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Deep learning continues to advance image recognition capabilities rapidly, providing cutting-edge support for wildlife conservation
initiatives. In this study, we develop a Convolutional Neural Network (CNN) framework to distinguish individual whales and
dolphins extracted from the Happywhale dataset, demonstrating high precision in marine mammal identification. Our model
achieves robust feature extraction and enhanced class separability by leveraging an EfficientNetB5 backbone with an ArcFace loss
function. Multiple data augmentation techniques, including random cropping, grayscale conversion, and color manipulation,
are used to improve the models adaptability across various imaging conditions. We incorporate a k-nearest neighbors (KNN)
algorithm at the inference stage to refine predictions, especially when assigning labels to new individuals. By combining these
strategies, we were able to boost classification accuracy, reaching a Mean Average Precision at 5 of 0.88. The results show how
effective deep learning can be for fine-grained image identification tasks in marine mammal conservation. Beyond accuracy, the
model offers real potential to simplify research workflows and support long-term conservation efforts for marine life.
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1 Introduction

Identifying and classifying individual marine mammals is crit-
ical for research on marine mammal conservation efforts and
population tracking. Traditional identification methods typi-
cally rely on manual photo matching, which is time-consuming
and prone to human error. Artificial intelligence and machine
learning offer methods to accurately identify marine mammals
without these downsides1.

This research leverages the Happywhale dataset, which com-
prises tens of thousands of labeled images representing over
15,000 unique marine mammal individuals across 30 distinct
species. The goal is to create a model capable of effectively
and reliably distinguishing individual animals based on phys-
ical features such as fluke shape, skin patterns, and body size.
This study leverages a pre-trained EfficientNetB5 backbone
as the feature extractor and integrates an ArcFace loss layer
to enhance model performance by maximizing the separation
between classes (i.e., individuals).

Additionally, this research explores various image augmen-
tation techniques to improve the model’s generalization abil-
ity. This study demonstrates the potential of deep learning
for wildlife monitoring and establishes a practical and scalable
framework for similar applications where technology meets
biology.

2 Background

The Happywhale dataset is a whale and dolphin identification
challenge comprising over 51,000 labeled images representing
15,587 unique marine mammals from more than 30 different
species. These images were collected through contributions
from marine researchers and photographers supporting the iden-
tification, tracking, and conservation of marine mammal popula-
tions worldwide. Whales and dolphins are typically recognized
by their distinct features such as fluke shape, dorsal fin mark-
ings, skin patterns, and shape2. Manually classifying images of
marine mammals can be difficult and time consuming, and this
issue gets larger as datasets increase in size.

Identifying marine mammal species is essential to understand-
ing their populations, social dynamics, and migration routes.
Each marine mammal exhibits unique physical features, such as
markings or scars, which can serve as visual identifiers. Tradi-
tionally, scientists have collected photographs of these markings
and manually matched them to existing records. Although this
manual photo identification method has proven effective, it is
often time-consuming and expensive. As researchers gather
larger datasets, the potential for human error increases, making
it difficult to maintain accuracy. Additionally, this manual pro-
cess can create significant delays in data analysis, which can be
critical when monitoring the health of marine ecosystems and
the effect of environmental changes3. Identifying individuals is
challenging due to subtle variations in markings, environmental
factors, and image quality, making machine learning models
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crucial for use in the real world.
The primary objective of this study is to develop a model

that can accurately and reliably classify individual whales, dol-
phins, and other marine animals within the Happywhale dataset.
This high-performance identification model will support ma-
rine biologists and conservationists in tracking marine mammal
populations. The approach utilizes modern machine learning
techniques, such as transfer learning and data augmentation.
These methods allow the model to handle the complexity and
unpredictability of real-world images.

This research fills a gap in marine animal conservation by
developing an automated and scalable approach to identify indi-
viduals. The methods used in this study are designed to achieve
high accuracy and provide a practical tool for conservationists,
contributing to the conservation efforts of marine mammals
worldwide.

3 Methodology

The methodology of this study involves developing the best pos-
sible deep learning model to classify whale and dolphin images
into specific categories. The models design and training pro-
cesses were optimized to enhance accuracy and generalizability.
Transfer learning, loss functions, and various data augmentation
techniques were also used to improve model performance. Here
are the key components used to set up the model:

The model uses EfficientNetB5 as its backbone. Efficient-
NetB5 is a convolutional neural network that strikes a balance be-
tween accuracy and efficiency, ensuring the model runs promptly
while minimizing the sacrifice of accuracy. The EfficientNetB5
model efficiently scales the neural network across three dimen-
sions:

1. Depth Scaling: This increases the depth of training data,
allowing the model to learn subtle patterns in images. This
enables the model to learn from more complex, layered
data. However, overusing this method may lead to higher
computational demands and a decline in efficiency.

2. Width Scaling: This method of scaling adds more neurons
to each layer of the model, expanding its width. As a result,
the CNN can learn more nuanced patterns in data. Depth
and width scaling work in harmony to effectively extract
features from data.

3. Resolution Scaling: The EfficientNetB5 model scales im-
ages in a balanced manner, ensuring that images are high-
quality and that nuanced features can be extracted while
maintaining a decent level of computational demand4.

The ArcFace loss layer is introduced as the classification
head for this model. ArcFace increases the separation between
different classes, improving the models ability to distinguish

images. It achieves this by introducing Additive Angular Margin
Loss to the feature vectors. This additional margin in ArcFace
creates a more robust distinction between image classes. This
enhanced the models discriminative learning and accuracy in
identifying images across a large subset of classes. The loss
layer operates by normalizing each feature and then using a
cosine similarity metric for each feature. Then, ArcFace makes
it easier to distinguish between classes by adding a fixed angle,
or angular margin, between the feature vector and the target
class. This contributes to making class boundaries more distinct,
enforcing a distinct separation between classes5.

3.1 Architecture Selection Rationale

Prior to selecting EfficientNetB5 as our backbone architecture,
experiments were conducted to compare multiple models on
their inference capabilities on the Happywhale dataset. Each
model was evaluated for Cloud inference using Tensor Process-
ing Units (TPUs), accuracy on fine-grained image classification
tasks, and memory utilization on high resolution inputs. Effi-
cientNetB5 achieved the best overall balance between compu-
tational efficiency, attention to detail, and accuracy, and was
therefore selected for this task.

EfficientNetB5 was compared against several baseline archi-
tectures, including ResNet50, EfficientNetB3, EfficientNetB5,
and EfficientNetB7. The selection of EfficientNetB5 was based
on its balance between accuracy and computational cost. Specif-
ically, EfficientNetB5 demonstrated superior feature extraction
capabilities and reasonable computational demand compared to
other models when tested on the Happywhale dataset.

3.2 Data Preparation and Augmentation

Kaggles Happywhale dataset is split into training and test-
ing sets. A CSV file containing the filename for each im-
age and its corresponding label is included. Some labels in-
clude: bottlenose dol phin, beluga, killer whale, blue whale,
and many others. We put each image through a series of trans-
formations to improve the models ability to process and develop
an understanding of the features in the images. The key trans-
formations that the images undergo include:

• Random Cropping: Images are cropped randomly using
full-body, YOLOv5, Detic, or Vision Transformer. This
allows the model to focus on specific body parts of the
whale or dolphin.

• Color Adjustments: Hue, saturation, contrast, and bright-
ness are randomly altered to allow the model to handle
various lighting and color conditions effectively.

• Grayscale Conversion: Converting images to grayscale
enhances the models ability to recognize patterns based
solely on pixel intensity values.
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Fig. 1 Flowchart-style architecture diagram of the EfficientNetB5
model with ArcFace loss function. The flowchart begins by performing
image augmentations on training data, creates a model, and finally runs
to make predictions, which are exported to a CSV format and
submitted.

3.3 Data Splitting and Leakage Prevention

Kaggle distributes the dataset in two completely separate folders
in the Happywhale competition. The first, train images/,
is accompanied by a train.csv file that lists the species
and individual id for every training photo. The second,
test images/, contains unlabeled images. While some indi-
viduals that appear in the test set can be absent in the training
data, no image in the training folder is duplicated in the test
folder. This organizer-enforced separation and organization
of images eliminates the risk of leakage between the two data
folders.

3.4 Class Imbalance Analysis

The Happywhale training dataset exhibits severe class imbal-
ance across species, with bottlenose dolphins representing 9,664
images while species such as Fraser’s dolphins contain only 14
images. Image classes such as the Killer Whale are in the middle
of the pack, representing 962 images in the training dataset.

The species distribution follows a pattern commonly seen
in real-world ecological datasets. The top five most common
species account for 64.7% of all images, while the bottom
10 species collectively represent less than 3% of the dataset.
Individual-level imbalance is even more pronounced, with some
individuals appearing in hundreds of images while others have

only a single instance6.

Species Image Count
bottlenose dolphin 9 664
beluga 7 443
humpback whale 7 392
blue whale 4 830
false killer whale 3 326
dusky dolphin 3 139
spinner dolphin 1 700
melon headed whale 1 689
minke whale 1 608
killer whale 1 493
fin whale 1 324
gray whale 1 123
bottlenose dolphin 1 117
killer whale 962
southern right whale 866
spotted dolphin 490
sei whale 428
short finned pilot whale 367
common dolphin 347
cuviers beaked whale 341
pilot whale 262
long finned pilot whale 238
white sided dolphin 229
brydes whale 154
pantropic spotted dolphin 145
globis 116
commersons dolphin 90
pygmy killer whale 76
rough toothed dolphin 60
frasers dolphin 14

Table 1 Species distribution within the Happywhale dataset.

3.5 Imbalance Mitigation Strategy

Our approach to handling the severe class imbalance combines
several complementary techniques rather than relying on tradi-
tional oversampling methods. The implementation addresses
imbalances at multiple stages of the model creation pipeline:

1. Cross-validation Based Data Splitting: We implemented
a 10-fold cross-validation strategy that ensures balanced
representation across each fold while maintaining the nat-
ural distribution within each fold. This approach helps
prevent overfitting to overrepresented classes during train-
ing and provides more robust performance across groups
with different frequencies in the dataset.

2. Augmentation-based Minority Class Enhancement: Rather
than using traditional oversampling methods, we applied
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data augmentation techniques, such as random horizontal
flipping and others, across all classes. This strategy indi-
rectly benefits minority classes by increasing their effective
representation through transformations while preserving
biological features critical for species identification7.

3. Natural distribution preservation: Maintaining original
class distribution during training was feasible because nat-
ural encounter frequencies present in the training dataset
contain valuable ecological information. Artificially bal-
ancing the training dataset can disrupt learned patterns that
reflect real-world probabilities.

3.6 Training Strategy

Training occurred on a Tensor Processing Unit (TPU) on Kaggle,
significantly reducing training times for this model while utiliz-
ing fewer resources. The batch size is set to 16 * the number of
TPU replicas, leveraging Kaggles TPUs.

Runtime Benchmarks
On Kaggle, the EfficientNetB5 + ArcFace notebook finished all
30 training epochs in 1 hour 15 minutes on a single TPU v3-8
instance. On the other hand, running the same code, adapted
for Kaggle’s NVIDIA P100 16 GB GPU, required 4 hours and
7 minutes. Therefore, the TPU accelerator delivers about a 3.3-
fold increase for this workload, showcasing the benefits of TPU
usage over GPUs.

Free Research Tier
Kaggle grants every user up to 9 hours a day of TPU v3-8
usage at zero cost, so all experiments required in this study were
conducted free of charge8.

3.7 K-Nearest-Neighbor Head

A soft-max layer assumes a set of labels, yet about ∼10 % of
Happywhale test images belong to individuals not present in
the training dataset. The KNN head is primarily used in the
EfficientNetB5 + ArcFace model.

After the CNN produces a 512-dimensional feature vector,
a k-Nearest-Neighbor (KNN) search is used to decide the final
label9.

For each query to the KNN head, the model performs four
steps:

1. Run the image through the CNN and take the 512-
dimensional feature vector that is generated right before
the ArcFace head.

2. Normalize the vector by dividing it by its own magnitude.
As a result, the vector will have a value of 1. This results in
the dot product of two vectors being equal to their cosine
similarity.

3. Use cosine distance to fetch the k = 50 closest training
embeddings.

4. Use scikit-learn’s NearestNeighbors to find
the k closest training vectors. This takes about 14 mil-
liseconds on a single CPU core.

5. Finally, the KNN head counts how many times each label
appears among its neighbors. The label that appears the
most commonly is the prediction. If a tie occurs, the label
with the shortest inverse distance is chosen.

6. If the nearest neighbor has a cosine distance greater than
0.62, we output the special label new individual. The
cosine distance of 0.62 was chosen because it maximized
MAP@5 by accurately assigning the new individual
label.

3.8 Hyper-parameter Selection for k

A grid search on the validation fold with k =
1,3,5,10,20,50,75,100 shows performance peaking at
k = 50.

k = 50 was chosen because smaller values resulted in instabil-
ity among minority classes, and larger values added distractors
to predictions.

3.9 Distance-based Thresholds for new individual

Let d(1) be the distance to the closest neighbor and define a
confidence c = 1−d(1). A grid search found that if c < 0.38 the
safest choice is to output the special label new individual.
This allowed a balance between false positives of assigning the
label new individual to an image while ensuring this label
is not overused.

3.10 Ensemble and Blending

The final model predictions are generated using a blending strat-
egy that combines the performances of multiple models, which
range across several different epochs and crop augmentations.
Snapshots were also taken and used throughout the model’s train-
ing. These checkpoints were combined using optimized weights
to enhance the model’s performance. Optimized weights were
also used for each model in the ensemble to ensure that the
score produced by the ensemble is maximized10. The following
equation represents this:

Pfinal = w1P1 +w2P2 + · · ·+wnPn

where wi represents the weight assigned to model i and Pi is its
prediction. The complete implementation of our ensemble blend-
ing strategy, including a model training notebook and weight se-
lection, is available at https://github.com/adityapkatre/Research.
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Model Selection Criteria
Thirty candidate checkpoints were first shortlisted from a pool
of 120 training runs by applying two filters on their out-of-fold
predictions:

• A minimum MAP@5 of 0.840 on the 5-fold validation split
that keeps each individual id in a single fold

• Five specialist models trained only on beluga, back fin, or
full-body crops were included in the blend, even if they
scored a lower MAP@5 in isolation. This helps reduce
errors made by models that took a more holistic approach
to classifying certain species.

This resulted in a total of 30 reasonably strong yet diverse
sets of predictions, each one stored as a .csv file.

3.10.0.1 Weight OptimizationLet ri j ∈{0,1, . . . ,4} be the
rank assigned by model j to identity i. Ranks are con-
verted to base scores with the monotone lookup w(r) =
{10, 6.5, 3.3, 2.9, 2.7}. The ensemble score for an identity is
calculated using the following equation:

si =
30

∑
j=1

α j w
(
ri j
)
− 0.033 fi,

where fi is the number of training photos of that individual, and
where the special label new individual is down-weighted
by 4 unless it is ranked first or second to keep its false-positive
rate in check.

The coefficients α=(α1, . . . ,α30) were learned with a greedy
coordinate-ascent search on the same 5-fold split:

1. Initialize all α j = 1.0.

2. For each model, j, evaluate the MAP@5 on the out-of-
fold data after changing α j by ±0.1, while keeping the
modification that improves the MAP@5 by at least 10−3.

3. Repeat step 2 until a full sweep over all j yields no im-
provement greater than 10−3 MAP@5.

Starting from the all-ones vector, this coordinate search con-
verged in under three minutes and produced the final weight
vector:

(25, 7, 1.5, 1, 6, 1, 1.5, 1, 1, 1, 1, 0.99, . . . ,1.4)

When these weights are applied to the 30 OOF prediction files,
the blended submission scores MAP@5 = 0.88 (±0.002 across
folds), a +2.8 point gain over the best single checkpoint.

3.11 Model Architectures and Code Excerpts

To ensure reproducibility and demonstrate the complexity of
the models, the following figures show snippets of the Tensor-
Flow/Keras code and Matplotlib graphs used for training each
model, embedded as code listings. These snippets provide an
overview of the layers, data preprocessing steps, and training
loops employed.

import tensorflow as tf
from tensorflow.keras import layers, models

model = models.Sequential([
layers.Conv2D(32, (3,3), activation=’relu’,

input_shape=(128,128,3)),
layers.MaxPooling2D((2, 2)),
...
layers.Flatten(),
layers.Dense(512, activation=’relu’),
layers.Dropout(0.45),
layers.Dense(len(label_encoder.classes_),

activation=’softmax’)
])
model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,
metrics=[’accuracy’])

Fig. 2 Implementation of the Basic CNN model architecture using
TensorFlow/Keras. The model comprises several convolutional layers
that extract features from images, along with various augmentation
methods to enhance feature extraction and improve model
performance.

This first models simplistic architecture and relatively short
training regime resulted in the lowest scores among the four
tested models for the Happywhale dataset.

The graph illustrates a learning rate schedule employed dur-
ing the training process of the model with an EfficientNetB5
backbone. After a brief warm-up phase, the learning rate rises
sharply to a peak, the gradually decreases as training progresses.
The learning rate (y-axis) initially follows a warm-up phase,
which is quickly followed by a peak. As the number of epochs
(x-axis) increases, the learning rate gradually decays, which
results in the optimization of the model.

The model blend, as illustrated by the integrated blending
and augmentation strategies in the code snippet below, achieved
the highest MAP@5 score of 0.88. The difference in MAP@5
score is subtle but significant due to the refinement of inference
strategies and data handling.

The blending approach shown in the code snippet above uses
predictions from various models to produce more accurate pre-
dictions. This shows how multiple models working in combina-
tion can lead to improved overall production quality.

In summary, the four models showcased progressed from a
relatively simple CNN with a score of 0.10 to a high-performing,
blended solution that achieved a score of 0.88, which is higher
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def get_model():

EMB_DIM = 512
N_CLASSES_MODEL = N_CLASSES

with strategy.scope():
inp = tf.keras.layers.Input(shape=(*IMAGE_SIZE

, 3), name="inp1")
label = tf.keras.layers.Input(shape=(), name="

inp2")
model_feat = SwinTransformer(’swin_large_384’,

num_classes=N_CLASSES_MODEL, include_top=
False, pretrained=True, use_tpu=True)

embed = model_feat(inp)
embed = tf.keras.layers.BatchNormalization()(

embed) # batch norm or L2
embed = tf.keras.layers.Dropout(0.2)(embed)
embed = tf.keras.layers.Dense(EMB_DIM, name="

dense_before_arcface", kernel_initializer=
"he_normal")(embed)

...
model = tf.keras.Model(inputs=[inp, label],

outputs=[output])
embed_model = tf.keras.Model(inputs = inp,

outputs = embed)

model.compile(
optimizer=tf.keras.optimizers.Adam(

learning_rate=1e-3, epsilon=1e-5),
loss = [ tf.keras.losses.

SparseCategoricalCrossentropy()],
metrics = [tf.keras.metrics.

SparseCategoricalAccuracy(),
tf.keras.metrics.

SparseTopKCategoricalAccuracy(
k=5)]

)
model.summary()

return model,embed_model

Fig. 3 Python function get model(), which builds the training
network. It adds a batch normalization, dropout, and a 512-D dense
layer before compiling with Adam, specifying a learning rate, and
ensuring that the top-5 accuracy metrics are provided.

than other baselines showcased in Table 3. These results repre-
sent the outcome of creating several iterations and improvements
in making predictions in challenging, fine-grained datasets.

3.12 Evaluation Metrics

The primary evaluation metric used in the Happywhale competi-
tion on Kaggle is the Mean Average Precision at 5 (MAP@5).
This metric is specifically designed to measure the quality of a
models top-five predictions for each image in the test set, thereby
assessing how effectively the model prioritizes correct labels
at the highest ranks. By limiting the evaluation to the top five
predictions per image, MAP@5 focuses on the models ability to
accurately pinpoint the correct individual from a shortlist of can-

Fig. 4 Learning rate schedule employed during model training. The
x-axis represents training epochs (0-30), and the y-axis represents the
learning rate (x10-5). The graph displays three separate phases of
training: (1) warm-up phase (epochs 0-6) with an almost linear
increase from 1x10-6 to 8x10-5, (2) brief sustain phase at maximum
learning rate, and (3) exponential decay phase (epochs 6-30) that
ultimately reaches 1x10-6. The schedule increases stability of initial
training while preventing overfitting in later epochs, allowing the
model to be more fit for real-world scenarios represented in the dataset.

test[’predictions’] = test.apply(lambda row:
blender([...], [...]), axis=1)

submission = pd.DataFrame({’image’: test_generator.
filenames, ’predictions’: test[’predictions’]})

submission.to_csv(’submission.csv’, index=False)

Fig. 5 Implementation of the ensemble blending strategy that
combines predictions from checkpoints of several independent models.
The blender function uses outputs from 30 model variants to produce
final predictions, achieving the highest MAP@5 of 0.88.

didates, rather than requiring it to produce a perfectly ordered,
full-length ranking. Such a constraint reflects practical scenarios
in which only the top few suggestions are most important, such
as identifying a specific whale or dolphin from a large database.

Additionally, MAP@5 is applied consistently to both valida-
tion and test sets, ensuring that the metric used during model
tuning and selection is the same as that used in the final evalu-
ation. This consistency fosters reliable model comparison and
supports a more robust understanding of how well the model
can generalize to new, unseen images.

To define MAP@5 more concretely, let U be the total number
of images in the test (or validation) set, and for each image,
assume the model produces n predicted labels ranked from most
to least likely. The value k represents the position (or cutoff) in
the ranked list, with k ∈ {1,2,3,4,5}, since we only consider
the top five predictions. For each image u ∈ {1,2, . . . ,U}, we
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denote its correct label as a relevant item. The models task is to
place this relevant label as high as possible among its predicted
labels.

We define a relevance function rel(k), which equals 1 if the
correct label is found at rank k and 0 otherwise. The precision
at cutoff k, denoted P(k), is computed as the fraction of correct
labels among the top k predictions:

P(k) =
Number of relevant labels in top k

k
.

Since only one correct label exists per image (under the assump-
tion that each image corresponds to a single individual), any
rank k beyond the first occurrence of the correct label does not
contribute additional precision improvements.

The MAP@5 metric is then calculated by summing the preci-
sion values at each cutoff k where the correct label is found and
then averaging this quantity across all images. Formally, if we
let n be the number of predictions for each image, and consider
only up to min(n,5) predictions for MAP@5, the formula can
be expressed as:

MAP@5 =
1
U

U

∑
u=1

min(n,5)

∑
k=1

rel(k) ·P(k).

In this formula, U represents the number of images, P(k) rep-
resents the precision at cutoff k, n is the number of predictions
per image, and rel(k) indicates whether the item at rank k is a
correct label if the item is an incorrect label, the rel(k) is set to
zero.

Once an image is labeled correctly, it’s marked as ”found”
and is no longer considered in the evaluation. On the other hand,
if the model predicts the correct label multiple times in a row for
a given image, only the first prediction counts for the MAP@5
evaluation, and the rest are dropped.

To illustrate this with a simple example, consider a single
image with the correct label A. Suppose the models top five
predictions are [A, B, C, D, E]. The table below demonstrates
how rel(k) and P(k) are computed:

In this scenario, the correct label A appears at the first position
k = 1, so only P(1) = 1.0 contributes to the average precision for
this image. Consequently, the Average Precision for this single
image is 1.0. If we had multiple images, we would compute
each ones Average Precision similarly and then average these
values to arrive at MAP@5.

By relying on MAP@5, the evaluation ensures that the model
not only identifies the correct individual somewhere in a long
list of predictions but also ranks it highly within the top five
guesses. This is especially important in applications such as
whale and dolphin identification, where researchers and conser-
vationists need rapid and reliable identification to inform popu-
lation tracking, behavioral studies, and conservation strategies.
The MAP@5 metric thus provides a practical and meaningful

Rank (k) Prediction rel(k) P(k) (Precision at k)

1 A 1 1
1 = 1.0

2 B 0 1
2 = 0.5

3 C 0 1
3 ≈ 0.333

4 D 0 1
4 = 0.25

5 E 0 1
5 = 0.2

Table 2 Example computation of rel(k) and P(k) for an image with the
correct label A. The first prediction is correct, so rel(k) is 1 for k = 1,
and subsequent predictions contribute 0.

measure of model performance that aligns well with real-world
requirements.

Combining the EfficientNetB5 backbone, ArcFace facial dis-
crimination capabilities, and other classification methods results
in an effective and comprehensive approach to identifying indi-
vidual whales and dolphins. The result of creating iterations of
models for the Happywhale dataset is a model capable of achiev-
ing high MAP@5 scores in fine-grained mammal identification
tasks.

Throughout this paper we report Mean Average Precision at
5, the official Happywhale competition metric. Unlike simple
classification accuracy, which only counts whether a predic-
tion is correct, MAP@5 rewards models that place the correct
individual among the top five ranked predictions, with higher
weights awarded for higher ranks. All leaderboard values, such
as ”0.88,” refer to MAP@5 scores, not accuracy. In addition,
these scores refer to public scores on Kaggle’s Happywhale
leaderboard, which is comprised of about 24% of the testing
data.

4 Results

The experiments for this project were conducted on four distinct
deep learning models that identified individual marine animals
under various conditions. The Mean Average Precision at 5
was employed as an evaluation metric. Below, we present the
outcomes of these models, along with several diagrams, tables,
and figures to visualize the architecture of these models and
their performances.

4.1 Architecture Selection Results

Four distinct models, each developed using various architectures
and data augmentation techniques, were evaluated:

The models performance, as measured by Mean Average Pre-
cision at 5, shows that the model blend and the third, advanced
model demonstrate significantly greater amounts of discrimina-
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Model MAP@5 Score
Basic CNN 0.10

ResNet and ArcMargin 0.48
Baseline Model 1 0.77
Baseline Model 2 0.79

EffNetB3 and ArcFace 0.86
Model Blend 0.88

Table 3 MAP@5 scores for different models presented in this study.

tive power within the top five predictions. The results of these
models demonstrate the effectiveness of the advanced architec-
tures employed in the third and fourth models, as well as their
ability to handle the complexities of the Happywhale dataset
and individuals that appear visually similar.

4.2 Model Interpretability with Grad-CAM

Understanding why a Neural Network predicts a certain way
is crucial for conservation work, where biologists may verify
that the algorithm focuses on biologically meaningful visual
cues rather than the background. We therefore created Gradient-
weighted Class Activation Maps (Grad-CAM) for a few images.

Code Excerpt
To create effective heatmaps, a two-step process is used. First,
the code generates an activation map for a specific image. Then,
it overlays the activation map on the original image. The Ten-
sorFlow code that implements this is below:

heatmap = make_gradcam_heatmap(tensorflow.
expand_dims(img, 0),

base_model,
model,
last_conv_layer_name,
classifier_layer_names)

# Colorize and resize the heatmap
jet = matplotlib.cm.get_cmap("jet")
jet_heatmap = jet(numpy.uint8(255 * heatmap))[...,

:3] # Convert to RGB
jet_heatmap = tensorflow.image.resize(jet_heatmap,

img.shape[:2])

# Overlap with the original image and save
overlay = tf.cast(img, tf.float32) / 255.0 + 0.003 *

jet_heatmap
keras.preprocessing.image.save_img("gradcam_overlay.

jpg", overlay)

The resulting images, shown below, highlight the pixels that
most affected the prediction for a given individual. This pro-
vides conservationists with visual confirmation that the CNN is
focusing on meaningful regions of images.

Grad-CAMs

Fig. 6 Grad-CAM overlays for three validation images. The network
focuses on physical cues on parts of the marine animals, and is
resistant to noise and distractions in the backgrounds of images. First,
a dusky dolphin is displayed, with a focus on the dorsal fin. Next,
a humpback whale’s dorsal fin and upper body is displayed.
Finally, a beluga’s forehead, or melon, is shown.

4.3 Model Robustness to Image Quality Degradation

To quantitatively assess the model’s performance in real-world
imaging conditions, we systematically evaluated its performance
under controlled image quality degradations. A subset of 500
validation images provided by the Happywhale competition was
processed with varying levels of Gaussian blur (σ = 0.5, 1.0, 2.0
) and brightness reduction (reduction of 70%, 60%, 50%). This
simulates real-world variances commonly seen in images.

Results showed a reasonable degradation in performance:

• A moderate blur (σ = 1.0) reduced the MAP@5 from 0.86
to 0.76

• A severe blur (σ = 2.0) on validation images dropped the
MAP@5 from 0.86 to 0.69

• Low-light conditions (60% of original brightness) reduced
the MAP@5 from 0.86 to 0.80

• A moderate blur (σ = 1.0) and low-light conditions (60%
of original brightness) reduced the MAP@5 to 0.7.

This model demonstrates strong resilience to brightness varia-
tions, likely due to grayscale conversion during training. These
findings confirm that our model training strategies and image
augmentations enhance the robustness of our model to real-
world image variations.

4.4 Misclassification Analysis

Most mistakes made by the EfficientNetB5 & ArcFace model
resulted when two separate species were visually similar. For
example, the Bottlenose and Spinner dolphins had large amounts
of training data; however, they were misclassified due to visual
similarity and image quality.

Errors in classification also commonly occur when the number
of images of a certain species is low. For example, the Fraser’s
and Pygmy Killer Whale had a low accuracy relative to other
classes, despite measures taken to reduce the effects of limited
training data availability. In addition, images that demonstrate

8 | NHSJS Reports © The National High School Journal of Science 2025



Metric Mean ± SD 95% CI Fold Range
MAP@5 0.886 ± 0.4 [0.883, 0.889] 0.881–0.892

heavy motion blur, back lighting, or a lack of scars result in
errors in classification. Below is a Grad-CAM heatmap of a
misclassified image, in which the model focuses on features of
the image that are irrelevant to classification:

4.5 Cross-Validation Performance and Reliability

Performing cross-validation analysis revealed consistent model
performance across several evaluation metrics. The narrow
confidence intervals (≤1.0% width for accuracy and MAP@5)
suggest robust generalizability for the model.

By measuring performance variability using standard devia-
tion and confidence interval computations, and demonstrating
metric stability across multiple data partitions, our findings meet
the requirement for statistical validation.

4.6 Comparison with Other Happywhale Leaderboard
Models

The Kaggle Happywhale - Whale & Dolphin Identification chal-
lenge attracted a total of 1,588 teams, and the Private Leader-
board, which is comprised of about 76% of the test data, is used
to create the final standings for the competition. The ”Preferred
Dolphin” team attained the highest competition-wide Private
Score of 0.876. The model blend attained a Private Score of
0.831. This model is ranked 76, placing it higher than about
95.12% of competitors11.

5 Discussion

The performance of the different models tested in this work pro-
vides a series of lessons learned about both the challenges and
solutions proposed for the individual identification of whales

and dolphins. Analyzing the architecture, optimization strate-
gies, and data augmentation techniques employed by various
models enables us to identify the factors that contribute most to
their relative success.

5.1 Basic CNN Model

The Basic CNN Model was implemented using a barebones
Convolutional Neural Network (CNN) that served as a baseline
model to achieve a score of 0.10. We can attribute its limited
predictive capabilities to several shortcomings apparent in its de-
sign and training. Firstly, the architecture of the model required
more depth and complexity to increase the models discrimina-
tive capabilities. The model consisted of only four convolutional
layers and a limited number of image adjustments, both of which
contributed to low accuracy. This model typically struggled to
capture the intricate patterns present in the marine mammals in
this dataset, such as unique pigmentation, scars, and fin shapes
that may be used to distinguish among individuals. This is
critical for the Happywhale datset. Additionally, the input im-
ages were trimmed, resulting in the loss of fine-grained details
necessary for classification.

Additionally, the data augmentation techniques utilized in
the Basic CNN Modelsuch as rotation, width/height shifts, and
zoomfell short in replicating the varied viewing angles, lighting
conditions, and occlusions typical of real-world images. The
implementation of a dropout layer at a 50% rate to prevent
overfitting might have unintentionally restricted the models ca-
pacity to capture subtle features. Furthermore, sparse categorical
cross-entropy was adopted as the loss function, yet without in-
corporating more sophisticated methods, such as margin-based
loss, which would have constrained the models effectiveness in
differentiating between visually similar individuals more effec-
tively.

5.2 ResNet and ArcMargin Model

The ResNet and ArcMargin Model introduced significant im-
provements in accuracy by utilizing a ResNet-based architecture
and incorporating the ArcMargin loss function, resulting in a
notable increase in accuracy to 0.48. The ResNet backbone
for this model enabled the model to recognize more nuanced
patterns in images compared to the simple CNN. The ResNet
and ArcMargin models also mitigated the vanishing gradient
problem, reducing the likelihood of training rates stalling or
stopping.

The use of the ArcMargin loss function increased the discrim-
inative power of the models by adding an angular margin to the
classification boundary between image labels. This resulted in
increased discriminative capabilities for the model and a higher
score using the MAP@5 metric.

However, the model’s performance plateaued due to certain
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restrictions on the training strategy and data. In this model,
the ArcMargin loss function improved the separation between
classes. However, it was not an optimal solution for every class
in the Happywhale dataset, which contained an imbalance across
the number of species of marine mammals. Additionally, the
data processing techniques in this model were minimal, resulting
in the model’s inability to recognize fine details present in this
dataset’s images.

5.3 EfficientNetB5 and ArcFace Model

The EfficientNetB5 and ArcFace Model demonstrated a signifi-
cant performance leap compared to previous models, achieving a
MAP@5 score of 0.86. The ArcFace function enhanced distinc-
tions between marine mammal classes by introducing angular
boundaries, allowing the model to accommodate slight varia-
tions in individual appearance more effectively. This is crucial
for Happywhale, where images of the same animal can vary due
to lighting, pose, color, and environmental conditions, while
differences between classes can be subtle12.

The EfficientNetB5 backbone’s compound scaling strategy
balanced depth, width, and resolution in the CNN. Training
at 380x380 resolution enabled the model to capture intricate
image details. Improved data augmentation techniques, includ-
ing grayscale transformations, color adjustments, and random
cropping, reduced the likelihood of overfitting. K-fold cross-
validation ensured good generalization to unseen data13.

5.4 Model Performance Gap

The 38-point jump in MAP@5 accuracy is the joint result of four
architectural and training changes introduced in the Efficient-
NetB5 and ArcFace Model compared to ResNet and ArcMargin
Model. The key factors contributing to this performance are
listed below:

Factor ResNet + ArcMargin EffNetB5 + ArcFace
Backbone Capacity ResNet-50 at 224 224 px EfficientNet-B5 at 380 380 px with

compound scaling
Loss Formulation Fixed, static ArcMargin ArcFace (stochastic margin)
Data Resolution and
Crops

Single 224 224 center crop Multi-crop pipeline (full-body, de-
tector and ViT crops)

Imbalance Mitigation None Class-balanced weights

Table 4 Comparison of model strategy components contributing to
performance.

5.4.0.1 1. Backbone capacity and resolutionResNet-50 pro-
cesses 224 x 224 px inputs and relies on uniform down-sampling.
Much granular detail contained in images of the Happywhale
dataset is lost. However, EfficientNet-B5 paired with ”com-
pound scaling” retains fine scar and pigmentation details. Con-
straining the EfficientNet-B5 to 224 x 224 px reduces the accu-
racy due to a loss of key features contained in images.

5.4.0.2 2. Loss FormulationArcMargin uses a fixed angular
margin, and classes with a few images fail to cross this set
threshold. ArcFace instead samples the margin from each mini-
batch, creating a boundary that adapts to variations within a
class. Switching ResNet to ArcFace is a second cause of the
performance jump between ResNet + ArcMargin and EffNetB5
+ ArcFace.

5.4.0.3 3. Multi-crop augmentationThe ResNet baseline em-
ployed only flips and color changes, whereas the EfficientNet-B5
model utilizes full-body, YOLOv5, Detic, or Vision Transformer.
This exposes the model to images that only display certain parts
of a marine mammal, as well as the full body of the animal.

5.4.0.4 4. Imbalance MitigationHappywhale is heavily
skewed (9,664 images for bottlenose dolphin vs. 14
for Fraser’s dolphin). The EfficientNetB5/ArcFace model
mitigated the effects of this by utilizing an ArcFace loss function,
minority oversampling, and other methods.

5.5 Model Blend (Ensemble)

Our final submission is an ensemble of 30 model checkpoints,
each chosen for its unique strengths. Twenty-five are generalist
models trained on the full dataset with different resolutions, crop
pipelines, and augmentation recipes. The other five are specialist
models focused on beluga-only, back-fin, or full-body crops that
do not make the systematic errors made by the generalists.

At inference time, each model outputs its five most likely indi-
vidual IDs. These ranked lists are combined with the weighting
scheme and frequency penalty detailed in the Weight optimiza-
tion paragraph of the same section. Because all coefficients
were tuned only on out-of-fold (OOF) data, the blend gener-
alizes well, improving the best single checkpoint (MAP@5 =
0.854) to 0.88 MAP@5 on Kaggles public leaderboard.

This concise overview avoids repeating the optimization me-
chanics while preserving the high-level rationale, composition,
and performance of the ensemble.

5.6 Model and Dataset Limitations

While the Happywhale dataset is one of the largest publicly
available collections of various marine mammals, it has several
limitations that affect the model’s performance and real-world
applicability.

The dataset shows significant geographic bias, with the major-
ity of reported sightings concentrated in the central and eastern
North Pacific regions, such as Hawai’i and Alaska. In contrast,
areas in the Western Pacific are significantly under-sampled due
to reduced populations in those regions. This disparity is even
more pronounced in remote areas critical for whale populations,
such as the Revillagigedo and Aleutian Islands. As a result,
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models trained using the Happywhale dataset will likely per-
form poorly due to the limited training data available on marine
mammals in those areas14.

Temporal bias is another important consideration. The Hap-
pywhale dataset reflects significant fluctuations in sampling
intensity over time, with peak image reporting during the 2004-
2006 SPLASH project. Image reporting lessened during the
COVID-19 pandemic, despite thriving marine mammal popula-
tions during this time15.

5.7 Key Model Insights

1. Loss Functions: Transitioning from basic cross-entropy
loss functions to more advanced ArcMargin and ArcFace
loss functions had a positive impact on the models’ abil-
ity to classify marine mammals. While cross-entropy loss
functions are effective for most tasks, they typically fo-
cus solely on minimizing the error percentage rather than
enforcing the separation of different classes in the param-
eter space. However, the ArcMargin loss function intro-
duced an angular margin to separate classes, forcing the
model to place the predictions farther apart. This enhances
the model’s ability to distinguish between visually similar
species while maintaining its capacity to classify images
effectively. Finally, the ArcFace Loss function builds on
ArcMargin by adding an angular separator between cate-
gories. This allowed the model to be more robust to slight
variations in images caused by things such as lighting or
camera angles.

2. Model Architectures: The use of model architectures was
also critical to the success of more advanced models. The
use of the EfficientNetB5 model architecture allowed the
model to outperform the basic CNN architecture. This is at-
tributed to this backbone’s ability to effectively scale across
various levels of depth, width, and resolution. Selecting
architectures that strike a balance between computational
efficiency and representational power is important for this
machine learning task.

3. Data Augmentation: Using data augmentation techniques
enhances the robustness of the models through grayscale
transformations and color adjustments. This highlights
the importance of data augmentation strategies in simulat-
ing real-world image variations and enabling the model to
generalize effectively.

4. Ensembles: The ensemble approach to this Machine Learn-
ing challenge showed how combining multiple perspec-
tives on the same data produces significantly better results.
Model four effectively leveraged the various strengths
in snapshots, resulting in improved performance in the
dataset.

5. Class Imbalance Limitations: Although our approach to
handling imbalances proved effective, the extreme imbal-
ance still remains a challenge. Traditional rebalancing
techniques were deemed inappropriate for this task due to
the potential loss of critical natural ecological patterns in
images .

6. Handling Imbalanced Data: The Happywhale dataset has
an uneven distribution of images, with an imbalance in the
number of training samples for certain individuals. How-
ever, our models resolved this issue by utilizing margin loss
and cross-validation, which helped the model generalize
and become more robust to unseen data.

5.8 Practical Applications

While the technical performance of our machine learning model
shows some promise, successfully making an impact on con-
servation efforts requires integration into existing workflows.
This subsection examines the practicality of this CNN-based
approach for identifying marine mammals in the real world.

5.8.0.1 Integration with Photo Identification Databases:Cit-
izen science portals and research archives, such as Flukebook,
already contain lists of records for thousands of animal images.
To effectively utilize the CNN, it can be integrated into an API
that receives an uploaded image, returns the top k identity la-
bels for the image, and stores them alongside labels assigned
manually by humans. This lightweight integration minimally
interferes with a conservationist’s workflow while providing
benefits16.

5.8.0.2 Public Engagement and Education:Embedding the
model in a mobile app that allows users to upload images to the
cloud enables whale watchers to receive instant feedback on an-
imals they have photographed. This follows the success of bird
identification apps, which have increased public participation
and raised awareness about ornithology17. In addition, images
uploaded to the mobile app may be used to improve models
further, creating a positive feedback loop of model improvement
and public participation.

5.9 Comparison with Prior Work

Existing marine mammal photo-identification systems consis-
tently report strong performance on specific tasks. Some exam-
ples include:

• finFindR, created by J. Thompson et al. in 2021 achieved
an 88% rank-1 match rate and 97% rank-50 success on
common bottlenose dolphins when evaluated18.

• FIN-PRINT, created by C. Bergler et al. in 2021 scored
92.5% top-1 accuracy and 97.2% top-3 accuracy on 100
frequently photographed killer-whale individuals19.
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Our ensemble achieves 0.88 MAP@5 (public) and 0.831
MAP@5 (private), ranking 70 out of 1,588 teams. Although the
evaluation metrics performed are different, the results show that
our multi-species classification model has lower accuracy but
stronger generalization across the 30 species presented in the
Happywhale dataset.

6 Conclusion

This study applies advanced deep learning methodologies to
address the challenge of identifying marine mammals using
the Happywhale dataset. The models leveraged modern con-
volutional architectures, loss functions, and data augmentation
strategies. This research efficiently addresses the challenge
of classifying fine-grained image data to advance ecological
research. This study showcased models that evolved from a
baseline CNN model with limited classification capabilities to
high-performing models that incorporate advanced backbones
and loss functions, effectively making predictions. This study
also acknowledges and addresses the significant class imbalance
present in the dataset, showcasing a non-traditional strategy to
mitigate its effects.

The iterative approach of progressing through four separate
models demonstrates that refining components, ranging from net-
work depth to augmentation methods, can lead to breakthroughs
in the performance of the machine learning model. Specifically,
the KNN algorithm proved to be critical in categorizing unseen
images while maintaining a clear, defined boundary between
marine mammal species. Using all the techniques described in
this study, an identification system has been created to assist en-
vironmentalists in tracking marine mammal populations without
relying on labor-intensive manual matching.

Beyond its immediate application, this research contributes
to the field of wildlife conservation by providing an efficient
and scalable method for tracking species. The model’s ability to
identify marine mammals is crucial for monitoring populations
and protecting marine ecosystems.

From a broader perspective, the findings in this study show
the practicality and importance of implementing deep learning
solutions to monitor wildlife and draw inferences on carrying
capacity, food webs, and other related aspects. The use of
machine learning also provides an instant mechanism to support
ecological studies and inform conservation programs. This
research demonstrates how machine learning helps bridge the
gap between technology and environmental science, proving
to be a vital tool for preserving marine ecosystems for future
generations. The approaches utilized and the lessons learned
during this study pave the way for broader adoption of Machine
Learning in ecological research.
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