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The Shortest Path Problem is relevant across a wide range of domains, including search and rescue, logistics, and agricultural
crop monitoring. This study compares the performances of three specific algorithms in solving the Shortest Path Problem for
drone-based crop monitoring applications. A key constraint in this analysis requires the drone to return to its starting point,
simulating real-world monitoring tasks. The three algorithms this study examines are the Traveling Salesman Problem (TSP)
algorithm, Dijkstra’s algorithm, and A*. TSP employs a brute-force approach, Dijkstra’s algorithm relies on a cost function to
determine the shortest path, and A* adds on to Dijkstra’s method with heuristics. The performance of these algorithms is evaluated
based on total path length and computational efficiency. Each algorithm was tested multiple times on datasets containing three,
five, ten, or eleven randomly generated points of interest to reduce the effects of errors or outliers. In this study, TSP achieved the
highest accuracy, producing routes on average 6.3% shorter than those generated by Dijkstra’s and A*, with an average total path
length of 284.6 units for 11 points. However, it suffered from exponential growth in computation time, reaching an average of 10.9
seconds at the same dataset size. In contrast, Dijkstra’s and A* algorithms offered significantly faster performance—5.1x 1073 and
1.1x 1072 seconds respectively for 11 nodes—but produced longer paths. Dijkstra’s algorithm demonstrated greater computational
efficiency than A*, outperforming it by an average of 3.45x 1073 seconds. These findings imply that, although A* is traditionally
considered superior to Dijkstra’s algorithm, the unique constraint in this study—requiring the drone to return to its starting
position—causes Dijkstra’s to significantly outperform A* by approximately an order of magnitude in computation time. This
scenario of returning to the starting position is more representative of real-world conditions, where drones must return to a base
station for charging and maintenance. These findings have practical implications for agriculture and drone-based surveillance,
indicating that TSP is ideal for small-scale scenarios where accuracy is critical, whereas Dijkstra’s algorithm is better suited for
larger-scale operations where computational speed is a priority.
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Introduction

In today’s rapidly evolving technological landscape, pathfinding
algorithms are employed across a wide spectrum of disciplines
including package delivery, wildfire suppression, and agricul-
tural crop monitoring.

Our previous work at NASA'! involved using drones with
pathfinding capabilities and convolutional neural networks to
detect disease in plants. This experience provided foundational
insight into agricultural drone operations, particularly in generat-
ing efficient flight paths to investigate specific points of interest.
In our XPRIZE Wildfire team, we implemented a pathfinding
algorithm for multiple drones to navigate and suppress wildfires.
Building upon this algorithm, we compared our new approach
against the Rapidly Exploring Random Tree (RRT) algorithm
for navigating complex wildfire environments. These efforts
emphasize the growing need for efficient pathfinding algorithms
to meet the demands of autonomous drone capabilities.

At the core of this need lies the Shortest Path Problem”. This
problem focuses on finding the optimal path between a starting
node, a set of points to visit, and the end destination. The
problem is represented by a 2D graph, with nodes and edges that
represent the distances between them. These distances are what
is used to determine the path that minimizes the total travel cost
the most. In this study’s situation, the nodes represent points of
interest that the farmer needs to investigate using a monitoring
drone. This paper aims to evaluate which of three commonly
used Shortest Path Problem algorithms is most effective for real-
world drone-based crop monitoring. This study introduces a
unique constraint not typically addressed: requiring the drone
to return to its starting position, simulating actual operational
needs like recharging or maintenance.

The Traveling Salesman Problem™ (TSP) aims to find the
shortest route for a “salesman”—in this case a drone—to visit
each city on a list once before returning to the starting point.
This goal is accomplished by evaluating every possible permu-
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tation of the routes. However, initial testing revealed that TSP
experienced significantly high computation times. In fact, when
graphing results in bar charts, the execution times for Dijkstra’s
and A* algorithms were so low that they appeared negligible
next to TSP. As a result, a pruning function was implemented in
the TSP algorithm to eliminate any permutations once the path
exceeded a predefined upper bound. This limit was determined
by finding the average distance between nodes, multiplying
that value by the number of connections, and finally scaling
it with an adjustable constant for flexibility. This modifica-
tion drastically improved TSP’s computation time and resolved
the aforementioned issues. Dijkstra’s algorithm®, known as a
greedy algorithm, keeps a list of unvisited nodes. Beginning at
the start point, the algorithm iteratively chooses the node with
the smallest tentative cost (distance). The algorithm then visits
all neighbors of that node and updates their tentative costs if a
shorter path is found. This process is continued until it arrives at
the destination. The A* algorithm® approaches the Shortest Path
Problem by considering both the cost to reach a node and the
heuristic estimate of the remaining distance to the destination.
A* selects the node with the lowest combined cost, continuing
this process until the destination is reached.

Drone-based crop monitoring requires solving the Short-
est Path Problem to efficiently visit multiple points of inter-
est—such as crop fields—and return to a base station. This
paper evaluates the performance of three prominent pathfind-
ing algorithms—Traveling Salesman Problem (TSP), Dijkstra’s,
and A*—by comparing their computation time and total path
length under identical conditions. Each algorithm is tested on
the same set of points with a fixed starting position. Unlike
previous studies, this work introduces the constraint of requir-
ing drones to return to the starting point, simulating real-world
operational demands. The findings aim to help farmers optimize
energy usage during remote drone monitoring by identifying
which algorithm offers the best balance between accuracy and
computational efficiency.

The comparison of the algorithms will be accomplished in
four clear steps. The first step will be establishing the testing
environment: this means defining the scale of the 2-dimensional
map, generating the nodes, and selecting a start point. The
second step will involve implementing The Traveling Salesman
Problem, Dijkstra’s algorithms, and A* algorithm. The third step
consists of data collecting and grading the speed and accuracy
of the algorithms. The final step will be analyzing the data
collected in step three to develop a conclusion. However, some
limitations of this experimentation lie in the simplification of the
problem. This analysis did not account for obstacles in between
paths. In an ideal world obstacle can be ignored, but real-world
applications need to take into account obstacles that can hinder
the movement of the monitoring drones.

Methods

The Traveling Salesman Problem® (TSP) identifies the shortest
path by evaluating all possible routes. Past papers and studies
have applied TSP to optimize navigation through crop fields”,
supplement truck-drone delivery systems using base stations®,
and coordinate multi-drone package delivery with the assis-
tance of trucks”?. However, most of this prior work focuses
on logistics-based applications or overlooks the importance of
returning to a base station in agricultural contexts. This paper
seeks to determine the use case of TSP in scenarios where a
drone must return to the home base in an agricultural setting.

To improve computational efficiency, the implementation of
the TSP algorithm includes a route termination feature: any
route whose distance exceeds a calculated threshold is discarded.
This upper limit is determined by multiplying the average dis-
tance between points by the total number of connections and an
adjustable control factor. The number of connections is defined
as the total number of points plus one, accounting for the return
trip to the starting location. The control factor allows dynamic
adjustment of the extent the algorithm prunes suboptimal paths.
The application of this pruning function significantly reduced
TSP’s computation time, making it more comparable to the other
algorithms under evaluation. The equation used to calculate the
limiting function, along with the corresponding pseudocode for
the TSP implementation, is provided below.

limit = avg_distance x (num_points + 1) x 0.75 (1)
Set starting and end point the same;
Generate all (n-1)! permutations of routes;
Calculate the distance for each permutation;
If cost > limit:
Terminate route;
If total cost < current shortest route:
Set as new current shortest route;

Return the route with the minimum cost;

Dijkstra’s algorithm'? determines the shortest path by select-
ing the node with the smallest tentative cost (distance) at each
step. It has been applied in past studies to optimize delivery
routes for fresh agricultural products', improve the inefficiency
of farm product collection and supply systems, and enable drone-
based supply delivery to hard-to-reach areas"?. However, similar
to the Traveling Salesman Problem, many of these studies either
failed to create scenarios where the agent must return to the start
position or apply the algorithm in an agricultural context.

Mark the start node with a current
distance of 0;

Set all other nodes to infinity;
Set every node as \non-visited";
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While still unvisited nodes:

Select closest unvisited node;

For each neighbor of current node:
Calculate tentative distance;
Update neighbor’s distance
if shorter;

Mark current node as visited;

Return route;

The A* algorithm'? finds the shortest path by combining two
key factors: the actual cost from the start node to the current
node, denoted as g(n), and the estimated cost from the current
node to the goal, denoted as i(n). These are summed into the
total cost function: f(n) = g(n) + h(n).

In this study, the heuristic function /() is defined as the Eu-
clidean distance, which effectively models the straight-line flight
path a drone would follow in open, unobstructed agricultural
environments.

2

h(n) = heuristic cost from current node (n) to end node (3)

f(n) = g(n) +h(n) @)

g(n) = cost from start node to the current node (n)

Open list that holds all nodes;
Closed node that tracks all nodes visited;

While open_list != empty:
Choose node with lowest f(n) wvalue;
Remove n from open_list and add to
closed_list;
For each neighbor of n:
If neighbor is in closed_list:
Skip;
Calculate tentative g score;
If tentative g score < previous
g score:
Update current_node;
g score of neighbor =
g score;
Calculate f score for neighbor;
Update heuristic estimate;

tentative

If open_list empty && current_node !=
final_ node:
Terminate, no path available;

The algorithms were performed on an Apple Mac Mini M1
with 8GB of memory, using PyCharm version 2024.1.4 64-bit
evaluation copy. The methods for this experiment are as follows:
initialization, algorithm execution, and data collection.

points = pd.DataFrame

({’x’: np.random.rand (num_points)

* 100, ’'y’: np.random.rand (num_points)
computation_time = time.perf_counter ()
- start_time

total_distance +=

calculate_distance (points.iloc[path[i]],
points.iloc[path[i + 111)

Results

In terms of total distance traveled, Table I demonstrates the
Traveling Salesman Problem’s ability to return shorter routes
compared to Dijkstra’s and A* algorithm. For three nodes, all
algorithms yielded the same distance due to the limited routes
possible. However, divergences in the paths traveled by the
algorithms began as the number of nodes increased to five. Al-
though many experiments still resulted in equal distances, TSP
periodically found shorter routes, as reflected in the average
values shown in Table I. The flight paths in Figure 1 further
visualize these variations, highlighting how algorithmic behav-
ior begins to diverge with the addition of more nodes. By the
time the node count reached eleven, TSP consistently found
shorter paths, averaging 284.6 units traveled, while Dijkstra’s
and A* covered 318.0 units on average. The data highlights
TSP’s accuracy compared to Dijkstra’s and A*, especially as the
number of nodes increased. While Dijkstra’s and A* algorithms
were accurate with smaller datasets, they had higher chances
of choosing a nearest point that differed from the true shortest
path as the dataset increased. On average, TSP found a route
6.3% shorter than Dijkstra’s and A*, making it the most accurate
pathfinding algorithm of the three.

In terms of computation speed, the Traveling Salesman Prob-
lem demonstrated the fastest performance with fewer points.
However, as Table II shows, TSP became inefficient as the num-
ber points increased as the computation time grew exponentially
from 1.7 x 1073 seconds with three nodes to 10.9 seconds with
eleven nodes. This sharp increase in time exposes TSP’s permu-
tational limitations. In contrast, Dijkstra’s algorithm had a more
gradual increase in computational time, rising from 4.9 x 1074
seconds for three nodes to 5.1 x 1073 seconds for eleven nodes.
The A* algorithm performed just below Dijkstra’s, taking 1.1
x 1073 seconds for three nodes and 1.1 x 1072 seconds for
eleven nodes. Similarly to Dijkstra’s algorithm, the A* algo-
rithm starts out slower than TSP, but eventually executes faster
as the number of nodes increases. Overall, the computation time
data reinforces the notion that TSP excels with fewer points,
while also demonstrating the capabilities of Dijkstra’s and A*
algorithms as the number of points increases.
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Table 1 Average total distance traveled

Algorithm 3 Nodes 5 Nodes 10 Nodes 11 Nodes
Traveling Salesman Problem  193.4 units  212.3 units  270.7 units  284.6 units
Dijkstra’s 193.4 units  220.6 units  293.1 units  318.0 units
A* 193.4 units  220.6 units  293.1 units  318.0 units
TSP Path Dijkstra Path A* Path
| $ Start Point » $§ Start Point » $§ Start Point
—— TSP Path —— Dijkstra Path —— A* Path

80 80
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80

> > >
50 4 50 50
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Fig. 1 Flight path of each algorithm with five points (Matlab)
Table 2 Average computation time
Algorithm 3 Nodes 5 Nodes 10 Nodes 11 Nodes
Traveling Salesman Problem 1.7e-5sec  6e-5 sec 0.9 sec 10.9 sec
Dijkstra’s 49e-4sec 8.le-4sec 3.3e-3sec S.le-3sec
A* I.1e-3sec 24e-3sec 9e-3sec 1.le-2sec

Discussion

In this study, by evaluating all possible permutations, the Trav-
eling Salesman Problem yielded the most accurate results. For
smaller datasets, TSP computed solutions faster than both Dijk-
stra and A* algorithms due to the reduced complexity and fewer
permutations. However, TSP has major scalability drawbacks,
making it impractical for large datasets. As the number of points
increases, computation time grows exponentially, with eleven
points taking approximately 10.9 seconds on average. Despite
the drawbacks, TSP remains accurate and can be applied in
various scenarios.

Although the farmer’s 5-field monitoring case was not tested
in the real world, results show that TSP yields routes 6.3%
shorter than Dijkstra’s or A* across 11 nodes. This suggests
that for small numbers of spatially dispersed points, where flight
time is a major cost, TSP may be the most optimal method.
While Dijkstra’s and A* algorithms would yield routes more
quickly, TSP finds the shortest route. Since the crop fields are far
apart, even small differences could be costly, making accuracy a

higher priority than computation time. What appears to be 1 unit
of distance on a map could represent a meter, a kilometer, or
even a mile. Therefore, in scenarios where accuracy or optimal
distance is critical, TSP is the superior algorithm.

Statistical analysis using Repeated Measures ANOVA, which
compares the averages of multiple groups measured under dif-
ferent conditions, revealed a statistically significant difference
in average total distances among the three algorithms (p | 0.05).
Testing afterwards confirmed that TSP’s shorter path lengths
were significantly better than those of Dijkstra’s and A*, espe-
cially at higher node counts. Similarly, an ANOVA on average
computation time also found significant differences (p j 0.001),
showing that TSP’s computation time increased sharply with
more nodes, while Dijkstra’s and A* remained efficient. These
results reinforce the conclusion that TSP is best suited for small-
scale precision operations, but not for real-time or large-scale
tasks.

In contrast, Dijkstra’s algorithm excels in computational ef-
ficiency, particularly when handling larger datasets. It outper-
formed both A* and TSP, especially when there are more than
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five points of interest. In this study, Dijkstra’s algorithm com-
puted approximately 30% faster than A* algorithm on average.
However, Dijkstra’s algorithm failed to consistently yield the
most accurate path as the dataset grows. An increase in the
number of points raises the probability of choosing the incor-
rect closest point. Despite this drawback, Dijkstra’s algorithm
remains accurate in simple situations with smaller datasets. Ad-
ditionally, its usefulness extends to situations involving large
datasets or when minimizing computation time is more impor-
tant than achieving the most accurate result. The measurements
indicate that Dijkstra’s is approximately 30% faster than A*
(5.1x1073s vs. 1.1x1072s at 11 nodes). Thus, in scenarios
demanding rapid response—such as diagnosing sporadic plant
health issues—Dijkstra’s may be beneficial. However, this infer-
ence assumes node distributions and urgency levels similar to
those in this study; further real-world validation is needed.

The main advantage of the A* algorithm is its balance of
computational speed and accuracy. By using heuristics to guide
its search, the A* algorithm generally outperforms Dijkstra’s
in both computation time and accuracy—though in the trials
conducted, this advantage was marginal due to the heuristic’s
limited benefit when the start and final positions were the same.
While A* took longer than Dijkstra’s in this experiment’s setup,
its strength lies in cases where the end node differs, allowing
the heuristic to prune the search space more effectively. While
A* did not outperform Dijkstra’s in this study’s same start and
end position, literature!#! shows A* excels in environments
with asymmetric start and goal positions and where obstacles
are present. Accordingly, incorporating heuristics in real-world
missions with non-symmetrical navigation points could enhance
performance—though this remains to be empirically evaluated.

In this study, the results indicate that the Traveling Salesman
Problem (TSP) produced the most accurate paths, generating
routes on average 6.3% shorter than Dijkstra’s and A*. How-
ever, it also experienced exponential growth in computation
time, reaching 10.9 seconds for 11 nodes. Dijkstra’s algorithm
achieved the best performance in terms of computational speed,
averaging only 5.1x 1073 seconds, and proved to be about 30%
faster than A* on average. While A* was expected to outper-
form Dijkstra’s due to its heuristic, its advantage was marginal
in this study due to the start and end positions being the same.
These findings achieve the study’s initial objectives of deter-
mining which of the three algorithms would be most effective
in the real world for agriculture applications. While TSP is
ideal for low-node, high-accuracy tasks, Dijkstra’s algorithm is
better for large-scale, time-sensitive applications. A* offers a
compromise, particularly when destination nodes differ from
starting positions.

Some limitations of this study include the limited range of
trials and node counts tested. By only examining node counts
of 3,5, 10, and 11, it risks obscuring trends observable at inter-
mediate values. Future research will involve expanded testing

across a broader range of node counts to capture more accurate
results. Another significant limitation is the absence of obstacles
in the simulation environment. While this simplification aligns
with certain agricultural use cases, it does not represent the com-
plexity of real-world environments where obstacles—such as
trees, irrigation systems, or uneven terrain—can greatly influ-
ence pathfinding performance. Future work should incorporate
3D terrain data and obstacle modeling to evaluate how each
algorithm adapts in constrained navigation scenarios. Finally,
we plan to integrate Convolutional Neural Networks and hyper-
spectral imaging to detect crop disease, combining those outputs
with our pathfinding algorithms for real-time autonomous nav-
igation. This integrated approach will help validate our initial
hypothesis® and potentially offer a system for smart agricultural
monitoring.
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