 (Judgement)

Zero Shot Input 1 Can you identify | Can you identify what sound
what sound this is? (Un- | this is?
known_Audio_File_2.wav
attached.)

The current detected class:
- Background Noise: 0.0005
- Glass Shattering: 0.9995
- Gunshot: 0.0000
- Screaming: 0.0000
- Siren: 0.0000
Output 1 (Generates a spectro- | Based on those detection prob-
gram and ceases the | abilities, the sound is almost
analysis.) certainly glass shattering.
To identify the sound
more precisely, I can:
1. Play the sound back
for you.
2. Try identifying the
type (e.g., beep, voice,
mechanical noise, etc.).
3. Extract features like
pitch or formants.
Input 2 Please proceed with your | -
plan to determine what
sound this audio file con-
tains.
One Shot Output 2 -
- Electronic beeps
- Alarm signals
- Bird chirps
- Certain mechani-
cal/electrical sounds

As seen, the baseline GPT-40 model incorrectly inferred the
given sound signal as a “synthetic electronic alarm tone” sound
despite multiple shot attempts. while the DL-LLM Modular
System successfully identified the correct sound with a single-
shot attempt.

© The National High School Journal of Science 2025

NHSJS 2025 | 5

e Siren Sound
The continued testing evaluated the 1-second Siren sound.
The table below shows results for audio files similar to
those used in training.

Table 5 Comparative Analysis of Sound Identification for Siren: Raw
GPT-40 vs DL-LLM Modular System. ‘-’ symbols indicate cases
where the GPT model successfully classified the audio input on the
first attempt, requiring no additional trials.

* Gunshot Sound
The final testing evaluated the two model architectures
ability to discern gunshot sounds. The table below shows
results for audio files having variations compared to those
used in training.

Table 6 Comparative Analysis of Sound Identification for the Gunshot
Sound: Raw GPT-40 vs DL-LLM Modular System. ‘-’ symbols
indicate cases where the GPT model successfully classified the audio
input on the first attempt, requiring no additional trials.

Inputs & Responses Raw ChatGPT-do DL-LLM Modular System Judgment Input & Out- | GPT 4o (Recognition) - | DL-LLM Modular System
Zero Shot Prompt 1 Can you identify | Can you identify what sound put GPT 40 (Jud 0
rhat S(i:nd‘thlls: ‘115? (Un- | this is? Zero Prompt 1 Can you identify | Can you identify what sound
EOWh“d)“d“’— ile3.wav Shot what sound this is? (Un- | this is?
attached. A
k _Audio_File_4.
The current detected class: at[iZK?ed)u oA
-]éilicsg;(l);rmd NOl'Sfi): 80%(300 The current detected class:
- o ab'&h dgeof(l)%% - - Background Noise: 0.0218
: Scurl;rr(l)tn '.O 0002 - Screaming: 0.1687
o 019g9'98. - Gunshot: 0.7475
- Siren: 0. i
- Siren: 0.0446
Response 1 (Generates a .s:pfctru- - Glass Shattering: 0.0174
8 “’]". ‘Aand ceases the Response (Generates a waveform | Based on the detection scores
analysis.) Based on the d X alts 1 and spectrogram and | you gave, the sound is most
‘l“’vh‘”“:l eh et‘ecuonfesu [‘5 ceases the analysis.) likely a gunshot.
]Y“i‘;: :re‘rér: e sound is most Heres the spectrogram of
1 a si . 1
If you can tell me more yas the audio you uploaded.
It shows h the fre-
about the contextwhere O ef Le
the sound came from B o o i o
Ah ! sound evolves over time.
;)I;g";’“ fliate{(:;nszis\ljzc;oﬁ To identify the sound, I
need to analyze a fe
a more specific analysis charactericticz'z v
o]r tr){ to match it more _ Duration
closely. - Frequency range
One Shot Prompt 2 Please proceed with your | - - Ten(-];poraly panegm (e.g.
plan (jt‘t’hfjelte"(jfflln'; what repeating, constant tone,
sound this audio file con- sudden bursts)
tains. One Prompt 2 Please proceed with your | -
Response 2) - Shot plan to determine what
A short electronic beep sound this audio file con-
or alert tone. tains.
Response Most likely source: -
2
The observed trend in the two previous test sessions continues. A steady electronic tone
such as a test signal,
alarm tone, or electronic
device alert.

2.3 Performance Evaluation of the Modular System Em-
ploying Various Inference LLM Models

2.3.1 Overview

Beyond shot attempts and classification accuracy, to evalu-
ate how the modular system affects LLM reasoning efficiency
in terms of latency, tests were expanded beyond the initial
ChatGPT-40 implementation to include four additional infer-
ence LLMs: Gemini 2.5 Pro, Claude 3.7 Sonnet, DeepSeek
R1, and Grok-3. Although Metas Llama 4 Maverick and Ope-
nAls ChatGPT-o1-pro were initially targeted for testing, both
were excluded due to limited publicly available APIs. Thus, the
evaluation framework specifically assessed the available models
advanced reasoning abilities beyond basic audio signal analysis
through targeted reasoning tasks.

To obtain statistically robust datasets, four additional tests were
conducted, using the remaining audio file illustrated in Table 1.
The entire results are presented in Table 7 below.

2.3.2 Approach

Given the growing prominence of inference language models’?,
this test assessed the LLMs reasoning capability through tempo-
ral efficiency in audio classification tasks, where the processing
latency the time required by different architectures to distin-
guish between acoustic event categories reliably was evaluated.
The experimental framework was created through the modular
architecture developed in Python using Google Colabs computa-
tional environment, illustrated in the following system diagrams.

Using the audio files in Table 7, each sound category under-

6 | NHSJS 2025

© The National High School Journal of Science 2025

Table 7 Comparative Prompt Shot Counts for Audio Classification:
Baseline GPT-40 vs. DL-LLM Modular System. The number of
prompt attempts required to correctly classify four acoustic event
typesScreaming, Glass Shattering, Siren, and Gunshotacross two
independent test sessions per sound are shown. The DL-LLM Modular
System consistently reduces the number of required shots by one
(median reduction = 1), a difference that is statistically significant by a
one-sided Wilcoxon signed-rank test (W = 36, p = 0.0039).

Sound Type Test Ses- | Baseline DL-LLM Difference
sions GPT-40 Modular (Base-
System lineModular
Structure)
Screaming Test 1 3 1 2
Test 2 3 1 2
Glass Shattering Test 1 2 1 1
Test 2 3 1 2
Siren Test 1 2 1 1
Test 2 2 1 1
Gunshot Test 1 2 1 1
Test 2 2 1 1

With eight paired observations, two for each sound type, the one-
sided Wilcoxon signed-rank test yields W = 36, p = 0.003906,
and a median difference of 1 shot (Baseline Modular). Because
p i 0.05, it can be concluded that the DL-LLM Modular System
meaningfully requires fewer prompt shots than raw GPT-40. In
every case, the integrated DL-preprocessing pipeline reduced
the required shots by one. Furthermore, as shown in Figures 2
to 5, the modular system achieved higher classification accuracy
than raw GPT-40 by correctly identifying sound types. This
demonstrates consistent improvement in the LLM’s reasoning
efficiency when interpreting audio signals, effectively address-
ing the LLM’s inherent limitations in processing acoustic data
without specialized preprocessing.

Al Provider Server

(orome)

Raw N
Audio Data

(On Dewce>7

LLM
Classification
Results Display

Prepared
Prompt with
Audio Analysis
Output

DL Model

Time Measurement Range

Fig. 2 DL-LLM Modular System Architecture with 7 Measurement
Settings.

A\ Provider Server

Prepared
Raw A"a'ys's Prompt LLM
P . Requesting LLM 1 wnn Ana‘ . LLM2 Classification
Prompt V Results Display

Time Measurement Range

Fig. 3 Baseline LLM Architecture with Response Time Measurement
Settings.

went five test sessions: the first two used sounds with slight
variations from the training dataset, while the remaining three
used sounds similar to those in the training data.

2.3.3 Limitations

All latest LLMs planned for testing, excluding Gemini 2.5 Pro,
did not accept audio files. Those who did not accept audio file
analysis were excluded from the experiment. Ultimately, Gem-
ini 2.5 Pro became the only model that was tested. Furthermore,
since API performance metrics are susceptible to server traf-
fic fluctuations, this may have introduced minor measurement
inconsistencies.

© The National High School Journal of Science 2025

NHSJS 2025

2.3.4 Data Collected

Table 8 Performance Comparison of the Baseline models and the DL-LLM Modular System for Gemini 2.5 Pro and Deepseek R1. ’-’ symbols
indicate cases where the specified architecture (Baseline Model) were non-functional as the raw LLM API was incapable of processing raw

audio files.
Gemini 2.5 Pro DeepSeek-R1
Baseline Model DL-LLM Baseline Model | DL-LLM
Modular (DeepSeek-R1) Modular
System System
(Gemini 2.5 Pro)
Time Spent Time Spent
(ms) (ms) Time Spent (ms) | Time Spent (ms)
Sound Test Ses- | Processing Time
Types sions
Screaming 1 LLM /DL 7655.62 5.58 - 10.98
LLM 15348.03 18983.09 - 25560.9
Total 23003.65 18988.67 - 25571.88
2 DL Model 5128.9 26.9 - 12.89
LLM 16360.7 17110.74 - 34369.59
Total 21489.6 17137.64 - 34382.48
3 DL Model 6060.24 8.47 - 6.1
LLM 20430.29 18760.5 - 36974.56
Total 26490.52 18768.97 - 36980.66
4 DL Model 5633.03 17.72 - 5.25
LILM 15086.56 21504.29 - 42999.72
Total 20719.59 21521.71 - 43004.97
5 DL Model 6512.43 18.87 - 6.93
LLM 16582.59 18336.07 - 29368.06
Total 23095.02 18354.94 - 29374.99
Siren 1 LLM /DL 5644.49 5.61 - 17.88
LLM 14356.95 17544.13 - 37348.95
Total 20001.44 17549.74 - 37366.83
2 LLM /DL 6162.28 8.53 - 5.33
LLM 18611.46 18758.62 - 37140.01
Total 24773.74 18767.15 - 37145.34
3 LLM /DL 6923.01 5.46 - 9.44
LLM 20860.37 15907.18 - 56452.92
Total 27783.38 15912.64 - 56462.36
4 LLM /DL 4214.63 5.82 - 14.46
LILM 11713.67 16923.53 - 29897.9
Total 15928.3 16929.35 - 29912.36
5 LLM /DL 5243.74 5.24 - 5.77
LLM 17977.47 16019.2 - 35549.17
Total 23221.21 16024.44 - 35554.94
Glass Shat- | 1 LLM /DL 5654.29 9.95 - 8.88
tering
LILM 23548.87 18864.91 - 36994.42
Total 29203.16 18874.86 - 37003.3
2 LLM /DL 5409.94 13.29 - 8.18
LLM 19055.01 19818.08 - 33336.72

8 | NHSJS 2025

© The National High School Journal of Science 2025

Total 24464.95 19831.37 - 33344.9
3 LLM /DL 6518.66 4.63 - 6.55
LLM 19124 .91 19296.12 - 31461.11
Total 25643.57 19300.75 - 31467.66
4 LLM /DL 5586.25 5.68 - 54
LLM 15877.37 18032.3 - 29161.41
Total 21463.62 18037.98 - 29166.81
5 LLM /DL 5995.05 4.78 - 6.41
LLM 21702.44 17232.83 - 3212141
Total 27697.49 17237.61 - 32127.82
1 LLM /DL 8002.99 11.27 - 10.15
LLM 18183.88 20154.45 - 45523.59
Total 26186.87 20165.72 - 45533.74
2 LLM /DL 4788.78 4.87 - 5.99
LLM 16580.79 20354.06 - 42679.86
Total 21369.57 20358.93 - 42685.85
3 LLM /DL 6081.64 4.8 - 6.28
Gunshot LLM 20845.39 19857.54 - 36940.83
Total 26927.03 19862.34 - 36947.11
4 LLM /DL 5971.72 11.77 - 6.14
LLM 20644.07 21898.42 - 34303.28
Total 26615.79 21910.19 - 34309.42
5 LLM /DL 6934.85 14.62 - 5.35
LLM 16573.38 20925.55 - 32120.14
Total 23508.23 20940.17 - 32125.49

The test continued with Comparison of the DL-LLM Modular System and the baseline model utilizing Grok-3 and Claude 3.7
Sonnet where as noted, the modular system could not be attained as the APIs did not support direct audio injection.

Table 9 Performance Comparison of the Baseline models and the DL-LLM Modular System for Grok 3 and Claude 3.7 Sonnet. ‘-’ symbols
indicate cases where the specified architecture (Baseline Model) were non-functional as the raw LLM API was incapable of processing raw

audio files.
Grok 3 Claude 3.7 Sonnet
Baseline DL-LLM Baseline Model DL-LLM Modu-
Model Modular lar System
System
Time Spent | Time Spent | Time Spent (ms) Time Spent (ms)
(ms) (ms)
Sound Test Ses- | Processing Time | Time Spent | Time Spent | Time Spent (sec) | Time Spent (sec)
Types sions (sec) (sec)
LLM /DL - 12.77 - 10.39
LLM - 33510.09 - 6724.73
1 Total - 33522.86 - 6735.12
LLM /DL - 8.01 - 6.21
LLM - 13735.82 - 4571.55
2 Total - 13743.83 - 4577.76
LLM /DL - 6 - 6.14
LLM - 7500.7 - 5911.23
3 Total - 7506.7 - 591737
LLM /DL - 6.19 - 7.07
Screaming
© The National High School Journal of Science 2025 NHSJS 2025 |9

LLM - 7303.8 - 5452.55
Total - 7309.99 - 5459.62
LLM /DL - 517 - 524
LLM - 26386.29 - 5371.34
5 Total - 26391.46 ; 5376.58
LLM /DL - 562 : 52
LLM - 9802.03 - 7141.74
1 Total - 9807.65 ; 7146.94
LLM /DL - 7.92 - 6.1
LLM - 14303.74 - 6287.14
2 Total - 14311.66 - 6293.24
LLM /DL - 539 - 8.83
LLM - 16448 47 - 5921.57
3 Total - 16453.86 - 5930.4
LLM /DL - 543 - 503
Siren) LLM - 11594.53 - 5470.2
Total - 11599.96 - 5475.23
LLM /DL - 6.84 - 7.98
LLM - 16977.67 - 5515.24
5 Total - 1698451 - 5523.22
LLM /DL - 34.84 - 6.44
Glass Shat- LLM - 26409.05 - 5190.28
tering 1
Total - 2644389 - 5196.72
LLM /DL - 11.69 - 5.18
LLM - 34014.35 - 5346.21
2 Total - 34026.04 - 5351.39
LLM /DL - 6.48 - 8.51
LLM - 8331.06 - 4373.23
3 Total - 8337.54 - 4381.74
LLM /DL - 547 - 5.48
LLM - 14209.06 - 5341.25
4 Total - 1421453 ; 5346.73
LLM /DL - 8.12 - 10.15
LLM - 13791 - 481223
5 Total - 13799.12 - 482238
LLM /DL - 6.26 : 523
1 LLM - 14319.17 5 647134
Total - 1432543 5 647657
LLM/DL - 6 5 578
2 LLM - 21331.89 5 5629.15
Total 5 21337.89 5 5634.43
LLM/DL - 631 5 575
Gunshot 3 LLM 5 1747081 5 6532.99
Total - 17477.12 - 6538.24
LLM/DL - 521 5 817
4 LLM - 15544.24 5 5939.25
Total 5 15549.45 5 5947.42
LLM/DL - 812 5 519
5 LLM - 22035.16 - 47618
Total - 2204328 5 4766.99

10 | NHSJS 2025 © The National High School Journal of Science 2025

Since Gemini 2.5 Pro was the only model that could accept the raw audio file and thus have the comparative dataset with the
baseline model, after the test, the average processing time duration between the baseline and DL-LLM Modular architecture using
Gemini 2.5 Pro was calculated. The metrics were derived by aggregating 40 sound classification results 20 trials per Gemini-based
model architecture then dividing each dataset by its respective trial count (20). Across all four sound categories, the DL-LLM
Modular System reduced average end-to-end processing time via the Gemini 2.5 Pro API from 23,979 ms to 18,824 msa net

improvement of approximately 5,155 ms (~21.5% faster) . This reduction reflects both the modular division of labor and API
response variability.

© The National High School Journal of Science 2025 NHSJS 2025 | 11

Table 10 Average Model Architecture Processing Time (in

Gunshot

milliseconds) of the Baseline models and the DL-LLM Modular 30,000
System. 25000
Model Baseline Gemini | DL-LLM Modular % 20,000
. . g
2.5 Pro System Gemini 2.5 £ | 5000
Pro 2
- g 10,000
Avg Processing | 23979.34 18823.76 g
. (=]
Time (ms) E 5000 I l I I I
0 LLM- DL- LLM- DL- LLM- DL- LLM- DL- LLM- DL-
Screaming sLLM/DL «LLM
30,000 Fig. 4 Processing Time Comparison with the Baseline and the
g‘ 25,000 DL-LLM Modular System Utilizing Gemini-2.5-Pro.
g 20,000
S 15,00 . L o .
£ improves the LLMs ability to interpret audio signals (i.e., it
g 1M reduces the time required for reliable classification). Although
£ 5000

1 i

LLM- DL- LLM- DL- LLM- DL- LLM- DL- LLM- DL-
LIM LLM LIM LLM LIM LLM LIM LIM LLM LLM
Session 1 Session 2 Session 3 Session 4 Session §
sLLM/DL +~LLM
Siren
30,000
E 25,000
g 20,000
£
%ﬂ 15,000
-
& 10,000
o
ot
1 b 1 U
) ||
LLM- DL- LLM- DL- LLM- DL- LLM- DL- LLM- DL-
LLM LLM LILM LLM LIM LLM LIM LLM LLM LLM
Session 1 Session 2 Session 3 Session 4 Session 5
=LLM/DL =~LLM
Glass Shattering
35,000
. 30,000
w
E 25,000
g
(=1 20,000
& 15000
2
8 10,000
e
&

LLM- DL-
LLM LLM

Session 3

LLM- DL-
LLM LLM

LLM- DL-
LLM LLM

Session 5

LLM- DL-
LIM LM

5,000 .
0
LLM- DL-

LLM LLM

Session 1 Session 2 Session 4

sLLM/DL »LLM

For a more reliable analysis, a series of paired t-tests com-
paring baseline inference times to those of the DL-LLM Mod-
ular System for Gemini 2.5 Pro were conducted. In essence,
they demonstrate that integrating the DL model significantly

Gemini incorporates native audio processing via a sophisticated
tokenization technique transforming acoustic waveforms into
discrete tokens for its neural architecture?’ this built-in mul-
timodal pipeline proved less efficient. For example, on Glass
Shattering trials, the modular system achieved a mean reduction
of 7,038 ms (t(4)=4.865, p=0.008), and on Gunshot trials it saved
4,274 ms on average (t(4)=3.855, p=0.018). Even for Screaming,
the average gain was 4,005 ms (t(4)=2.922, p=0.043). These
p-values all fall below o = 0.05, confirming that the observed
speedups are unlikely to occur by chance. In contrast, the Siren
condition showed a smaller 5,305 ms improvement that did not
reach statistical significance (t(4)=2.433, p=0.072), which may
be attributed to variability in server traffic rather than inherent
model differences, since both the baseline and DL-LLM Mod-
ular System evaluations relied on the same API infrastructure.
Overall, the statistically significant reductions in processing time
demonstrate that the modular design meaningfully enhances rea-
soning efficiency and inference latency in LLMs. Results from
both experiments from sections 2.2 and 2.3 indicate that integrat-
ing the LLM with the DL model significantly improves domain
adaptability for specialized audio tasks, as elaborated in the
conclusion section.

3 Conclusion

3.1 Overview

To build the modular architecture and measure latency improve-
ments, a lightweight CNN was trained using Google Teachable
Machine and exported as a TensorFlow Lite model to recog-
nize five 1-second sounds (background noise, screaming, glass
shattering, gunshot, and siren). A Python/Colab "Module 1”
standardized each audio clip. "Module 2” then to performed
the on-device inference using the DL model and transmitted the

12 | NHSJS 2025

© The National High School Journal of Science 2025

probability vector to inference-only LLM APIs (Gemini 2.5 Pro,
DeepSeek R1, Claude 3.7 Sonnet, and Grok-3) while a high-
precision timer recorded end-to-end processing time. Results
were compared against a Baseline LLM-LLM System that pro-
vided raw audio files directly to the LLM API without modular
preprocessing.

To assess sound classification accuracy, two ChatGPT-40
models were tested: one receiving raw audio files and another
receiving Teachable Machine classification results. The model
provided with classification results demonstrated superior rea-
soning efficiency compared to the raw audio model.

Across eight paired tests spanning four sound types (Scream-
ing, Glass Shattering, Siren, Gunshot), the DL-LLM Mod-
ular System consistently reduced the number of prompt at-
tempts by one compared to raw GPT-40 (median difference
= 1 shot; onesided Wilcoxon signedrank W = 36, p = 0.003906).
In latency evaluations using Gemini 2.5 Pro, average end-to-
end processing time fell from 23 979.34 ms to 18 823.76 ms
(A = 5155.58ms). Paired t-tests confirmed significant speedups
for Glass Shattering (A =7 038 ms, t(4)=4.865, p=0.008), Gun-
shot (A =4 274 ms, t(4)=3.855, p=0.018), and Screaming (A =4
005 ms, t(4)=2.922, p=0.043), while the Siren condition showed
a smaller, nonsignificant improvement of 5 305 ms (p=0.072).

A key limitation of the experiments is that the end-to-end
latency measurements in Section 4.2 depend on the Gemini 2.5
Pro API. API response times can vary due to network conditions
and server load. This limitation was attempted to be resolved
by repeating the latency measurement multiple times. Addi-
tionally, other inference LLM APIs do not support audio input,
which prevented the establishment of alternative DL-LLM Mod-
ular Systems and limited testing to the Baseline LLM-LLM
structure. Consequently, the latency improvement analysis was
constrained to results from the Gemini 2.5 Pro API. Below il-
lustrates a few important insights that can be gained from the
DL-LLM Modular Structure and its experiment results.

3.2 Insights Gained

* Enhanced Reasoning Efficiency The DL-LLM Modular
System implements a strategic division of labor between
complementary Al components, where a specialized DL
model handles complex perceptual data processing (audio
analysis) before transferring these structured outputs to
the LLM. This architecture partially liberates the language
model from complicated processing constraints, allowing
it to focus more effectively on high-level reasoning and
interpretation. As demonstrated in Section 2.2, this spe-
cialization significantly improved classification accuracy
while requiring fewer shot attempts compared to conven-
tional approaches-concrete evidence of enhanced reasoning
efficiency through targeted task allocation.

* Reduced Server Dependency and Response Latency It

is well known that LLMs server-dependency leads to in-
creased response latency“!. This division of labor makes
LLM functionality more efficient by reducing the compu-
tational burden on servers and minimizing performance
latency. Section 2.2 demonstrates how these reduced server
operations lead to faster response generation. This ap-
proach provides an efficient way to run LLM methods,
achieving higher response accuracy while simultaneously
reducing server load and response times.

* Cost-Effective and Potential Domain Adaptation Mov-
ing on, based on the DL models inherent customizability,
dataset flexibility, and relatively low training costs, the
DL-LLM Modular System allows active utilization in var-
ious fields involving audio tasks at a significantly lower
cost than traditional LLM training. In data-limited environ-
ments, the DL model component effectively compensates
for data sparsity by extracting maximum value from avail-
able training examples. The modular architecture further
provides significant data security benefits by restricting sen-
sitive information processing to the isolated DL module,
preventing confidential data from entering large-scale LLM
training pipelines where privacy guarantees are difficult to
enforce. The modular approach simultaneously reduces
implementation costs, lowers technical barriers to special-
ized applications, and enhances data sovereignty critical
advantage for domains with stringent regulatory compli-
ance requirements or proprietary information concerns.

The DL-LLM Modular System fundamentally addresses three
critical challenges facing current LLM implementations: train-
ing inefficiency, computational cost escalation, and dataset limi-
tations. By optimizing the division of responsibilities between
specialized Al components, the DL-LLM Modular System pro-
vides a scalable framework that enhances performance while
simultaneously reducing resource requirements-establishing a
new efficiency paradigm for advanced Al systems in practical
deployment scenarios.

3.3 Future Plans

The ongoing research agenda will focus on three complementary
paths to extend the capabilities of the DL-LLM Modular System
while preserving its efficiency advantages.

¢ General Capability: Expand input diversity by incorpo-
rating audio samples with variable durations and acoustic
characteristics, systematically evaluating how temporal
variations affect classification performance. Additionally,
expanding the modular system to incorporate Small Lan-
guage Models (SLMs) will further support the models com-
plete independence from server dependency and facilitate
on-device deployability.

© The National High School Journal of Science 2025

NHSJS 2025 | 13

* Expanded Domain: Maintain the current models excep-
tional sample efficiency (i.e. ability to achieve high accu-
racy with minimal training examples) while expanding its
classification domain.

* Prompting Engineering: Conduct comprehensive archi-
tecture optimization studies to identify the ideal hyperpa-
rameter configurations and component interactions that
maximize end-to-end system performance. This systematic
exploration will establish empirical guidelines for optimal
DL-LLM integration across diverse application contexts.

4 Methods

4.1 Overview

The development of the DL-LLM Modular System followed a
structured two-phase approach designed to create a seamless
integration between specialized audio processing capabilities
and LLM reasoning. 1) Audio DL model development for
sound analysis, 2) Building the DL-LLM Modular System an
integrated ecosystem accomplishing a unified communication
system that combines the DL model and LLM.

4.2 Development Platforms & Tools
4.3 Building the Audio DL Model for Sound Analysis

DL Model
(TensorFlow Modeling)

‘ Glass Shattering ‘

Background Noise Screaming Noise Gunshot Siren

Fig. 5 Sound Classification Categories in the DL Model Using
TensorFlow. This diagram illustrates the five distinct sound types that
the DL model based on TensorFlow modeling is designed to recognize:
Background Noise, Screaming Noise, Gunshot, Glass Shattering, and
Siren. Audio samples were obtained from diverse sources such as
YouTube.

For the sound classification component, Googles Teachable
Machine was selected as the platform to develop the specialized
deep learning model. This web-based tool offered significant
advantages for this research, providing an accessible yet power-
ful environment to create a convolutional neural network (CNN)
capable of distinguishing between five distinct acoustic events
relevant to crime detection=.

The development process began by establishing five distinct
acoustic event classes as specified in Fig. 2: Background Noise,
Screaming, Gunshot, Glass Shattering, and Siren. Multiple
audio samples were recorded for each class in a controlled
environment as illustrated in Table 12.

Table 11 Development Platforms and Tools. Details and
documentation for each research tool, including specific LLM API
versions utilized, are illustrated by the table.

Tool Tool Description and Version

Name

Google Google Colab (Colaboratory) is a cloud-

Colabora- | based Jupyter notebook environment that

tory allows users to write and execute Python
code in their browser2<. This research used
Google Colab to train the deep learning (DL)
model through TensorFlow and build the DL-
LLM Modular System.

Python Python, a versatile programming language
suitable for data science® was used for the
training of the DL model based on Tensor-
Flow modeling.

TensorFlow| TFLite, a lightweight version of TensorFlow,

Lite provides a great method for running machine

(TFLite) learning models on local laptops and training
the DL model %,

ChatGPT- | ChatGPT was the target LLM testing Pub-

40 lic LLMs basic audio classification ability
without its combination with the DL model
.ChatGPT-40s 2025-03-27 version was uti-
lized for this research>.

Gemini Google Gemini 2.5 Pro API (gemini-2.5-

2.5 Pro pro-preview-03-25:generateContent) was in-
tegrated into both the DL-LLM Modular
System and baseline system to evaluate
reasoning efficiency and improved domain-
adaptation®® This testing was repeated for
the following LLM:s illustrated in the follow-
ing rows.

Claude 3.7 | Claude 3.7 Sonnet API (claude-3-7-sonnet-

Sonnet 20250219) was utilized for the research®’.

Deepseek | Deepseek R1 (deepseek-reasoner) API ver-

R1 sion 2025-01-19 was utilized for the re-
search'%9.

Grok 3 Grok 3 (grok-3) API April 2025 version was
utilized for the research.

During real-time audio input, the Teachable Machine platform
automatically converted the audio data into spectrogramstime-
frequency representations that served as input to the neural net-
work. Once validated, the model was exported in TensorFlow
Lite format, capable of processing input audio as a float32[-
1,44032] tensor (sampled at 44.1 kHz mono) and producing
classification output as a float32[-1,5] tensor representing confi-
dence scores for each of the five sound categories.

As shown in Fig.16, once the model is trained, it processes

14 | NHSJS 2025

© The National High School Journal of Science 2025

Table 12 Quantity, Diversity, and Characteristics of Audio Samples
Used for DL Model Training. Audio samples were balanced across
categories, with the training dataset dynamically based the available
audio sources and sample distributions for each sound class. Audio
data was input by playing sounds directly from a speaker in a
soundproof room, ensuring controlled recording conditions free from
contamination.

Acoustic
Sample

Number of Sam-
ples (1 sec per
sample)
Background 47

Noise

Sound Description

The background noise
category consisted of
quiet, ambient sounds to
differentiate it from other
sound classifications.
The test utilized crowd
screaming audio featur-
ing persistent, intense
shouting.

The gunshot audio fea-
tured a sharp, distinctive
Tang firing sound typical
of small arms discharge.
The glass shattering
sound featured a break-
ing glass window, with
the test focusing on the
peak impact moment
that produces the most
characteristic shattering
pattern.

The Siren sound had a
repeating, oscillating pat-
tern typical of police
sirens and alternating fre-
quency bands, suggesting
the classic wee-woo pat-
tern

Screaming | 56

Gunshot 41

Glass
Shatter-
ing

56

Siren 34

1-second audio clips by converting each into a two-dimensional
spectrogram through a Short-Time Fourier Transform (STFT).
STFT is a signal processing technique that decomposes an au-
dio waveform into overlapping time-localized frequency com-
ponents, enabling the representation of temporal and spectral
features in a matrix format. This spectrogram - functionally
equivalent to an image - is then fed into a compact convolutional
neural network (CNN) for classification.

The CNN begins with alternating 2D convolutional (Conv2D)
layers, which apply trainable filters to detect local patterns (e.g.,
harmonics, transients) in the spectrogram, and max-pooling

)

1-second Audio

l Short Time
Fourier Transform
‘ Preprocessing ¢

Mel Spectrogram

4

Conv2D Layers
‘ Feature Extraction

(CNN) v
Max-Pooling
Layers
Classifer Dense Layers

!

Sound Classes
Softmax Output

Fig. 6 Architecture of the Teachable Machine audio classification
model. The model consists of three sequential stages: preprocessing
(STFT and spectrogram generation), feature extraction (Conv2D and
pooling layers), and classification (dense layers and softmax output).
Each component is optimized to convert raw audio into meaningful
representations for sound classification.

layers, which downsample the feature maps to reduce spatial
resolution while preserving dominant features. These convo-
lutional blocks are followed by one or more fully connected
(dense) layers, which integrate the spatially extracted features
into higher-level representations. Dropout layers are interleaved
with the dense layers to mitigate overfitting by randomly deacti-
vating a subset of neurons during training.

The final output is produced by a softmax classification layer,
which computes a normalized probability distribution over all
predefined sound classes, indicating the models confidence for
each class. The complete inference pipeline can be summarized
as follows:

I-second audio — STFT spectrogram — Conv2D + max-
pooling layers — dense + dropout layers — softmax output.

The trained Teachable Machine model was not further
optimized or fine-tuned based on specific criteria. In-
stead, the TensorFlow Lite model downloaded directly

© The National High School Journal of Science 2025

NHSJS 2025 | 15

from the Teachable Machine web interface was uploaded
to Google Colab for use. The model utilized in this re-
search can be viewed and downloaded via the following link:
https://teachablemachine.withgoogle.com/models/CcUMQ3Lze/
The trained Teachable Machine model displayed a moderate
accuracy as shown by Fig 5, the F1 Score results of the model.

Table 13 Performance Metrics of the DL Teachable Machine Model.

Precision | Recall | F1-Score | Support

Glass 0.73 0.77 0.75 30
Shatter-

ing

Gunshot | 0.76 0.76 0.76 30
Screaming| 0.68 0.59 0.63 30
Siren 0.63 0.61 0.62 30
Micro 0.68 0.68 0.68 120
Avg

Macro 0.7 0.68 0.69 120
Avg

Weighted | 0.7 0.68 0.69 120
Avg

Table 13 details the classification performance of the model
on the four audio categories, evaluated on a test set where the
support, or number of samples for each class, was 30. The results
are presented in terms of precision, which measures the accuracy
of the model’s positive predictions, and recall, which measures
the model’s ability to identify all actual positive instances. The
F1-score, the harmonic mean of precision and recall, is included
to provide a single metric that balances the trade-off between
false positives and false negatives.

The model demonstrates a moderate overall performance,
achieving a macro average Fl-score of 0.69. While this F1-
score may not be optimal for real-world deployment, the perfor-
mance was sufficient for this research, which used distinct audio
samples to focus on the enhancement in an LLMs reasoning effi-
ciency and domain adpatability when coupled with a specialized
DL model.

Table 14 details the audio dataset used for evaluating the
model. The evaluation set consists of 120 unique audio files,
balanced equally with 30 samples for each of the four categories:
Gunshot, Glass Shattering, Screaming, and Siren.

To ensure a robust test of generalization, each category was
diversified with varied acoustic scenarios, such as including
different firearm types for ’Gunshot’ and multiple siren patterns
for ’Siren’. Critically, these files were entirely separate from
the training data to provide an unbiased measure of the model’s
performance on unseen material.

Table 14 Audio File Information Used for the training of the DL
Teachable Machine Model.

Main Category | Audio File Descrip- | Number of
tion Samples
Gunshot Standard small-arms | 15
Tang sound
Rifle or shotgun dis- | 5
charge sounds
Gunshots recorded | 5
outdoors with audible
echo
Distant or muffled | 5
gunshots
Glass Shatter- | A breaking window | 15
ing pane
A breaking glass cup | 8
A smashing bottle 7
Screaming Crowd screaming 10
Individual adult | 10
screams (mix of
male/female)
A child’s scream 5
Lower intensity or ob- | 5
scured screams
Siren Classic “wee-wo0” | 15
police sirens
Ambulance or | 5
fire truck sirens
(wail/yelp)
Sirens with Doppler | 5
effect (passing vehi-
cle)
European-style high- | 5
low sirens

4.4 Building the Modular Architecture by Combining the
DL Model with LLM

The trained audio classification model was integrated with differ-
ent LLM models - Gemini 2.5 Pro, Claude 3.7 Sonnet, DeepSeek
R1, and Grok-3 - to create the DL-LLLM Modular System for
crime sound detection. This integration formed the core of the
system, enabling clear separation between the specialized audio
processing and language reasoning components. The integra-
tion architecture consisted of two principal code modules, the
Audio Preprocessing & Input Standardization module and the
Inference and LLM Engine & Time Measurement module, as
illustrated in the following section.

4.4.1 The Modular System Architecture
The first module of the two separate modules, (1) the Audio

16 | NHSJS 2025

© The National High School Journal of Science 2025

Preprocessing Module, handles signal normalization and format
standardization to meet the precise input specifications required
by DL model, while the (2) the Time-Tracked DL Inference -
LLM Response Module orchestrates the time-measured work-
flow between the DL classification system and subsequent LLM
reasoning processes.

<Module 2>
Time-Tracked
DL Inference - LLM Response

<Module 1> 1 second
—> Audio Preprocessing & —— Audio File with —»
Input Standardization adjusted Format

LLM Reasoning Output
—— &DL +LLM Processing

Audio Data File Time Measurements

Fig. 7 Detailed view of the DL-LLM Modular System.

Module 1: Audio Preprocessing & Input Standardization

The first module handles DL model initialization and audio data
preparation, establishing the TensorFlow Lite interpreter for the
custom sound classification model and configuring input tensors
to match the required format (float32[-1,44032]).
Module 2: Time-Tracked DL Inference - LLM Response The
second module manages the execution pipeline, including model
inference, LLM integration, and performance (process time)
measurement. When an audio file is processed, the TensorFlow
Lite interpreter generates classification confidence scores across
the five predefined sound categories. These structured outputs
are then formatted into a prompt template and transmitted to
LLMs. A high-precision timer is implemented within this mod-
ule to measure the complete processing time, from initial model
inference through API transmission to final response generation,
providing quantifiable metrics for system evaluation.

4.4.2 Implementation of Module 1: Audio Preprocessing
and Input Standardization

Module 1 handles the audio preprocessing for the DL-LLM
Modular System. The code first uploads both the Teachable Ma-
chine DL model and target audio file, then standardizes the audio
by resampling to 44.1 kHz using librosa. To meet Teachable
Machines input requirements, the audio is precisely trimmed
or zero-padded to 44032 samples (approximately one second).
The preprocessing includes injecting minimal Gaussian noise (
= le-5) to prevent mathematical errors during the DL models
internal log-mel spectrogram computation. Finally, the audio
is formatted as a float32 tensor with expanded dimensions and
saved as ’input_tensor.npy’ for Module 2’s DL model inference.

4.4.3 Implementation of Module 2: Time-Tracked DL
Inference - LLM ResponseModule 2 implements the core DL-
LLM integration workflow with precise performance measure-
ment. The code begins by loading the preprocessed input tensor
from Module 1 and automatically detecting the DL model file
in the working directory. It initializes the TensorFlow Lite
interpreter, allocates tensors, and verifies input/output dimen-
sions for compatibility. During DL inference, the system uses
nanosecond-precision timing (time.perf_counter_ns()) to cap-
ture exact processing duration. The raw confidence scores are

tnpor

st(keys())[0]
, sr=44100)

padly, (0, ()

Fig. 8 Code Snippets for Module 1 of the DL-LLM Modular
Architecture. This code snippet illustrates the initial workflow of the
DL-LLM System, specifically the audio input standardization process.
Although the audio file is pre-formatted to meet the required
specifications (length, waveform, etc.), the standardization procedure
is implemented as a safeguard against potential preprocessing errors.
Complete implementation codes for each LLM are available in the
shared Google Colab project (link provided at the end of the Methods
section).

formatted into human-readable percentages for the five audio
classes: Background Noise, Glass Shattering, Gunshot, Scream-
ing, and Siren. The formatted results are then embedded into
a structured prompt instructing the LLM to provide actionable
responses. The system simultaneously measures LLM API re-
sponse time using the same timing methodology. Finally, both
DL and LLM processing times are computed in milliseconds,
enabling quantitative analysis of the modular systems perfor-
mance characteristics and demonstrating the efficiency gains
from specialized task division.

4.4.4 Implementation of the Baseline System Using Gem-
ini 2.5 Pro API: Time-Tracked LLM Inference for Audio
Prediction Based on the InputAs illustrated in Figure 7, this
code block invokes the LLM (Gemini 2.5 Pro) to process the
identical audio file used by the DL-LLM Modular System, main-
taining consistent audio content and formatting specifications
(Iength, waveform, etc.). Here, the LLM is instructed to gener-
ate results in the same format as the Teachable Machine, listing
potential labels with their respective probabilities. The code
measures the LLM’s processing time from the moment the API
call is initiated with the prompt and audio file until the response
is generated.

4.4.5 Implementation of the Baseline System Using Gem-
ini 2.5 Pro API: Time-Tracked LLLM Response for Sound
Classification Based on the Audio PredictionThe LLM API
sound prediction generated by the previous code snippet (Figure
9) is passed to a second LLM API, along with instructions to
classify the sound based on the provided prediction metrics. The

© The National High School Journal of Science 2025

NHSJS 2025 | 17

rint(f Input st a (0] shape'1}")
rint(f*0utput shape: { (6] shape’ 1}")

print(xt)

Fig. 10 Gemini API Audio Analysis and Classification Code Snippets
with Performance Tracking. The code demonstrates the initial

Sl - e workflow of the Baseline LLM-LLM System: the LLM (Gemini 2.5

) ’ Pro) simple audio prediction. Complete implementation is available in
the shared Google Colab project (link provided at the end of the
Methods section).

Fig. 9 Code Snippets for Module 2 of the DL-LLM Modular
Architecture. The code demonstrates the core workflow: specialized
DL model performs audio classification, LLM provides interpretation
and reasoning, with performance metrics quantifying system efficiency
gains. Complete implementation codes for each LLM are available in o
the shared Google Colab project (link provided at the end of the)
Methods section).

ext.strip()

time tracking logic measures processing duration from API call pri(o ent
initiation until response generation. This LLM-LLM architec- ‘
ture replicates the DL-LLM Modular System workflow while =i e oo v o)
relying solely on LLM capabilities rather than incorporating a
specialized DL model for unfamiliar sound classification.

rint(f'Total pro ng tine: {tota 27} ms")

Fig. 11 Gemini API Audio Classification Results Analysis for Sound ‘

Below are the direct links to the modules designed using Prediction. The code demonstrates the continuing, or the final

Google Colab: workflow of the Baseline LLM-LLM System: the LLM (Gemini 2.5
- DL-LLMModularSystemUsingDeepseekR1l{ Pro) performs the audio classification. Complete implementation is
https://colab.research.google.com/drive/ available in the shared Google Colab project (link provided at the end

1Fik70Ne8wmYetTLOEiMuzv_XCKIDwP7Y?authuser: of the Methods section).
3#scrollTo=-5sgZCbsFOZu
- DL-LLMModularSystemUsingClaude3.7Sonnet:

https://colab.research.google.com/ - DL-LLMModelUsingGemini2.5Prohttps:
drive/lpn3yPlrUl1JEOfJDAROT- //colab.research.google.com/drive/
AvsH8z9nbWrF?authuser=3 1pvMwySxEZ8ZTbsGtnRTA1IYM1b69X0Jpv?authuser=
- BaselineLLM-LLMModelUsingGemini2.5Pro{ |3

https://colab.research.google.com/drive/ - DL-LLMModelUsingGrok—3https://
100gPhhifSClvhI33HSwH68b21hxpBXMn?authuser= | colab.research.google.com/drive/

3 1Lww88TbSfrwlUeQfnWkBtamzZ90D8K7Jh2#scrollTo=

18 | NHSJS 2025 © The National High School Journal of Science 2025

DL-LLM Modular System Using Deepseek R1: https://colab.research.google.com/drive/1Fik70Ne8wmYetTL0EiMuzv_XCKIDwP7Y?authuser=3#scrollTo=-5sqZCbsFOZu
DL-LLM Modular System Using Deepseek R1: https://colab.research.google.com/drive/1Fik70Ne8wmYetTL0EiMuzv_XCKIDwP7Y?authuser=3#scrollTo=-5sqZCbsFOZu
DL-LLM Modular System Using Deepseek R1: https://colab.research.google.com/drive/1Fik70Ne8wmYetTL0EiMuzv_XCKIDwP7Y?authuser=3#scrollTo=-5sqZCbsFOZu
DL-LLM Modular System Using Deepseek R1: https://colab.research.google.com/drive/1Fik70Ne8wmYetTL0EiMuzv_XCKIDwP7Y?authuser=3#scrollTo=-5sqZCbsFOZu
DL-LLM Modular System Using Claude 3.7 Sonnet: https://colab.research.google.com/drive/1pn3yPlrU1JEOfJDAROT-AvsH8z9nbWrF?authuser=3
DL-LLM Modular System Using Claude 3.7 Sonnet: https://colab.research.google.com/drive/1pn3yPlrU1JEOfJDAROT-AvsH8z9nbWrF?authuser=3
DL-LLM Modular System Using Claude 3.7 Sonnet: https://colab.research.google.com/drive/1pn3yPlrU1JEOfJDAROT-AvsH8z9nbWrF?authuser=3
DL-LLM Modular System Using Claude 3.7 Sonnet: https://colab.research.google.com/drive/1pn3yPlrU1JEOfJDAROT-AvsH8z9nbWrF?authuser=3
Baseline LLM-LLM Model Using Gemini 2.5 Pro: https://colab.research.google.com/drive/1QOgPhhifSClvhI33HSwH68b21hxpBXMn?authuser=3
Baseline LLM-LLM Model Using Gemini 2.5 Pro: https://colab.research.google.com/drive/1QOgPhhifSClvhI33HSwH68b21hxpBXMn?authuser=3
Baseline LLM-LLM Model Using Gemini 2.5 Pro: https://colab.research.google.com/drive/1QOgPhhifSClvhI33HSwH68b21hxpBXMn?authuser=3
Baseline LLM-LLM Model Using Gemini 2.5 Pro: https://colab.research.google.com/drive/1QOgPhhifSClvhI33HSwH68b21hxpBXMn?authuser=3
DL-LLM Model Using Gemini 2.5 Pro https://colab.research.google.com/drive/1pvMwySxEZ8ZTbsGtnRTA1YMlb69X0Jpv?authuser=3
DL-LLM Model Using Gemini 2.5 Pro https://colab.research.google.com/drive/1pvMwySxEZ8ZTbsGtnRTA1YMlb69X0Jpv?authuser=3
DL-LLM Model Using Gemini 2.5 Pro https://colab.research.google.com/drive/1pvMwySxEZ8ZTbsGtnRTA1YMlb69X0Jpv?authuser=3
DL-LLM Model Using Gemini 2.5 Pro https://colab.research.google.com/drive/1pvMwySxEZ8ZTbsGtnRTA1YMlb69X0Jpv?authuser=3
DL-LLM Model Using Grok-3 https://colab.research.google.com/drive/1Lww88TbSfrwUeQfnWkBtamZ9QD8K7Jh2#scrollTo=yzNfD6rftybt&uniqifier=2
DL-LLM Model Using Grok-3 https://colab.research.google.com/drive/1Lww88TbSfrwUeQfnWkBtamZ9QD8K7Jh2#scrollTo=yzNfD6rftybt&uniqifier=2
DL-LLM Model Using Grok-3 https://colab.research.google.com/drive/1Lww88TbSfrwUeQfnWkBtamZ9QD8K7Jh2#scrollTo=yzNfD6rftybt&uniqifier=2
DL-LLM Model Using Grok-3 https://colab.research.google.com/drive/1Lww88TbSfrwUeQfnWkBtamZ9QD8K7Jh2#scrollTo=yzNfD6rftybt&uniqifier=2

vzNfD6rftybt&unigifier=2

5

Acknowledgements

I would like to express my sincere gratitude to Mr. Sim Jung-
won for his invaluable guidance and mentorship throughout
this research. His technical insights, methodological guidance,
and consistent support were instrumental in overcoming key
challenges and bringing this work to fruition.

I would also like to thank Mr. Evan Sayles for providing

valuable feedback on my paper, particularly regarding statistical
analysis and professional formatting standards that significantly
enhanced the quality of this research.

References

1

10

11

12

13

P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal and A. Chadha, arXiv
preprint arXiv:2402.07927, 2024.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever and D. Amodei,
arXiv preprint arXiv:2005.14165, 2020.

C. Li and J. Flanigan, arXiv preprint arXiv:2312.16337, 2023.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang and
H. Wang, arXiv preprint arXiv:2312.10997, 2023.

T. Dettmers, A. Pagnoni, A. Holtzman and L. Zettlemoyer, arXiv preprint
arXiv:2305.14314, 2023.

K. Buchholz, The extreme cost of training Al models, 2024, https:
//www.forbes.com/sites/katharinabuchholz/2024/08/
23/the-extreme-cost-of-training-ai-models/, Forbes.

TeamGPT, How much did it to train GPT-4?, 2024,
https://team-gpt.com/blog/how-much-did-it-cost—
to-train-gpt-4/.

cost

M. Tatarek, Costs and Dbenefits of your own LLM, 2023,
https://medium.com/@maciej.tatarek93/costs—-and-
benefits—of-your—own-11m-79f58c0eb47f, Medium.

J. Cho, Als growing carbon footprint, 2023, https://
news.climate.columbia.edu/2023/06/09/ais—growing—
carbon-footprint, Columbia Climate School News.

R. Robles, Comparing fine-tuning optimization techniques: LoRA, QLoRA,
DoRA, and QDoRA, 2024, https://www.encora.com/insights/
comparing-fine-tuning-optimization-techniques-—
lora-glora-dora-and-qgdora, Encora.

X. Xu, M. Li, C. Tao, T. Shen, R. Cheng, J. Li, C. Xu, D. Tao and T. Zhou,
arXiv preprint arXiv:2402.13116, 2024.

R. Wang, Y. Gong, X. Liu, G. Zhao, Z. Yang, B. Guo, Z. Zha and P. Cheng,
arXiv preprint arXiv:2501.17116, 2025.

S. Oliver and M. Lam, Three proven strategies for optimizing Al costs, 2024,
https://cloud.google.com/transform/three-proven-
strategies—for-optimizing—ai-costs| Google Cloud.

14

15

16

17

18

19

20

2

—_

22

23

24

25

26

27

28

29

30

Y. Jin, J. Li, Y. Liu, T. Gu, K. Wu, Z. Jiang, M. He, B. Zhao, X. Tan, Z. Gan,
Y. Wang, C. Wang and L. Ma, arXiv preprint arXiv:2405.10739, 2024.

G. Tyukin, arXiv preprint arXiv:2404.05741, 2024.

AWS, Fine-tune large language models with reinforcement learning
from human or Al feedback, 2025, https://aws.amazon.com/
blogs/machine-learning/fine-tune-large-language—
models-with-reinforcement-learning-from-human—-or—
ai-feedback, AWS Machine Learning Blog.

H. Parthasarathy, arXiv preprint arXiv:2408.13296, 2024.

J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, 1. Barr, Y. Hasson et al., arXiv
preprint arXiv:2204.14198, 2022.

G. Tyukin, arXiv preprint arXiv:2404.05741, 2024.

Google, Gemini API: Audio,n.d., https://ai.google.dev/gemini—+
api/docs/audiol

Y. Yang, Y. Xu and L. Jiao, arXiv preprint arXiv:2407.05347, 2024.
Google, Colab, n.d., https://colab.google,

Python Software Foundation, Python documentation: Blurb, n.d., https:
//www.python.org/doc/essays/blurb/|

Google Al Edge, TensorFlow Lite Runtime, n.d.,

ai.google.dev/edge/litert.

https://

OpenAl, Model release notes, 2024, https://help.openai.com/en/
articles/9624314-model-release-notes.

Google Al for Developers, Release notes: Gemini API changelog, 2025,
https://ai.google.dev/gemini-api/docs/changelog,

Anthropic, Models Overview, 2025, https://docs.anthropic.com/
en/docs/about-claude/models/overview,

Deepseek, Change Log, 2025, https://api-docs.deepseek.com/
updates.

X, Release Notes,
notes.

2025, https://docs.x.ai/docs/release-

J. Chen, O. Firat, A. Bapna, M. X. Chen, W. Macherey and Z. Chen,
Teachable machine: Approachable web-based tool for exploring machine
learning classification, 2020, https://research.google/pubs/
teachable-machine-approachable-web-based-tool-
for—-exploring-machine—learning-classification/,
Google Research.

© The National High School Journal of Science 2025

NHSJS 2025 | 19

DL-LLM Model Using Grok-3 https://colab.research.google.com/drive/1Lww88TbSfrwUeQfnWkBtamZ9QD8K7Jh2#scrollTo=yzNfD6rftybt&uniqifier=2
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://team-gpt.com/blog/how-much-did-it-cost-to-train-gpt-4/
https://team-gpt.com/blog/how-much-did-it-cost-to-train-gpt-4/
https://medium.com/@maciej.tatarek93/costs-and-benefits-of-your-own-llm-79f58c0eb47f
https://medium.com/@maciej.tatarek93/costs-and-benefits-of-your-own-llm-79f58c0eb47f
https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint
https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint
https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint
https://www.encora.com/insights/comparing-fine-tuning-optimization-techniques-lora-qlora-dora-and-qdora
https://www.encora.com/insights/comparing-fine-tuning-optimization-techniques-lora-qlora-dora-and-qdora
https://www.encora.com/insights/comparing-fine-tuning-optimization-techniques-lora-qlora-dora-and-qdora
https://cloud.google.com/transform/three-proven-strategies-for-optimizing-ai-costs
https://cloud.google.com/transform/three-proven-strategies-for-optimizing-ai-costs
https://aws.amazon.com/blogs/machine-learning/fine-tune-large-language-models-with-reinforcement-learning-from-human-or-ai-feedback
https://aws.amazon.com/blogs/machine-learning/fine-tune-large-language-models-with-reinforcement-learning-from-human-or-ai-feedback
https://aws.amazon.com/blogs/machine-learning/fine-tune-large-language-models-with-reinforcement-learning-from-human-or-ai-feedback
https://aws.amazon.com/blogs/machine-learning/fine-tune-large-language-models-with-reinforcement-learning-from-human-or-ai-feedback
https://ai.google.dev/gemini-api/docs/audio
https://ai.google.dev/gemini-api/docs/audio
https://colab.google
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://ai.google.dev/edge/litert
https://ai.google.dev/edge/litert
https://help.openai.com/en/articles/9624314-model-release-notes
https://help.openai.com/en/articles/9624314-model-release-notes
https://ai.google.dev/gemini-api/docs/changelog
https://docs.anthropic.com/en/docs/about-claude/models/overview
https://docs.anthropic.com/en/docs/about-claude/models/overview
https://api-docs.deepseek.com/updates
https://api-docs.deepseek.com/updates
https://docs.x.ai/docs/release-notes
https://docs.x.ai/docs/release-notes
https://research.google/pubs/teachable-machine-approachable-web-based-tool-for-exploring-machine-learning-classification/
https://research.google/pubs/teachable-machine-approachable-web-based-tool-for-exploring-machine-learning-classification/
https://research.google/pubs/teachable-machine-approachable-web-based-tool-for-exploring-machine-learning-classification/

	Introduction
	Current Trend of LLM Training Methods and Their Implications
	Research Objective
	Related Works

	Results
	Overview
	Evaluating Modular System Performance Against ChatGPT-4o in Audio Classification and Reasoning Tasks
	Overview
	Challenges with Existing Multimodal LLMs
	Challenges through Direct Conversation with LLM
	Approach
	Data Collected

	Performance Evaluation of the Modular System Employing Various Inference LLM Models
	Overview
	Approach
	Limitations
	Data Collected

	Conclusion
	Overview
	Insights Gained
	Future Plans

	Methods
	Overview
	Development Platforms & Tools
	Building the Audio DL Model for Sound Analysis
	Building the Modular Architecture by Combining the DL Model with LLM
	The Modular System Architecture
	Implementation of Module 1: Audio Preprocessing and Input Standardization
	Implementation of Module 2: Time-Tracked DL Inference - LLM Response
	Implementation of the Baseline System Using Gemini 2.5 Pro API: Time-Tracked LLM Inference for Audio Prediction Based on the Input
	Implementation of the Baseline System Using Gemini 2.5 Pro API: Time-Tracked LLM Response for Sound Classification Based on the Audio Prediction

	Acknowledgements

