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This research evaluates the performance of machine learning models in forecasting the Air Quality Index (AQI) using data from
Amravati, Maharashtra, India. With air pollution contributing to millions of deaths annually, accurate AQI prediction is vital
for timely interventions and public health protection. Existing modelsranging from traditional statistical approaches to standard
machine learning algorithmsoften struggle to capture the complex, non-linear relationships between pollutants, especially in
data-constrained environments. To address these limitations, this study assesses five regression models: Random Forest Regressor,
CatBoost Regressor, Support Vector Regression (SVR), Decision Tree Regressor, and a Decision Tree Regressor optimized using
the Grey Wolf Optimization (GWO) algorithm. Models, except the GWO-optimized version, were fine-tuned using GridSearchCV
and validated with 5-fold cross-validation. Performance was measured using standard metrics: coefficient of determination (RY),
Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). Among the models, the
GWO-optimized Decision Tree achieved the highest performance, with an R? of 0.9896, RMSE of 5.9063, MSE of 34.8846,
and MAE of 2.3480. In contrast, SVR recorded the weakest results. The findings demonstrate the potential of metaheuristic
optimization in boosting model accuracy and emphasize the importance of interpretable, data-efficient solutions for AQI forecasting

in resource-limited areas.

Introduction

Air pollution remains one of the most pressing global chal-
lenges today, responsible for over 8.1 million deaths in 2021
and ranking as the second leading risk factor for mortality, in-
cluding among vulnerable groups such as children under five
years old"?, By anticipating air pollution spikes through predic-
tive modeling, health agencies can warn populations, distribute
protective resources, and also intervene in the short-term, clos-
ing schools or advising work-from-home, to reduce population
exposure. Studies have shown that such actions can lower the
number of emergency hospital visits=">. They also improve res-
piratory health outcomes, especially within high-risk pollution
events.

With advances in Atrtificial Intelligence (AI) and Machine
Learning (ML), predicting air quality has become more efficient,
offering data-driven insights for pollution control®. Despite
their promise, current AQI forecasting methods face notable
limitations. Traditional statistical models like linear regression
and ARIMA often fail to capture the complex, non-linear in-
teractions among pollutants””. While machine learning models
like Random Forest and SVR perform better, they are highly
sensitive to hyperparameter tuning, and are prone to overfit-
ting or underfitting®. Many high-performing models such as
deep neural networks lack interpretability and require substan-
tial computational resources ((R. Yang, H. Zhang, Y. Wang,

et al. Interpretable machine learning for weather and climate
prediction: A survey. arXiv, arXiv:2403.18864 (2024).)), which
limits their practical deploymentespecially in smaller cities with
limited infrastructure and datasets. These challenges highlight
the need for interpretable, data-efficient models that are opti-
mized using adaptive strategies to improve both accuracy and
generalizability”.

Various machine learning models can be applied for predict-
ing air pollution, each with its own set of advantages and disad-
vantages. The best model for a particular application depends on
several factors: the quality and size of the dataset, the specific
pollutants being measured, additional environmental data like
meteorological conditions and the relationship between different
pollutants. This study investigates the effectiveness of various
ML models in predicting the Air Quality Index (AQI) using
pollutant concentration data. Traditional machine learning mod-
els such as Random Forest (RF), CatBoost (CB), and Support
Vector Regression (SVR) were optimized to ensure robust hy-
perparameter tuning using GridSearch with cross-validation. A
novel approach involving Grey Wolf Optimization (GWO) was
applied to optimize the parameters of a Decision Tree Regressor
(DT). All models were evaluated using both test-set performance
and 5-fold cross-validation, allowing for a comprehensive and
reliable comparison of predictive accuracy. By identify;ng the
most accurate model, this study contributes to improved air pol-
lution forecasting, enabling more informed decision-making for
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public health and environmental policies.

Literature Summary

A variety of machine learning and deep learning approaches
for forecasting AQI and specific pollutants have been studied.
Garbagna et al.1% conducted a comprehensive review of Al-
driven approaches for air pollution modeling, highlighting the
comparative strengths of Random Forest, SVR, and boosting
techniques like XGBoost and CatBoost in temporal and spa-
tiotemporal prediction tasks. The studys findings emphasize
the role of external features such as meteorological and traffic
data in improving model performance, and the limitations of
models in handling data imbalance and real-world variability. A
study by Alsayadi et al.'!' conducted a comparative evaluation
of regression models for forecasting AQI.

Metaheuristic hyperparameter optimization uses nature-
inspired algorithmssuch as Genetic Algorithms (GA), Parti-
cle Swarm Optimization (PSO), and Grey Wolf Optimization
(GWO)to effectively explore the hyperparameter space of ma-
chine learning models. These algorithms are designed to balance
exploration and exploitation to find optimal or near-optimal pa-
rameter configurations 4. Unlike traditional methods such as
grid or random search, metaheuristics are more adaptable to com-
plex, non-convex search spaces. Recent research has applied
these techniques to address issues like overfitting and ineffective
parameter tuning. Murillo-Escobar et al.'3 demonstrated that a
PSO-optimized SVR model could effectively forecast concen-
trations of multiple pollutants, showing strong year-round per-
formance even under vary;ng weather conditions with relatively
low computational demands. Hilal et al.'# implemented a hybrid
algorithm combining Decision Tree J48 and Grey Wolf Opti-
mization for environmental pollution control. The DT-GWO
model achieved a prediction accuracy of 99.78%, outperforming
the standalone Decision Tree J48 (93.72%) and GWO (96.83%)
models.

Methods

Overview of AQI Calculation

Interpreting air pollution data remains a challenge for the gen-
eral public. To remedy this, Air Quality Index (AQI) is a tool for
the simplification and effective communication of air quality sta-
tus to people. It transforms complex air quality data of various
pollutants into a single easy-to-understand number. The pollu-
tants taken into consideration for AQI calculation are PM2.5,
PM10, NO2, NH3, SO2, CO, and Ozone. Each pollutant has
a defined sub-index with its breakpoints defined. A sub-index
value is calculated for each individual pollutant based on the
breakpoint values using the following formula:

Model Implementation
- Random Forest Regressor

Data Acquisition

l

Data Preprocessing
- Handling missing values
- Data Standardization

Result
Interpretation and
Ccomparison

Data Splitting
> Training Set/Testing Set .
spiit Model Evaluation

- Cross-validation (5-fold) - Metrics: R* Score,
MSE, RMSE, MAE
> Cross-validation results
(mean =5D)

Fig. 1 Methodology

I ( Thigh — low
Chigh — Clow
Where; I = Sub-index value, C = Concentration of the pollu-
tant, Clow= Lower concentration bound of the pollutant’s range,
Chigh= Upper concentration bound of the pollutant’s range,
11, = Lower sub-index breakpoint, Thigh= Upper sub-index
breakpoint!>.
By Indian Central Pollution Control Board standards, the
worst-case sub-index is considered as the final AQIL2,

) (C_Clow)+110w (1)

Tools

This research used the Jupyter Notebook editor for Python pro-
gramming. To collect the data used for this research, air quality
data for Amravati, Maharashtra, India, was sourced from the
Central Pollution Control Board’s official database, covering the
period from May 31, 2023, to February 15, 2025. The dataset in-
cludes key pollutants such as PM, s, PM1o,NO>,NH3,50,,CO,
and Ozone. The following libraries were used for data ma-
nipulation, model implementation, evaluation, and visualiza-
tion: Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn com-
ponents and CatBoost. The code used for data process-
ing and analysis is available in a public GitHub repository
(https://github.com/SaraiDeshmukh/AQI_Prediction_Code).

Data Preprocessing

To ensure data consistency, a thorough preprocessing was con-
ducted. This included cleaning the dataset by removing dupli-
cate records. Such preprocessing steps are necessary to maintain
the accuracy and reliability of the data. The ’From Date’ and
"To Date’ columns, which initially presented redundant informa-
tion, were converted into a single *Date’ column. This column
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was then formatted uniformly in the DD-MM-YYYY format for
consistency across the entire dataset, facilitating easier analysis.
To enhance the analysis further, the AQI (see Equation 1) was
computed using a Python script, based on the pollutant concen-
trations for each date in the dataset. The calculated AQI values
were subsequently added as an additional column to the dataset.

Model Training and Evaluation

An 80:20 split was used to separate the dataset into training and
testing sets in order to assess the prediction power of several
machine learning models. This ratio ensures that the model is
trained on sufficiently large data, while also being tested on a
separate, unseen portion to gauge its ability'l®. Recent research
works on air quality prediction were considered for literature
analysis. The methods used in each research work were studied
and compared to find the best model for AQI prediction 720,

While ensemble and hybrid models are known for their predic-
tive strength'#21l this study deliberately focuses on individual
machine learning models to preserve interpretability, reduce
computational complexity, and ensure ease of deployment in
practical settings9. The selected modelsRF, SVR, DT, CBwere
chosen based on their proven track record in AQI prediction
tasks® as well as their balance between accuracy and trans-
parency 2.

For the DT, two versions were considered:

1. An unoptimized baseline, trained with default parameters.

2. An optimized variant using Grey Wolf Optimization
(DT+GWO), a metaheuristic algorithm. The GWO algo-
rithm was integrated with 5-fold cross-validation during
its objective evaluation, enabling it to search for the best
values of hyperparameters for DT in a performance-guided
manner .

To ensure robust performance and fair comparison; for RF,
CB, and SVR, GridSearch with 5-fold Cross-Validation (Grid-
SearchCV) was employed to systematically explore a predefined
set of hyperparameters. This allowed each model to identify
optimal parameter combinations and avoid overfitting=. Im-
portantly, 5-fold cross-validation was applied not only during
the hyperparameter tuning process but also post-training, to
compare models in terms of stability and average performance
across multiple folds.

Each model was trained using the training dataset. The mod-
els were subsequently tested on the unseen dataset, and their
predictive accuracy was evaluated using the coefficient of de-
termination (R?), Mean Squared Error (MSE), Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE).

Table 1 Hyperparameter Settings and Optimization Methods for
Evaluated Machine Learning Models

Model Train/Test Hyperparameters Optimization
Split Method
Random Forest | 80% /20% n_estimators=100, Grid Search CV
(RF) max_depth=30, (5-fold)
min_samples_split=2,
min_samples_leaf=1,
random_state=42
CatBoost (CB) 80% 1 20% iterations=100, Grid Search CV
depth=6, learn- | (5-fold)
ing_rate=0.1,
loss_function="RMSE’
Support Vector | 80% /20% kernel="rbf’, C=1000, | Grid Search CV
Regression epsilon=0.1 (5-fold)
(SVR)
Decision Tree | 80% /20% max_depth=13, Grey Wolf Opti-
(Optimized min_samples_split=3 mizer
with GWO)
Decision Tree | 80% /20% Default Not optimized
(Unoptimized) (max_depth=None,
min_samples_split=2,
etc.)

Metrics used

o R? (R-Squared)
R? explains the proportion of variance in the dependent
variable that is predictable from the independent variables.

¥ (i — i)
N i—9)?

RP=1- 2

Where; N is the number of samples, y; are the actual ob-
served values, y; are the predicted values from the model,
y is the mean of the actual observed values.

A value of R? close to 1 means that most of the variability
in the response variable is explained by the model. R? alone
can sometimes be misleading, especially in the presence of
overfitting 2%,

* RMSE (Root Mean Squared Error)
RMSE measures the average magnitude of the errors be-
tween the actual and predicted values

RMSE = 3)

Where; N is the number of samples, y; are the actual values,
y; are the predicted values.

It penalizes large errors more than smaller ones due to the
squaring term. It is in the same units as the target variable.

* MSE (Mean Squared Error)
MSE measures the average squared difference between the
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actual and predicted values.

1 N
MSE = 1Y (yi—5.)

i=1

“4)

Where; N is the number of samples, y; are the actual values,
y; are the predicted values.

MSE gives a sense of how much the predicted values devi-
ate from the true values, in the squared units of the target
variable.

« MAE (Mean Absolute Error)
MAE measures the average magnitude of the errors in a set
of predictions, without considering their direction.

1 Y .
MAE = = ¥ [y =i (5)
Ni:l

Where; N is the number of samples, y; are the actual values,
y; are the predicted values.

MAE is the average of the absolute differences between
predicted and actual values. Unlike MSE and RMSE, it
does not penalize large errors more than smaller ones and
is in the same units as the target variable.

Results

The research considered data from Amravati, Ma-
harashtra,  consisting of key pollutants, namely
PM,5,PMg,NO>,NH3,50,,CO, and Ozone spanning

from May 31, 2023, to February 15, 2025.

This dataset was used to train and evaluate the models.
Among the five evaluated models, the DT+GWO demonstrated
the best performance, showing the highest R? value (see Equa-
tion 2) and the lowest MSE (see Equation 4) and RMSE (see
Equation 3) scores. It has a relatively high MAE (see Equation
5). RF and CB exhibited moderate predictive accuracy, whereas
SVR performed the worst with relatively higher error metrics
(MSE and RMSE) and R? value farthest away from 1. The un-
optimized DT performed competitively with a high R?, closely
trailing the optimized DT+GWO model and outperforming SVR,
CB and RE.

A 5-fold cross-validation was performed on all models. The
results highlight consistent performance across folds, particu-
larly for the RF and DT+GWO, both of which maintained high
mean R? scores and relatively low variance. The unoptimized
DT also performed well, showing minimal performance drop
without optimization. CB achieved reasonable accuracy but ex-
hibited higher variance. SVR showed competitive performance
but with noticeable variability across folds.

Table 2 Performance Metrics of Machine Learning Models for AQI
Prediction

Model R*Score | MSE RMSE | MAE
Decision Tree | 0.9896 34.88 5.91 2.35
(GWO  Opti-

mized)

Random Forest | 0.9622 127.01 11.27 3.55
(Optimized)

CatBoost (Op- | 0.9283 241.34 15.54 6.16
timized)

Decision Tree | 0.9775 75.83 8.71 2.92
(Unoptimized)

Support Vector | 0.767 783.82 27.99 8.08
Regression

(SVR)

Table 3 Cross-Validation Performance Metrics (5-Fold) of Machine
Learning Models for AQI Prediction

Model Mean R> | R’ Std.| Mean | MAE
Dev. MAE | Std.
Dev.
Decision Tree | 0.9824 +0.0061 | 2.69 +0.3093
(GWO  Opti-
mized)
Random Forest | 0.9858 +0.0105 | 2.261 | +0.6116
(Optimized)
CatBoost (Op- | 0.9727 4+0.0263 | 3.863 | +1.3087
timized)
Decision Tree | 0.9812 +0.0046 | 2.599 | +0.3426
(Unoptimized)
Support Vector | 0.9656 +0.0321 | 3.405 | +1.3363
Regression
(SVR)
8
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Fig. 2 Coefficient of Determination (R%) on Test Dataset Across
Models

Discussion

The results of the metrics demonstrated the DT+GWO to be the
most accurate. CB and RF did not perform well, likely due to
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the fact that the relationship between different pollutants and
the AQI is non-linear and complex. While both CB and RF
are powerful models capable of capturing non-linearities, the
specific way in which pollutants interact with AQI may still
pose a challenge. For instance, a small increase in one pollutant
might have a disproportionate impact on AQI, while a larger
increase in another pollutant might not result in as significant
a change. The models might not effectively account for the
potential threshold effects of pollutants, where small changes
in certain pollutant levels cause large jumps in AQI, or where
interactions between pollutants exacerbate the effects of air
quality in ways that are not straightforward. These models
might not have been able to fully capture such threshold-like
behavior, possibly due to suboptimal hyperparameters or model
design that led to overfitting or underﬁtting.

SVR performed the worst, due reasons similar to the issues
encountered with CB and RF. SVR is known to be highly sen-
sitive to hyperparameter tuning and kernel selection2, which
may explain its difficulty in modeling the data effectlvely.

The combination of DT+GWO demonstrated the best per-
formance. Decision Trees are well suited for capturing non-
linear relationships and complex interactions between features,
which is particularly relevant in air quality data. GWO, a nature-
inspired algorithm based on grey wolves’ hunting strategies,
was used here to optimize DT parameters. GWO is a swarm
intelligence-based metaheuristic algorithm inspired by the lead-
ership hierarchy and hunting behavior of grey wolves in na-
ture?Z. For optimization, the process employed five-fold cross-
validation using MSE (see Equation 4) as a function. GWO itera-
tively refined that parameter space via simulating this leadership-
based search strategy as it converged onto the configuration
minimizing validation error across each of the folds2Z. The
DT+GWO model demonstrated improved accuracy and gener-
alization, outperforming the unoptimized decision tree across
all evaluation metrics. Notably, both RMSE (see Equation 3)
and MSE decreased, indicating a significantly lower average
prediction error. Additionally, the optimized model exhibited
stronger explanatory power, as evidenced by a higher R? score
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(see Equation 2). This highlights the effectiveness of hybridiz-
ing traditional machine learning algorithms with metaheuristic
optimization techniques like GWO for enhanced predictive mod-
eling of air quality. This makes DT+GWO a suitable choice for
air quality forecasting.

5-fold cross-validation was conducted. The results indicated
low variance in R? together with MAE values across folds for all
models, particularly for GWO+DT. As these low standard devi-
ations suggest, the models are consistent and are not overly sen-
sitive to specific training/test splits. The consistency strengthens
how strong are the performance metrics in the main evaluation.

While time-series models could potentially capture the tem-
poral dependencies and patterns in air quality data, this study
evaluates the effectiveness of only regression models in pre-
dicting AQI based on static pollutant concentrations, without
accounting for time-based trends. While more complex models
like XGBoost, k-NN, or deep learning architectures could have
been included, they were excluded to maintain interpretability
and keep the study focused on regression models.

The performance of our models aligns well with existing liter-
ature. The GWO-optimized Decision Tree model achieved a R?
score of 0.9896, outperforming other models in this study. This
result is consistent with the study by Hilal et al.'#, who imple-
mented a hybrid Decision Tree J48Grey Wolf Optimizer model
for environmental pollution control and reported a prediction
accuracy of 99.78%, significantly higher than standalone Deci-
sion Tree (93.72%). The Random Forest model demonstrated
robust performance (R = 0.9622), aligning with studies such as
Pant et al.?%, which highlight Random Forests reliability in AQI
forecasting. The CatBoost model (R* = 0.9283, RMSE = 15.54)
achieved lower accuracy compared to Ravindiran et al.?%, who
reported an exceptionally high prediction accuracy of 0.9998
and a low RMSE of 0.76, highlighting some variability in model
performance across different studies. In comparison to the SVR
model used in Gupta et al. '8, which showed varying accuracy
across cities (New Delhi: 78.49%, Bangalore: 66.46%, Kolkata:
89.17%, and Hyderabad: 76.68%) without the application of
the Synthetic Minority Oversampling Technique (SMOTE), the
SVR model in this study exhibited an R? value of 0.7670, an
MSE of 783.82, a RMSE of 27.99, and a MAE of 8.08. These
results suggest that performance can vary depending on the
dataset, region, and model tuning.

Conclusion

This research explored the application of machine learning algo-
rithms Random Forest, CatBoost, Support Vector Regression,
Decision Tree, and a Grey Wolf Optimization-enhanced Deci-
sion Treefor AQI prediction. The best-performing model was
DT+GWO, which achieved an R? of 0.9896 and an RMSE of
5.90. Model training for the other algorithms involved steps
such as data cleansing, hyperparameter optimization using Grid-

Search, and performance evaluation. The results for RF, SVR,
and CB indicate potential for further improvement through ad-
vanced hyperparameter tuning or ensemble techniques.

The scope of this research is beyond theoretical modeling.
Stakeholders governments and the publiccan use these findings
to develop accurate air quality monitoring and prediction sys-
tems for planning and mitigation, reducing the adverse health
effects of air quality on the population.

The limitation of this study is that only pollutant data has
been considered. Factors regarding meteorological conditions,
like temperature, humidity, and wind speed, could enhance
prediction accuracy. Data has been sourced from one location
within a city, which does not give a complete picture of the air
quality across the entire area. To address this, localized data
collection efforts are needed. The focus is on only five machine
learning models; exploring deep learning techniques or hybrid
models may yield better results.

Future work should aim to integrate real-time hyperlocal data,
explore deep learning approaches such as LSTMs or hybrid
models, and include additional environmental factors to enhance
prediction. Expanding the study to include data from multi-
ple cities can also validate the generalizability of the proposed
approach. To evaluate statistical robustness and quantify the
variance in model outcomes, it is advisable to use repeated
cross-validation or bootstrap resampling, especially for scenar-
ios which demand high confidence in inference. Future work
could include this.
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