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We humans can easily perform our day-to-day tasks by picking up and changing the object’s position in confined placed with
the help of the advanced dexterity capabilities of our hands. From childhood we have been unknowingly developing the skills
to manipulate objects of various shapes, sizes, and materials. However Robotic manipulation is not that simple. In cluttered
environments like homes, it requires stable grasps, precise placement and robustness against external contact. A growing trend is
the development of soft hands that can conform to an object’s shape, absorb unexpected forces at contact and compensate for load
change during manipulation (as compared to the existing and popularly used gelsight and gel slim sensors on grippers) and I will
be exploring this forward in the coming sections. My primary focus is on the types of visual, tactile, and visuo-tactile sensors used
in robotic manipulation which result in a contact rich-manipulation. I conducted an experiment to prove that the Soft bubble
visuo-tactile sensor can be used to determine if a robot is in contact with its environment. Soft bubble sensor was chosen as it can
deform around a contacting object more freely and drastically than other sensors. The data set was prepared by bringing the soft
bubble sensor placed on a fixed place manipulator in contact with a 3-D printed hex tool, replicating conditions like that of a robot
in contact with tight spaces in home.

Keywords: Robotic manipulation, Visuo-tactile sensing, Machine learning, Binary classification

Introduction

The first robotic manipulator was constructed in the 1960s. In
earlier days, robotic manipulation consisted of carefully pre-
scribed movements that a robot would execute with no ability to
adapt to a changing environment. For example, in early factory
settings, robot arms followed predetermined trajectories and as-
sumed that objects would always appear at the same place. From
the 1990s onwards, researchers aimed to increase the robustness
of object manipulation at all levels.

Now, robots can automatically generate movement sequences,
drawing on artificial intelligence and automated reasoning. They
can handle errors and uncertainty in sensing at runtime, can
adapt their trajectory to retrieve objects at different locations,
and are skilled in picking up and manipulating objects in repeti-
tive and familiar settings.

To enable multi-purpose manipulation, roboticists are de-
signing human-like hands capable of using tools. Learning to
manipulate in a real-world setting is expensive, time-consuming
and laborious. So, researchers use a simulation environment.
However, simulators are not yet advanced to simulate realis-
tic robot environments. As a result, there is a pursue of two
different roads in which:

1. The robots are made to pick up skills by observing humans
perform complex manipulation tasks.

2. Researchers construct databases of real object manipula-
tion, with the goal to better inform the simulators and
generate examples that are as realistic as possible. Robotic
manipulation is still a poor proxy for human dexterity. To
date, no robot can easily hand wash dishes, button a shirt
or peel a potato. Robots can only adapt to some variations
in the object properties. For example, they cannot take
out the right key from a bunch of keys. Thus, unlike in-
dustrial robots that can operate with certainty about their
tasks and surroundings, robots designed for homes and
other unstructured environments must be able to cope with
large imprecision in their knowledge of the surrounding
environment such as clutter, occlusions, variable lighting
conditions and never seen objects. As a result, the sen-
sors used in the making of the robot (tactile, visuo-tactile
and visual sensors) are becoming more advanced and the
roboticists are testing the algorithm in simulation.

Although, recent approaches to tactile sensing include a cam-
era that captures the deformations of a reflective soft surface as
it contacts the world. However, light from the external world
does not reach the camera due to the sensor’s skin opacity, pre-
venting its use as a traditional vision sensor. Thus, we augment
the approach of novel Visio-tactile sensors.

Visio- tactile sensors convert signals of the contact deforma-
tion into images obtaining a close-up 3D view of the location
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Fig. 1 Soft-bubble sensor output (top right) is used to stack wine glasses (left)1

where manipulation contacts occur can be challenging, particu-
larly in confined spaces and cluttered environments. A vision-
based approach is practical as it is easier to manufacture such
sensors with adjustments to the robots. The soft bubble sensor
addresses the need of flexibility as it can work on a large range
of free-form membrane shapes and can withstand rough treat-
ment. The fabrication process is simple, the soft bubble sensor
is lightweight, and its components are easily replaced. Thus,
making it a suitable sensor for low-cost, low-payload robots.

Literature Review

Soft bubble is a highly compliant dense geometry tactile sensor
for robot manipulation. It is a new kind of a tactile sensor
that combines the advantages of a highly compliant elastomeric
structure with the ability to sense the detailed geometric features
of contacting objects. The sensor captures deformation of a
thin, flexible air-filled membrane using an off-the-shelf depth
sensor. It consists of three main functional components: an
elastic membrane sensing surface, an airtight hull that allows
pressurization of the membrane and an internal depth sensor2.
The resulting sensor is highly compliant, lightweight, robust to
continued contact, and outputs a high-resolution depth image
that is ideal for manipulation applications.

High -resolution tactile sensors, such as Gel Sight, Gel Slim
and Finger Vision use cameras to gather large amounts of data
over relatively small contact areas. Gel Sight uses precise in-
ternal lighting and photometric stereo algorithms to generate
height maps of contacting geometry3.

Soft bubble draws influence from these camera-based tactile
sensors, particularly on its use of an off-the-shelf depth camera
and an opaque membrane which drapes sensed object surfaces

in consistent color and reflectance properties. Mechanically,
Soft bubble can deform around a contacting object more freely
and drastically than the gel-bases sensors above. As a result of
using a self-contained depth sensor, precisely placed illumina-
tion and 3D reconstruction algorithms are not needed to capture
deformation. This allows the sensor to work on a large range
of free-form membrane shapes. However, the sensor currently
senses geometry only, i.e., Extracting contact forces requires ad-
ditional modeling and analysis. This means that they can neither
be used for human-scale object manipulation nor compensate
for externally induced shear4.

The fabrication process is cheap, simple and repeatable and
the use of air over gel also makes the sensor lightweight, making
it a suitable sensor for low-cost, low-payload robots5. Employ-
ing the resilience of latex, the sensor membrane can withstand
rough treatment while worn components are easily replaced. It
is also well-suited for contact heavy manipulation as the compli-
ant, high-friction membrane surface offers large contact patches
and form closure via deformation around an object. The quality
and resolution of the pair of images produced by Soft bubbles
on contact are more than sufficient to enable tracking and pose6.

Grasping is a most basic and popular application of tactile
sensing. Grasps are not only object dependent but also robot
dependent (as shown by Fig. 1). As the number of degrees of
freedom of the hand increases, its complexity of control also
increases. Tactile sensing aims to increase the success ratio and
the stability of the grasp by controlling the grasp parameters like
a grasp pose, width and force to hold an object7. Roboticists
first had to learn the reason for executing the grasp before they
planned to solve the problem of how to grasp an object as the
grasp differs in different scenarios .For example: a knife may
be held normally but when they are used for cleaning or cutting,
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Fig. 2 Dimensioned sensor assembly of the depth sensor, PMD Pico
flex. All dimensions in mm.4

their grasp changes .
Such events would also be difficult to detect with external

vision due to occlusion. Data for training, and a common ap-
proach is to generate the data from trial-and-error experiments8.
Testing the algorithm in simulation first and then refining the
learning on a real platform or else this may damage the robot
and the process becomes tedious.

Soft bubble sensor integrates multiple tactile perception ca-
pabilities to enable robust manipulation in tightly constrained
environments9. Mechanically, Soft bubble grippers achieve
robust grasps since they are malleable, are easy to build due
to their air-filled membrane design and are durable (as seen
in Fig 2). They are also closely related to other visuo tactile
sensors with the key difference that the generated depth maps
are directly measured by the internal imaging sensor and are not
inferred.

The earlier Soft-bubble prototype was a single sensor used
as an end effector. However, Soft bubble grippers have been
designed to both task-based and perceptual requirements. To
achieve tasks in constrained domestic environments, the Soft-
bubbles are designed to be attached to a standard parallel grip-
per, to interact with human-scale objects, and to fit into tight
household spaces i.e., a sink or dishwasher. Perceptually driven
improvements include the use of a shorter-range depth sensor as
depicted in Fig-3.

A batch of Bubble-sensor fingers can be inexpensively assem-
bled in as little as two hours with no more than a FDM printer,
laser cutter, scissors, glue and a paintbrush10. The ToF sensors
in the bubbles provide both depth and IR over independent chan-
nels. If a grasp is stable using thresholds on the bubble pressure
differential as well as the finger velocity. This eliminates con-
founding issues like image blur. Tactile sensing seems to be still

Fig. 3 Soft-bubble gripper used to manipulate household objects in
tight spaces. All Dimensions in [mm.]

2

experimental in robotics due to the following reasons:

1. Difficulty to install on robotic hands as the robot hands
vary in finger surface (flat and curved) but sensor needs to
be placed in a limited space. The sensor is also expensive
and requires capabilities that are hard to achieve.

2. Installing this sensor results in the increase in the com-
plexing of wiring and power supply along with processing
circuits. As a result, Programming becomes complicated
and implementing human-quality tactile sensors is impos-
sible with the state-of-the-art.

3. Sometimes the sensor can be broken due to the interaction
with the external force. As a result, the Maintenance be-
comes complicated as periodic repairs would be needed as
the tactile sensors are not easy to repair.

4. Many tactile sensors are not compatible with the others as
there are variations in the modality and spatial and temporal
resolutions in the sensor. The sensing principles also vary
resulting in the decrease of reusability of software.

5. Many robotic manipulations can be implemented without
tactile sensors.

Thus, due to these reasons, the researchers are unable to use
the tactile sensors and accumulate the knowledge related to
them.

The fundamental difficulties and open questions in modeling
compliant contact mechanics have limited the adoption and
deployment of soft tactile sensors. How high a spatial resolution
is necessary for tactile sensing? Is either geometry or force
sensing more important than the other?
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Fig. 4 The various stages of the in-hand pose estimation pipeline.

Although data driven methods have been employed as at-
tempts to overcome the modeling difficulties, there remains a
lack of highly compliant mechanisms which also incorporate
high-resolution contact sensing. However, due to their ability
to directly transfer interactions at the contacting surface, tactile
sensors have the potential to be predominant when vision and
other exteroceptive modalities are occluded or incapable of sens-
ing due to lack of sufficiently salient features11. For Example,
as seen in Fig.- 4,

a) A plastic mug being grasped in the Soft bubble gripper
system.

b) The concatenated point-cloud produced from the depth im-
ages from each Soft-bubble sensor computed in the gripper
frame.

c) The contact-patch filtered concatenated point-cloud.

d) The estimated in hand mug pose from the proximity pose
estimator.

As we have already seen, Fingertip Gel Sight sensor measures
the 3D geometry and contact force information with high spe-
cial resolution; however, the arduous fabrication of this sensor
severely restricted its application. Similarly, Gel Sight and Gel
Slim, while cost- effective, have been difficult to manufacture
and assemble in-masses or by inexperienced users due to their
reliance on complex by-hand fabrication techniques that are
incompatible with retail fabrication services. Furthermore, a
problem of the Gel Sight sensor is also that it does not detect the
force distribution, while the human tactile system can measure
both the surface geometry and the contact force distribution.

On the other hand, in soft bubble sensors, perception methods
presented are computationally efficient enough to enable closed-
loop, real-time control of complex tasks. The proximity field

method used in our pose estimation framework is a novel con-
tribution that is promising for achieving tractable depth-based
tracking.

My focus will be on the Soft bubble design used in grippers
with advanced technology which enables multiple forms of per-
ception; resulting in determining whether a robot is in contact
with the environment or not.

Methodology

Tools

Python 3 was the programming language used for this project.
This programming language was chosen because it is a very
popular & powerful language used in robotics. Python also
has several cloud and web-based implementations, so all the
programming could be done from private browser instead of
installing anything further on the computer, which could poten-
tially run into hardware or dependency issues.

The web-based implementation of Python 3 used for this
project is Google Colaboratory. This tool allows Google Drive
to be connected to a cloud-based integrated development en-
vironment (IDE) that is free and easy to use. Having my IDE
connected to my Google Drive was important because a large
amount of data had to be stored and Google Drive was a great
way to store that data.

Google Colaboratory also has all the dependencies needed
to complete this project pre-installed. NumPy1, Matplotlib2,
and Scikit-Learn3 are the main libraries used to complete this
project. NumPy is an open-source library that allows users to
efficiently perform numerical calculations in Python. Matplotlib
is another open-source library for creating plots with data in
Python. NumPy and Matplotlib are usually used together be-
cause Matplotlib supports using data held in NumPy arrays.
Finally, Scikit-Learn is the backbone for my machine learning
methods. Scikit-Learn is built using NumPy and Matplotlib, as
well as some other Scientific Python libraries that have not been
used in this project. Scikit-Learn provides simple and efficient
tools for predictive data analysis that are open source. These 3
libraries have been used heavily throughout my project.

The choice of these tools contributes to the scientific rigor
of the study as Google Colaboratory is very transparent and
allowed me to collaborate with my mentor to track necessary
edits and investigate the process by which the code has arrived.
Python also has powerful data visualization libraries such as
Matplotlib which gave accurate plots, NumPy helped me under-
stand the data patterns and Scikit-Learn provided accurate data
analysis. This way the code was examined step by step.

Alternative tools like Jupyter notebook were also considered.
Jupyter notebook require no internet connection and each line of
code is processed faster individually. However, the notebooks
are stored in JSON file format, so many times tracking changes
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and collaborating, using version control tools like Git, gets
complicated, resulting in errors.

Data Acquisition

The dataset had been prepared by experimenting the sensor
in constrict spaces (constructed in lab) and generating images
when in contact and not in contact. Soft bubble sensors, a highly
compliant, easy to build and lightweight tactile sensor in contact
with a 3-D printed hex tool. Steps like adjusting the lighting and
keeping the camera at a proper angle were taken to ensure the
dataset’s quality and representativeness. To mitigate a possibility
of bias introduced, the variety of the data set was kept in mind
and made sure that the sensor readings are not overrepresented
in the dataset. A data path had to be established so that the files
can be located. This facilitated in understanding how a robot
is in contact with the flexible environment like that of the tight
spaces in home.

Data Loading

All the images have loaded data and they are gray-scaled
140/175 (width/height) image data from the Soft bubble sensors.
The counter shows that there were 100 contact images and 100
non-contact images. These images were depicted as arrays of
pixels that could be illustrated by various color schemes (RGB,
RGBA, HSV, grayscale, etc.) They were labeled by pre-sorting
the images into folders, of contact and non-contact and then
using the folder name as the label. The .png files are read into
python by coding on Google Colaboratory.

Data Preprocessing

A code was written to tell the unique instances of each label. A
bunch of subplots were made based on height and width. One
of the axes was the contact axis and the other one was the non-
contact axis. This visualization of subplots helped in handling
the outliers. To determine their exclusion, the reasons for getting
the outliers in the first place were understood and their impact
on analysis was kept in mind.

Machine Learning Methods

SGD classifier method had been used to turn these representa-
tions into a binary prediction which showed 1(contact)or 0(non-
contact). The data had been accessed by variable X and label
as Y.SGD classifier was chosen as it is efficient in dealing with
large datasets. It processes one data point at a time due to which
it requires less memory compared to other classifiers which pro-
cesses the entire dataset in one go. SGD classifier makes the
model more robust to noisy data and can quickly adapt to new
patterns in the data impacting the model’s generalizability.

Table 1 Classification results for varying test size parameters
Test Size # Contact Training Samples # Noncontact Training Samples Classification Accuracy

0.5 49 51 98%
0.99 100 0 FAILED
0.98 2 2 100%

Visualizing the Train and Test Split

Every time the randomness was going to be the same, impact of
the parameter could be checked. Thus, it could be deciphered if
changing the test-size parameter impacted the results or not.

The images were in RGBA and to efficiently train on them,
they had to be converted to gray scale. Hence, the images were
represented using binary prediction instead of pixels.

Results

A standard scaler was used to print the shape of data, telling the
amount of data present in the training set. A classification accu-
racy of around 98% was found which helped me to determine
that the sensors were correctly in contact with the environment.

Overfitting was addressed by cross-validation in which the
training set was separated into k-subsets evenly and each time
the data was separated, one of the subsets out of k subsets were
taken out as testing data. This not only helped in improving the
overall performance and accuracy of the model but also helped
to generalize better with unseen data.

It was important to take out 50-50 data during training and
testing set as work had to be done on a large dataset and a 50-50
split helped to balance the amount of data used for both training
and evaluation as well as analyzed data quickly.

When there were 100% contact images in the training set and
0% contact images in test set, It was automatically understood
that the testing was not to identify contact in the test set. Simi-
larly, when there was 0% training images and 100% test images
in non-contact, the testing was never to identify non -contact
in the training set. Hence, I had to have a 50-50 split between
the training and test set, to test on what had been trained on and
tested on (shown in Table 1.)

The following graphs shows the train-test split with a test
size parameter of 0.5. (in Chart 1.) There are 47%counts of
contact with train set (shown in blue) consisting of 100 photos
and more than 50% counts of contact with test set (shown in
orange) consisting of 100 photos. Whereas there are around 50%
counts of non-contact with train set (shown in blue) consisting
of 100 photos and 48.7% counts of contact with test set (shown
in orange) consisting of 100 photos.

The following graphs shows the train-test split with a test size
parameter of 0.98. (in Chart 2.) There are 50% counts of contact
with train set (shown in blue) consisting of 4 photos and similarly
50% counts of contact with test set (shown in orange) consisting
of 196 photos. Whereas there are around 50% counts of non-
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